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Abstract

Rare variants of major effect play an important role in human complex diseases and can be

discovered by sequencing-based genome-wide association studies. Here, we introduce an

integrated approach that combines the rare variant association test with gene network and

phenotype information to identify risk genes implicated by rare variants for human complex

diseases. Our data integration method follows a ‘discovery-driven’ strategy without relying

on prior knowledge about the disease and thus maintains the unbiased character of

genome-wide association studies. Simulations reveal that our method can outperform a

widely-used rare variant association test method by 2 to 3 times. In a case study of a small

disease cohort, we uncovered putative risk genes and the corresponding rare variants that

may act as genetic modifiers of congenital heart disease in 22q11.2 deletion syndrome

patients. These variants were missed by a conventional approach that relied on the rare var-

iant association test alone.

Author summary

Case-control sequencing studies are a promising design to uncover risk genes of human

complex diseases implicated by rare variants. The recent development of different types of

rare variant association tests has improved the statistical power to identify disease genes

that harbor risk rare variants. However, none of the recent sequencing-based genome-

wide association studies identified robust disease association of rare variants or genes

based on them. Due to limited sample sizes that can be feasibly achieved in real applica-

tions, current rare variant association tests can only generate marginal association signals

for most risk genes. Here we proposed an integrated method that combined association

signals with orthogonal biological evidence to uncover risk genes in sequencing studies.

Designed to address the lack-of-power issue, our method was shown to effectively uncover

risk genes with marginal association signals in data simulation. Indeed, in a real applica-

tion demonstrated in our case study our method disclosed important risk genes of con-

genital heart disease in 22q11.2 deletion syndrome that were missed by the previous

study.
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Introduction

The discovery of genes important to human complex diseases has recently involved association

studies, which involve testing for allele frequency differences between cases and controls from

a given population. Due to the design of the initial microarray-based genotyping method, such

studies have hitherto mostly examined the disease association of common variants [1]. The

‘missing heritability’ of common traits suggests that rare variants may significantly contribute

to the genetics of human complex diseases [2]. With the rapid increase in throughput and

decrease in its cost, next-generation sequencing has been increasingly used for genotyping in

human disease studies. In contrast to traditional genome-wide association studies (GWAS)

designed for common variants, case-control whole genome or exome sequencing (WGS/WES)

studies provide opportunities to uncover risk genes of complex diseases implicated by rare var-

iants in a genome-wide and hypothesis-free fashion. Low minor allele frequencies preclude

detection of disease association of individual rare variants. Instead, biologically relevant vari-

ants are aggregated into variant sets (often corresponding to genes [3] or biological pathways),

and the aggregate frequency distribution is compared between cases and controls. Although

several types of rare variant association tests have been developed to fit different genetic mod-

els [3, 4], these tests are underpowered–and will remain so for the foreseeable future–to detect

disease association for rare variants due to limited sample sizes [5–7] that can be feasibly

achieved. In addition to improving the statistical power of the rare variant association test,

there is an urgent need for methods that can analyze rare variants in sequencing-based associa-

tion studies to identify disease risk genes among the great majority of unrelated genes despite

the insufficient discriminative power of genetic association signals.

To tackle this challenge, integration of diverse and yet complementary biological

information will be of critical importance. Genes causing the same or similar diseases

tend to lie close to one another in a protein-protein interaction network or a gene func-

tional linkage network [8, 9]. Genes involved in the same biological process show similar

loss-of-function phenotypes and thus are associated with the same or similar diseases. As

a result, gene networks and phenotypes are particularly informative for disease studies

and have been widely used to improve risk gene identification in sequencing studies [10–

14]. Methods that use network and phenotype information to improve disease risk gene

prediction exploit the ‘guilt-by-association’ network property of risk genes and utilize

known connections between genes and disease phenotypes. Their integration with gene

association signals, however, needs careful consideration. To predict or prioritize genes

for disease association, most current methods with network and phenotype integration

require prior knowledge about the disease under investigation–e.g., known risk genes

and/or known disease phenotypes–as part of the data input [10, 12, 13, 15]. Devising an

integration strategy that does not rely on such prior knowledge would have several poten-

tial advantages. First, the application would not be limited to well-studied diseases. Sec-

ond, and more importantly, such a method would mitigate the limitation that the prior

knowledge could predispose the risk gene prediction toward known disease genes and

thus compromise the opportunities for novel unbiased biological discovery in genome-

wide sequencing studies. In fact, the importance of not relying on prior disease knowl-

edge has been recognized in studies of common variants and common diseases as well, as

methods of risk gene prioritization in GWAS using such an unbiased approach have been

recently developed [16, 17].

Here, we propose Integrated Gene Signal Processing (IGSP), a novel method to prioritize

genes implicated by rare variants for disease risk in sequencing-based GWAS. The IGSP

method scores genes by integrating their disease association signals using both gene network
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as well as phenotype information. In this approach, we proposed a gene scoring model that

can improve upon disease association signals for prioritizing risk genes by leveraging the

underlying network and phenotype properties of disease risk genes. Given observed disease

association signals across the applied gene network and phenotypes, IGSP infers the likelihood

of risk genes based on the proposed scoring model, in a stochastic process of sampling possible

risk genes combinations. Using simulated data, we systematically evaluated and compared the

performance of IGSP against a widely-used method based on the association test alone. As an

example, we applied IGSP to the WES data from a case-control association study [18] of con-

genital heart disease (CHD) in 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syn-

drome/DiGeorge syndrome; MIM#192430; 188400). Despite a small cohort size and complex

disease mechanisms, IGSP was able to uncover putative risk genes of CHD among individuals

with 22q11.2DS.

Results

The strategy of IGSP is to score genes based on not only their association signals but also the

joint evaluation of their network and phenotype characteristics (Fig 1). By taking advantage of

the high-level network properties and phenotype characteristics of risk genes, we hypothesize

this method can improve risk gene prediction without relying on explicit knowledge of the dis-

ease under investigation. The key premise of our algorithm is to supplement disease associa-

tion signals with network and phenotype information to boost sensitivity of risk gene

prediction.

To justify the hypothesized network and phenotype properties of risk genes in IGSP, we

collected risk genes of 5 different diseases from the online Mendelian Inheritance in Man

(OMIM) database [19] (S1 Table) and investigated the network and phenotype properties of

risk genes. Consistent with our hypothesized network properties of risk genes, disease risk

genes share significantly more network connections in the co-function network [17] (S1 Fig).

On the other hand, analysis of top principal components of mouse knock-out phenotypes

showed that the same disease risk genes tend to cluster on top principal components of Mam-

malian Phenotype (MP) phenotypes (S2 Fig). The first principal component was excluded

from consideration since it mainly characterizes the number of associated MP terms of a gene

(correlation coefficient = 0.918), which is not biological meaningful. The observed network

and phenotype properties accounts for how network and phenotype-based scoring can mea-

sure the underlying connection of genes with disease risk.

IGSP assesses the likelihood of disease risk through jointly evaluating association scores of

genes and their network and phenotype properties. It is important to know if there is any rela-

tionship between these scoring components due to potential biases: genes with higher network

degrees are more likely to be connected in a network, while genes associated with more MP

phenotypes are more likely to share phenotype similarities [20]. Using our CHD WES data set,

we checked and confirmed that there is no relationship between the genotype-based scoring

and the co-function network degree or the number of associated MP terms (S3 Fig).

Method evaluation and comparison

First, we optimized IGSP by testing different values for parameters (see Methods)–the percent-

age of scoring genes being risk genes (x), parameters of scaling coefficient (a and b), and the

number of top principal components from our Mouse Genome Informatics (MGI) phenotype

annotation–by using in gene scoring and selecting parameter values that give the best results.

IGSP assumes that x% of genes to be scored are risk genes. In our simulation, 147 (~1.64%)

and 193 (~2.15%) genes were deemed CHD and schizophrenia risk genes (S2 & S3 Tables),
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respectively. The simulation results showed that IGSP achieves the best performance when x is

set at 1 or 2 (S4 Fig) for CHD and schizophrenia, respectively. As expected, the performance

gradually decreases as x exceeds its real value. Although x is unknown in real applications, the

simulation result showed that IGSP can largely maintain its performance if x is set within a

reasonable range of its real value. Parameters a and b in Eq 1 define the scaling range in IGSP.

Our simulation with different values of a and b implies that no single a and b values are opti-

mal in all scenarios (S5 & S6 Figs). Nevertheless, when a and b are set to 0.1 and 1, respectively,

IGSP can consistently achieve top performance. Principal components of MGI phenotype

annotations used in phenotype scoring characterize the dimensions of phenotype features of

risk genes. The second and third principal components were able to effectively capture the

Fig 1. Overview of the IGSP strategy. (A) The schematic view of IGSP. IGSP scores genes by integrating initial gene

association signals with available gene network and mouse knock-out phenotype information. Sequencing data

represented the primary data for investigation. Gene network and phenotype data were used to support this data and were

not specific to any disease. For phenotype characteristics of genes, different symbols represent different principal

components from MGI phenotype annotation (see Methods), and the color represents the values of principal components;

color of black to purple represents small to large values. (B) The gene network and phenotype properties of risk genes. We

hypothesize that risk genes for the disease in the study cohort tend to lie close to each other in a co-function gene network

[17] (see Methods) and their orthologs in mice tend to influence similar mouse knock-out phenotypes. PC denotes

principal components; red dots represent risk genes while grey dots represent non-risk genes (see S2 Fig).

https://doi.org/10.1371/journal.pgen.1007142.g001
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gene-phenotype association information and are therefore suited for phenotype scoring

(S7 Fig).

We used simulated association signals of genes for CHD to evaluate the performance of

IGSP. CHD, involving the structure of the heart and great vessels is the most common serious

birth defect, with a prevalence of 1% in newborns [21–23]. The causes of CHD are still mostly

unknown but clearly have a genetic component [24, 25]. To start our data simulation, we first

obtained 147 CHD risk genes [26] that can be scored by network and phenotype (S2 Table) as

risk genes. The other 8,812 genes were designated as non-risk genes. We used IGSP to score

the total of 8,959 genes in several simulation configurations: 147 CHD risk genes were ran-

domly assigned a different proportion of low association P-values (S4 Table), while 8,812 non-

risk genes were randomly assigned a P-value between 0 and 1. Compared with using disease

association signals alone, gene scoring with data integration showed a significant improvement

in risk gene prioritization. Judged by the correct identification of CHD risk genes among the

top-scoring genes, IGSP outperformed the burden test by 2 to 3 times under different simula-

tion configurations of rare variant association test results (Fig 2A). We also carried out simula-

tion analysis with 193 risk genes (S3 Table) associated with schizophrenia, another complex

human disease, and observed a consistent improvement in risk gene prioritization by IGSP

(Fig 2B). In both cases, the improved performance resulted solely from the integration of the

gene network and phenotype data, as the association signals generated by the burden test were

the primary data input to IGSP. Depending on the disease, the network and phenotype com-

ponents of IGSP may have different effects on risk gene prediction. When they complement

each other, however, integrating both can significantly outperform using either one on its

own.

In our scoring model, we used normalized scores to represent the relative strength of net-

work and phenotype evidence on a scale from 0 to 1. This raw-score normalization is necessary

since raw scores of network and phenotype do not have the same scale (S8 Fig). Furthermore,

raw network and phenotype scores span within an unpredictable range which makes the con-

trol of a scaling range difficult. For example, the scaling range can be too small to make

improvement using raw network and phenotype scores (S9 Fig). On the other hand, it is flexi-

ble to use different raw-score normalization methods. By using a min-max normalization

method, we showed that IGSP made comparable improvement (S10 Fig). IGSP also allows

flexibility for different types of connectivity propensity measured in network-based scoring

(S11 Fig). By considering the degrees of possible risk genes, the implemented method using a

transition matrix considers potential statistical artefacts in assessing guilt by association [20].

On the other hand, the method of measuring connectivity propensity based on connection

counts also makes biological sense especially for uncovering risk genes involved in the same

functional module associated with disease pathogenesis. Our result showed that IGSP using

two methods exhibited similar improvement.

To further demonstrate that our current model effectively integrates network and pheno-

type features with association signals, we compared the performance of using the current inte-

grated model (Eq 1) with that of using four alternatives by simulation (S12 Fig). In all four

alternatives (S12A Fig), the weight of network and phenotype components was dependent on

risk gene status. Model 1 and 2 failed as their power of prioritizing risk genes almost

completely lost. It was because in the two alternative integrated models there were no lower

bounds (The lower bound is 0) on the scaling coefficient to prevent the scoring being simply

dominated by the network and phenotype features. While model 3 and 4 exhibited certain

degree of performance improvement over the burden test, they were outperformed by the cur-

rent integrated model. Model 4 performed better than model 3, as it maintained a minimum

weight of the phenotype and network components which is thus less dependent on risk gene
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status. This suggested that the weight of network and phenotype components should be kept

independent of risk gene status, which was already considered in phenotype and network scor-

ing. In summary, the simulation results of using different alternative integrated models justify

our current integration design (Eq 1) in that the integrated model needs to have a lower-

bound on the scaling coefficient and a weight of the phenotype and network component inde-

pendent of risk gene status.

To score genes, IGSP modulates their disease association signals by integrating network

and phenotype information. Because such information is extrinsic to the data generation pro-

cess of the association study, it is important to assess how much this information contributes

to the final scoring of genes. To carry out this negative control experiment using simulation,

we randomly re-assigned simulated association P-values of all genes, including risk and non-

risk genes, to themselves and used IGSP to score genes with the randomized association sig-

nals. The results of this negative control test, based on the null model (S13 Fig), showed that

Fig 2. The simulation to evaluate IGSP. The performance of risk gene prioritization was evaluated based on the number of risk genes included in top

scoring genes. The labels ‘Strong’, ‘Moderate’, ‘Weak’ and ‘Very Weak’ define simulation configurations of detected different association signal strength of

risk genes on a relative rather than absolute basis (S4 Table). ‘Gen + Net + Phe’ represent IGSP with full integration of network and phenotype features.

‘Gen + Net’ and ‘Gen + Phe’ represent IGSP with only integration of network features and phenotype features, respectively. The parameters used in this

simulation were as follows: x = 2, a = 0.1, b = 1, and principal components in phenotype scoring (PC 2 and 3). (A) CHD. 147 CHD genes from Sifrim et al

[26] were used as the risk genes. (B) Schizophrenia. 193 putative schizophrenia genes from MalaCards [57] were used as the risk genes.

https://doi.org/10.1371/journal.pgen.1007142.g002
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when there is a strong tendency for risk genes to be more strongly associated than non-risk

genes, IGSP can identify top genes with significantly higher scores compared to IGSP results

from merely random association signals. This is because when there is a group of genes with

stronger association signals which happens to share network and phenotype similarities, they

will be scored higher if they are included in the analysis as integrated scores. This null model

analysis shows that our data integration method uses first and foremost association signals to

score genes for their disease connection.

CHD in 22q11.2DS as a model to study rare variants in human complex

diseases

CHD, involving the structure of the heart and great vessels, is the most common birth defects

with a prevalence of 1% in newborns [21–23]. Its cause is still mostly unknown but has a clear

genetic component [24, 25]. Support for a genetic basis of CHD also comes from studies of

patients with chromosomal structural variant abnormalities such as 22q11.2DS. This disorder

is the most common among microdeletion syndromes, found in 1/4,000 live births [27] and 1/

1,000 fetuses [28]. It occurs as a de novo 1.5~3 million base pair (Mb) deletion in most individ-

uals [29]. Approximately 60–70% of patients with 22q11.2DS have broadly defined CHD.

Most have conotruncal heart defects affecting the cardiac outflow tract and/or aortic arch.

Approximately half of these require surgery for survival. Some of the more severe conotruncal

heart defects include tetralogy of Fallot and persistent truncus arteriosus. A subset of patients

also has atrial septal defects. Conotruncal heart defects comprise a third of the CHD popula-

tion [30]. Thus, 22q11.2DS can serve as a model to identify risk genes for this relatively com-

mon class of CHD. Further, compared to isolated sporadic CHD, syndromic CHD provides

better opportunities to identify key risk factors in CHD pathogenesis. Since the frequency and

type of conotruncal heart defects vary, it is likely that haploinsufficiency of genes in the

22q11.2 region as well as other genetic factors are responsible. Risk genes for syndromic CHD

in 22q11.2DS were recently examined in a WES-based association study with 90 cases and 94

controls [18]. It focused on chromatin modifier genes for CHD risk as implicated in previous

studies of the disease and analyzed mildly deleterious rare variants with the expectation that

modifiers of CHD would not be extremely deleterious [18]. The study identified chromatin

modification as an important risk factor for CHD in 22q11.2DS. However, other risk factors

for CHD in 22q11.2DS are yet to be explored.

To serve as a test case for our new data integration method, we used a more stringent vari-

ant selection and applied IGSP to this small-sample data set to prioritize genes for CHD risk in

an unbiased approach. The burden test had failed to identify genes with significant disease

association. 12,196 genes were found to have at least one rare predicted deleterious single

nucleotide variant (SNV) in the cohort according to our criteria and thus have an association

signal. After optimization with x = 2, a = 0.1, b = 1, and using the second and third principal

components used in phenotype scoring, we used IGSP to score 5,987 genes for which both net-

work and phenotype information was available. Functional enrichment analysis showed that

the top 50 high-scoring genes were significantly enriched with gene ontology (GO) terms for

heart development (Fig 3A and S5 & S6 Tables), among which the GO term, ‘anatomical

structure formation’ involved in morphogenesis, was the one and the only one implicated

among top 50 genes with the strongest association test P-values (S7 Table). This result indi-

cated that IGSP effectively expanded and uncovered biological signals hidden in the associa-

tion signals of the CHD study cohort. Indeed, the result of negative control analysis (S13E Fig)

provided strong evidence that this result of IGSP was derived from gene association signals

from the genotype data in the cohort. Despite a very small sample size, IGSP successfully
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identified in this cohort several known key risk genes–NKX2-5 (NK2 homeobox 5), GATA4
(GATA binding protein 4), and EYA1 (EYA transcriptional coactivator and phosphatase 1)–

for CHD in humans or for heart development in animal models [31, 32]. Although these genes

showed clear disease association signals, upon close inspection of their genotypes among cases

and controls (Table 1) these genes all had individual P-values that were far from statistically

significant because of the low frequencies of rare predicted deleterious alleles. Thus, if only the

association test was used for risk gene prioritization, these genes would have been buried in

noise and missed. For example, in both NKX2-5 and in GATA4 (Table 1), two well-known

CHD risk genes, two cases but no controls had a rare predicted deleterious SNV, explaining

the weak genotype evidence as reflected in the association P-values (0.119) of the two genes.

IGSP was able to detect the marginal but bona fide signals of these two genes because the net-

work and phenotype information was used. The high IGSP scores we found implied the

Fig 3. IGSP scoring reveals risk factors in CHD. (A) Top 50 prioritized genes are enriched with GO terms related to

heart development. The figure shows top 10 enriched GO terms and the associated top 50 prioritized genes on the left.

The complete list for high scoring genes and GO term enrichment result are shown in S5 & S6 Tables. Average

network and phenotype scores are calculated based on their average scores in iterations of algorithm. (B) The human

homologs of differentially expressed genes (DEG) in Tbx1 knock-out mice tend to have high IGSP scores. The human

homologs of Tbx1-induced DEG tend to have high IGSP scores especially in E9.5 (P = 0.023) and E10.5 (P = 5.5E-4).

The Wilcoxon rank-sum test was used to calculate P-values.

https://doi.org/10.1371/journal.pgen.1007142.g003
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association of these risk genes with other risk genes in this cohort which could be detected by

IGSP using the gene network and phenotype data. On the other hand, TBX5, another well-

known heart development and CHD risk gene [31], had a low final score (ranked at 1,209) due

to lack of genotype evidence (P = 0.62) despite its strong relationship with heart development

as reflected by its high network and phenotype scores.

Previous studies of gene inactivation in mouse models [33, 34] and mutation analysis of

TBX1 in phenocopies of 22q11.2DS but without a deletion in human patients [35, 36] provide

strong evidence for contribution to CHD from TBX1 (T-box 1), a transcription factor gene

located in the 22q11.2 deletion region. To elucidate how TBX1 target genes may be implicated

in the CHD WES data set, we utilized data from gene expression microarrays to analyze

human homologs of genes differentially expressed in microdissected cardiac progenitor tissues

expressed between Tbx1 knock-out mouse embryo and normal embryo at three different

embryonic days–E8.5, E9.5, and E10.5 [37]. At each time point a gene was identified as a dif-

ferentially expressed gene (DEG) if it had at least one probe with a nominal P-value for differ-

ential expression smaller than 0.05 and a fold change greater than 1.5. We also collected

strictly non-differentially expressed genes (non-DEGs) as genes whose probes all had a nomi-

nal P-value greater than 0.5 and a fold change smaller than 1.5. At the aforementioned three

mouse embryonic time points, there were 110, 93, and 78 DEGs and 1,591, 2,213, and 2,423

non-DEGs, respectively, that had a IGSP score in integrated scoring. Human homologs of

mouse DEGs induced by Tbx1 knock-out tend to have higher IGSP scores at E9.5 and E10.5

(P = 0.023 and 5.5E-4, respectively; Fig 3B). In contrast, the difference between Tbx1-induced

DEGs and non-DEGs was not detected by association scores from the burden test (Fig 3B).

Gene products function in biological pathways. Uncovering pathways of risk genes of CHD

could help to unravel the disease pathogenesis. Functional and pathway enrichment analyses

of IGSP high scoring genes revealed canonical pathways associated with CHD risk (Fig 3A

and S6 Table). Connecting such high scoring genes based on the characteristics of the CHD

could potentially reveal novel underlying risk pathways. Transcriptional regulation is known

to play a major role in heart development, and abnormalities in several transcription factor

(TF) pathways are closely linked to CHD risk [38]. By leveraging the prior knowledge of inter-

actions between TFs and their target genes, we sought to uncover the TF pathways underlying

Table 1. Top scoring IGSP and non-prioritized CHD genes in a WES case control study of rare variants in 22q11.2DS with and without CHD.

Gene Variant

Name B P Net Phe Rank Coordinate (hg19) Ref:Alt B Functional Class AAF C

NKX2-5 2:0 0.119 0.974 0.933 27 chr5:172662026 C:G 2:0 Missense variant 0.0054:NA 26.4

GATA4 2:0 0.119 0.816 0.968 36 chr8:11612576 C:A 1:0 Synonymous variant 0.0027:NA 20.5

chr8:11615955 G:A 1:0 Missense variant 0.0027:NA 25.1

EYA1 4:0 0.028 0.786 0.959 10 chr8:72267083 G:C 3:0 Missense variant 0.0082:0.001 20.6

chr8:72267127 T:G 1:0 Missense variant 0.0027:NA 30.0

TBX5 1:2 0.62 0.893 0.761 1209 chr12:114837349 C:A 1:1 Missense variant 0.0054:0.006 34.0

chr12:114841688 C:T 0:1 Missense variant 0.0027:NA 34.0

NKX2-5, GATA4, EYA1 and TBX5 are all genes with known association with heart development, and they were all scored high by network and phenotype. Among the

four genes, NKX2-5, GATA4, and EYA1 have at least a marginal association signal and thus been effectively prioritized. Variants of the three genes on the right are thus

putative genetic modifiers for CHD in 22q11.2DS. B denotes the ratio of the counts of rare predicted deleterious alleles in cases to that in controls; P denotes P-value

from the burden test; Net and Phe represent the average network and phenotype scores (in iterations before reaching convergence), respectively; AAF denotes

alternative allele frequency (the cohort of sequencing data: 1000 Genome EUR population); C denotes Combined Annotation Dependent Depletion (CADD) scaled

score [51].

https://doi.org/10.1371/journal.pgen.1007142.t001
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risk of syndromic CHD in 22q11.2DS. Based on putative TF-target interactions from TRRUST

[39] and GSEA (the gene set of transcription factor targets) [40], we constructed a regulatory

network of TFs and their targets from among the 200 top IGSP high scoring genes for CHD in

22q11.2DS. We identified a subnetwork enriched with 63 of these top 200 high scoring genes

(Fig 4). This network includes multiple key CHD TF risk genes (NKX2-5, GATA4, MEF2C,

and SRF [38]) and reveals their downstream pathways for CHD development. For example, TF

targets in this subnetwork are involved in multiple biological processes important for heart

development, including apoptotic process, ERBB signaling pathway, cell cycle regulation, focal

adhesion, BMP signaling pathway, and WNT signaling pathway [41]. Among 63 genes in the

network, VEGFA has been suggested as a modifier gene of CHD in 22q11.2DS [42]. Other

potential modifier genes of CHD in 22q11.2DS found in the network are genes perturbed by

TBX1 haploinsufficiency implicated in the mouse model (GATA4, T Brachyury, CSRP3, KIF1B,

CYR61, and WNT5A). The key CHD TF risk genes and potential modifier genes of CHD in

22q11.2DS are well organized in a transcriptional regulatory network, revealing the potential

mechanisms of CHD risk modification in 22q11.2DS and also supporting, from the methodo-

logical point of view, the effectiveness of integrated scoring of IGSP.

The required sampling steps and convergence time of IGSP

Computational feasibility is an important factor for risk gene prioritization from a practical per-

spective. Using the CHD WES data in the case study and the SCZ simulated data as examples,

IGSP reached convergence within about several thousand sampling steps, which took several

minutes in general (S8 Table). A setting with larger x corresponded to a larger number of possi-

ble combinations of risk genes (i.e. the number of states in Markov chain) (assume x< 50) and

thus might require more sampling steps to reach convergence. Overall, IGSP is computationally

efficient and is computationally feasible to conduct intensive negative control analysis.

Practical consideration: The choices of parameters

In IGSP, the parameter x is used to determine the number of sampling risk genes in a stochas-

tic process to infer risk-gene likelihood. A practical question is how to select x when using

IGSP to study a disease. Our simulation showed that IGSP performed better when x was set

close to the real value (S4 Fig) and the performance was largely unchanged when x was set

within a reasonable range of its real value. A minimal number of sampling risk genes (e.g., 30

genes) is required for IGSP to detect and utilize network and phenotype properties of possible

risk genes. In most simulation cases, IGSP performed equally well with 30 sampling risk genes

(minimal x) or x close to the real value (S14 Fig). While a sample size of 30 genes in our

approach can effectively characterize the statistical properties of possible risk genes, selecting x
corresponding to the real value has the advantage that final scores can also be interpreted as

the probabilities of risk genes. For some diseases, x can be calculated based on the widely

accepted estimated number of risk genes. For other diseases, it may be empirically predicted

from the sequencing data (S15 Fig).

The parameters a and b determine the scaling range of association signals in a process of

signal adjustment to integrate association signals with network and phenotype evidence. Itera-

tive signal adjustment in a scaling range makes it possible for genes with genotype evidence to

stand out from association signals of false positives in the process of signal adjustment. The

scaling range should be kept small with a lower bound (a) greater than 0 to avoid loss of associ-

ation signals. For example, when (a, b) = (0.1, 1), all genes with P-values < 0.5 can compete

with one another, including genes with P-values < 1E-6 (According to Eq 1, the highest possi-

ble integrated scores for genes with a P-value of 0.5 and the lowest possible integrated scores for
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genes with a P-value of 1E-6 are roughly the same). This setting of (a, b) allows genes with even

tiny genotype evidence to compete with genes with genome-wide significant disease associa-

tions (stand out from potential false positives) and thus provides a proper scaling range that can

be applied to all sequencing data. We also tested values of a and b specially tuned for the

sequencing data: a = 0.9999999 (� 1) and b = (the highest association score in the sequencing

dataset /–log10(0.5))– 1. Under this setting all genes with P-values lower than 0.5 can compete

with genes with the lowest P-values in the dataset. The performance with this special setting is

similar to or slightly better than that with the generalized setting (a, b) = (0.1, 1) in our simula-

tion (S14 Fig). In summary, users can start their analysis with the generalized setting (a, b) =

(0.1, 1) as default and may tune these parameters for potentially better performance.

Discussion

In this study, we address the problem of insufficient statistical power in association sequencing

studies through data integration, a method which has been successfully employed previously

Fig 4. Transcriptional regulatory network derived from IGSP high scoring genes. The box denotes genes perturbed by TBX1 haploinsufficiency

implicated in the mouse model. The color denotes the implicated embryonic time points: E8.5, E9.5, and E10.5 from left to right.

https://doi.org/10.1371/journal.pgen.1007142.g004
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for risk gene prioritization [43, 44]. Instead of solely relying on association signals, our IGSP

approach integrates this information with gene network and phenotype data to allow optimal

detection of putatively bona fide disease association signals of rare variants at the gene level

and thus maximize the likelihood of uncovering weak (effect size) but real disease risk genes

within a dataset.

Integration of orthogonal data provides great potentials to improve power of risk gene pri-

oritization in genetic studies. It is a challenge, however, to design a data integration method

with proper model specification. The reliance on known risk genes or known disease pheno-

types in prevalent integration methods raises potential concern of model misspecification.

First, the prior knowledge of diseases regarding their risk genes and phenotypes is likely biased

toward well studied pathways and most observable phenotypes. Furthermore, because diseases

could have different subtypes, previously identified disease risk genes or phenotypes might

pertain to specific disease subtypes and do not hold for diseases under investigation. Under

either circumstance, the model may be misspecified which results in power loss. Based on an

integration strategy without relying on prior disease knowledge, our method thus reduces risk

of model misspecification. The fundamental feature of our model design is that the likelihood

of risk genes is evaluated based on not only their association signals but their network and phe-

notype relationship with other possible risk genes. Compared with the risk gene prioritization

method simply based on individual association signals of genes alone, IGSP gains additional

predictive power by leveraging the power of association signals of other possible risk genes.

The effect of IGSP is thus constrained by the constructed network and phenotype relationship

among genes. In our case study, there are genes with relative strong association signals but

ranked after hundreds, such as CD109 and ZNF142, due to weak network and phenotype evi-

dence. Among those genes we didn’t find any known CHD risk genes. However, the possibili-

ties that certain true risk genes with relatively strong association signals are scored low by our

method due to incomplete knowledge of network and phenotype relationship among genes

cannot be excluded.

Our approach prioritizes risk genes through integrated analysis of gene association signals.

The rare variant association test and the rare variants selected for the association test can have

a significant impact on the test P-values and thus directly affect the performance of IGSP. Cur-

rently, however, we do not have well-established criteria for both choices, which depend on

the genetic architecture of the disease under investigation. On the other hand, functional pre-

diction of variants has been frequently applied to improve the power of association tests by

weighting or focusing on variants that are predicted to be deleterious [45]. We used a stringent

selection of rare variants and the burden test of disease association for two reasons. First, a

stringent threshold on the Combined Annotation Dependent Depletion (CADD) score retains

only rare variants that are predicted to be highly deleterious to gene function and thus more

likely to be causal. Under such circumstances, it has been shown that a burden test is more

powerful if most variants under the test are causal [46, 47]. Second, by focusing on highly dele-

terious variants and with the simple null hypothesis of burden tests that only compares the col-

lective variant burden, it is relatively straightforward to interpret gene association P-values

with convincing genetic evidence (compared with SKAT [48], for example). The disadvantage

of selecting most deleterious variants is a loss of information about less-deleterious causal vari-

ants, which may diminish the opportunities of identifying strong gene association. In our

IGSP approach, however, the quality of genotype-based scoring depends on the strength of

association signals from coding variants in risk genes relative to these in non-risks genes. The

absolute value of variant association strength does not play a role.

Simulations showed that our IGSP approach can significantly improve risk gene prioritiza-

tion for rare variant association studies under different configurations of association test
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results. In real applications, assessing the scoring result needs additional consideration. For

example, the statistical power of rare variant association tests can be extremely poor such that

applying IGSP may not lead to meaningful improvement of risk gene prioritization. In addi-

tion, IGSP will only work for polygenic diseases with data support from the co-function net-

work and MP phenotypes. One way to evaluate the result is gene-set analysis. The high scoring

genes of syndromic CHD in 22q11.2DS were overrepresented in GO terms related to heart

development. Furthermore, the mouse homologs of high-scoring genes were enriched in the

downstream pathways of Tbx1 (Fig 3), which supports the hypothesis that haploinsufficiency

of TBX1 contributes to the increased CHD susceptibility of 22q11.2DS patients. Moreover,

top-ranking genes were scored significantly higher with actual association signals than with

null signals (S13E Fig), which suggests that genes sharing network and phenotype similarities

provide stronger rare variant association signals in a given cohort. This negative control fea-

ture built into IGSP is another way to assess the IGSP gene scoring results. When investigating

a novel trait, the negative control analysis is especially useful since the result evaluation based

on gene-set analysis may not be viable.

In our simulation and case study, we focused on genes that can be scored with both co-

function gene network and mouse knockout phenotype information. Our simulations showed

that mouse phenotypes provide a powerful feature to discriminate genes for human disease

risk. The application of MGI phenotype annotation is limited, however, by its relatively low

coverage of genes: currently only about half of human protein-coding genes have mouse

orthologs with phenotype information in the MGI database. The network scoring, on the

other hand, covers greatly more protein-coding genes in the human genome. Amongst 12,196

genes with association signals in the CHD study, 11,840 could be scored with network infor-

mation. GO term enrichment analysis indicates that, compared with scoring by the association

signal alone, IGSP with only network integration is effective but not as powerful as a full inte-

gration that also includes mouse phenotype scoring (S9 & S10 Tables). Nevertheless, top high-

scoring genes from IGSP with network integration alone could be used to compensate for the

gene coverage deficiency of using both network and phenotype.

In addition to key CHD risk genes, IGSP identified several putative risk genes not found in

the previous association study of the same sequencing data that used a candidate gene

approach [18]. Some of these new putative risk genes have been linked to CHD risk in previous

studies, such as NPHP4 [49] (nephronophthisis-4) and NRP1 [50] (neuropilin 1). Most of

these putative risk genes have weak P-values and come from diverse pathways. Without inte-

grating other information such as gene network and phenotypes, it is extremely challenging to

bring them to light, and being able to do so more optimally represents the main benefit of our

method. By focusing on high-scoring genes without a rare predicted deleterious variant in con-

trol, we curated a list of potential modifier genes and variants for CHD in 22q11.2DS for future

experimental validation (S11 Table). On the other hand, it is important to highlight differ-

ences between the published study [18] and our new study. First, and possibly most impor-

tantly, two studies used different criteria to select rare deleterious variants. The previous study

[18] examined a wider range of deleterious rare variants, aiming to find modifiers predicted to

be damaging when combined with the deletion. In this study, we focused on the most deleteri-

ous rare variants to allow generation of the clearest disease association signals. Risk genes

implicated by the previous study did not have particularly stronger association signals in our

study possibly due to that many chromatin modifier variants are not extremely deleterious.

Second, the previous study only incorporated evidence for the presence of rare predicted dele-

terious variants, whereas we took advantage of additional bioinformatic methods for risk gene

discovery. Indeed, because there are likely many CHD risk and/or protective genes within the
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cohort, different approaches, such as these are needed to gain a fuller understanding of the

roles of such genes in CHD of 22q11.2DS.

In summary, we developed IGSP, a rare-variant based integrated approach to prioritize risk

genes in sequencing-based association studies. The design of the method addresses the issue of

insufficient statistical power and can significantly improve the identification of disease risk

genes implicated by rare variants with marginal association signals. By expediting such discov-

eries, it can shed light on the roles of rare variants in human complex diseases.

Methods

The workflow of IGSP can be divided into two parts (S16 Fig): gene scoring based on geno-

type, network, and phenotype information and a model-based score integration, followed by a

Markov chain Monte Carlo (MCMC) algorithm to approximate risk gene probabilities as final

scores.

Genotype-based scoring

Our method starts with the genotype-based scoring of genes for their disease association using

a rare variant association test (S16 Fig). Given the full set of variants called in the WGS or

WES data from case and control samples, we first select rare variants whose alternative allele

frequencies are less than 1% in both the 1000 Genomes Project Europe samples and the study

cohort. Among such rare variants, we then use Combined Annotation Dependent Depletion

(CADD) [51], which scores the deleteriousness of variants by combining multiple types of

functional annotation, to select predicted deleterious variants. The cutoff of CADD scaled

scores on deleteriousness is suggested to be between 10 and 20. We applied a stringent cutoff,

20, that keeps top 1% deleteriousness of SNVs in humans [51]. For downstream analysis, a set

of rare variants with alternative allele frequencies < 1% and CADD scaled scores� 20 are

selected. We aggregated these rare variants into sets corresponding to protein-coding genes,

and then used the kernel-regression burden test [47] to assess the disease association of rare

variants at the gene level. The nominal P-values of association tests are converted to genotype-

based scores by taking minus log10.

Phenotype-based scoring

Genes involved in the same biological process are more likely to influence similar phenotypes

[52] and thus tend to be associated with the same or similar diseases (Fig 1B and S2 Fig). This

characteristic is captured by the phenotype-based scoring of genes in our method. We

extracted the phenotype features of genes using the mouse/human orthology with phenotype

annotations from the Mouse Genome Informatics (MGI, http://www.informatics.jax.org, data

downloaded on April 19, 2017) (S16 Fig). 9,198 human homologs of mouse genes have at least

one MP term in this MGI data set. We consider 9,570 MP terms including 8,865 directly anno-

tated MP terms (for the 9,198 human homologs) and 705 their ancestor MP terms along the

paths of the ‘is a’ relationship in the MP hierarchy structure. For the 9,198 human homologs

associated with 9,570 MP terms, we first built a binary matrix that encoded their association (1

if present and 0 otherwise). We then computed the principal components of genes in the feature

space of the phenotype terms and used the eigenvalues of the n principal components as Eigen-

features to characterize the phenotype features of all human genes. These genes were divided

into two classes: disease risk genes and non-risk genes (the rest). Given the binary column vec-

tor v of risk gene status, we use logistic regression to regress the class label on the phenotype

eigenvalues (x1, x2, . . .xn) of genes and obtain their regression coefficients (β0, β1, β2, . . .βn) with
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the logit function:

logitðmÞ ¼ b0 þ b1x1 þ b2x2 þ . . . bnxn

Every gene has a probability (μ) based on the trained logistic model. The probabilities are

the raw phenotype gene scores (S17 Fig). We used the same normalization method for net-

work-based scoring to transform raw phenotype into normalized scores with range of [0, 1]

(see below).

Network-based scoring

Gene networks describe complex functional relationships among genes in which genes causing

the same or similar diseases tend to lie close to one another regarding function [53, 54] (Fig

1B and S1 Fig). This topological propensity is captured by the network-based scoring of genes

in our method. For this scoring, several different networks of either protein-protein interac-

tions [55] or gene functional linkages [56] can be used. Currently, we use a recently published

co-function network [17], in which two genes are connected if they are predicted to share spe-

cific functions. We made this selection because this network not only covers a high percentage

(~94%) of human genes but also, more importantly, consists of only gene-gene co-functional

connections predicted from genomic high-throughput data [17] and thus avoids the ascertain-

ment bias toward well-studied genes.

Given a gene network, network-based scoring measured the connectivity propensity of pos-

sible risk genes to a scoring gene. Here we measured the connectivity propensity of possible

risk genes based on a transition matrix that considered the degrees of possible risk genes. The

way of measuring the connectivity propensity simply based on the number of connections

worked as well (See Results section). Given the gene network G = (V, E) with its ensemble of n
nodes, V, and edges, E, we built its corresponding adjacency matrix A with aij = wij if i$ j � E
or 0 otherwise. wij is the weight of the edge between nodes i and j. We normalized A by col-

umns and obtain the transition matrix N. Given the binary column vector v of risk gene status,

the raw network-based scores were calculated as (S18 Fig):

rðNÞ ¼ N � v:

These raw scores were normalized to get the network-based scores in the range of [0, 1] by

calculating the rate of risk genes with raw network scores lower than the raw network score

(denoted by normalization fn function):

sðNÞ ¼ fnðr
ðNÞÞ

This normalization method is the same for the normalization of raw phenotype scores. The

normalization of raw scores is necessary to transform different types of network and phenotype

evidence (i.e., raw network/phenotype scores) into a unified range that meets our model specifi-

cation. We applied a specialized normalization method (fn) that utilized the information of sam-

pled risk genes; it considers the distribution of raw network and phenotype scores of sampled

risk genes as the baseline in assessing/converting raw network and phenotype scores. Other nor-

malization methods that can scale raw scores from 0 to 1 may also work as well (See Results).

Score integration

We integrate the aforementioned genotype-, network-, and phenotype-based gene scores

according to the following formula:
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s ¼ sðAÞ � ½I þ b � sðNÞ � sðPÞ�

I ¼
1 if g is a risk gene

a otherwise
; ð0 < a < 1Þ ð1Þ

(

s(A),s(N), and s(P) represent the association, network and phenotype of a gene, g, respectively.

The indicator variable I has two effects on score integration. First, it establishes a lower-bound

on the scaling coefficient and thus prevents domination of the final score by the gene network

and phenotype components. Second, it diminishes signals from genes that have a low probabil-

ity to be risk genes. According to the Eq 1, the integrated score s of a gene is essentially its dis-

ease association signal scaled by a multiplication coefficient based on network and phenotype

evidence. The value of the coefficient ranges between 0.1 and 2. This range of scaling was fine-

tuned to optimize the method performance by simulation (a = 0.1 and b = 1). If the scaling

range is too small, there is little room for improvement to risk gene prioritization. On the

other hand, if the scaling range is too large, there is a loss of association signals, which will also

lead to poor estimation.

By design of Eq 1, IGSP essentially assigns to each gene a range for association signal adjust-

ment based and centered on its original disease association signal (S19 Fig). Adjusted signals

are integrated scores vary within the corresponding ranges depending on their network and

phenotype evidence. Given association signals, our scoring model decides a multivariate prob-

ability distribution of integrated scores within the ranges. Our gene scoring is based on this

multivariate probability distribution of integrated scores.

Probability derivation and why MCMC

Given m scoring genes, assume that x% of scoring genes are risk genes, there are about n =

round (m × x%) risk genes. Let d denote a combination of risk genes, d 2 D. The number of

possible d is: jDj ¼
m

n

 !

. Given association signals s(A), the probability of a gene being a risk

gene is:

PðgjsðAÞÞ ¼
P

d2Dg
PðdjsðAÞÞ ð2Þ

¼
P

d2Dg

P
si
PðdjsiÞ � Pðsijs

ðAÞÞ ð3Þ

where Dg is the subset of D that includes gene g in the combination. It should be noted that

there are only a limit number of outcomes of integrated scores since each combination of risk

genes determines an outcome of integrated scores (Eq 1) while there are
m

n

 !

combinations

of risk genes. Therefore, we can derive Eq 3 since each combination of integrated scores can be

considered as a disjoint event, and the sum of their probabilities is equal to 1. Since integrated

score s evaluates the likelihood of being a risk gene in our model, the probability P(d|si) in Eq 3

is equivalent to the probability of obtaining d through weighted sampling n out of m genes

without replacement, using si as weight. However, the challenge is to calculate P(s|s(A)) in Eq 3.
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According to our integrated model (Eq 1), P(s|s(A)) can be derived as follows:

PðsjsðAÞÞ ¼ PðI þ b � sðNÞ � sðPÞ ¼ s⌀sðAÞÞ ð4Þ

¼
P

d2QPðdjs
ðAÞÞ ð5Þ

where � and ⌀ denotes component-wise multiplication and component-wise division, respec-

tively. The probability P(s|s(A)) is essentially the probability that the vector of scaling factors

(I + b � s(N) � s(P)) is equal to s⌀s(A). As scaling factors are determined by d and the prior knowl-

edge of network and phenotype, if Q denotes the set of possible d of which the corresponding

vector of scaling factors is equal to s⌀s(A), we can derive Eq 5. Unfortunately, it cannot be

directly calculated since it forms an infinite recursive loop (Eq 2).

Final score calculation

To tackle the challenge of deriving risk gene probabilities, instead of calculating the probability

P(s|s(A)), we develop an MCMC-based algorithm to directly sample the probability function
P

si
PðdjsiÞ � PðsijsðAÞÞ in Eq 3 while approximating risk gene probabilities of all genes, concur-

rently, according to Eq 3 as their final scores (S20 & S21 Figs):

1. Initialization

1.1. Start with random x% of genes as sampled risk genes

2. Repeat until convergence

2.1. Score every gene based on sampled risk genes according to the Eq (1)

2.2. Randomly select x% of genes as new sampled risk genes with sampling probabilities pro-

portional to their gene scores

2.3. Calculate the sampling rate of every gene

The algorithm constructs a Markov chain (S20 Fig) and samples the probabilities by simu-

lating a random walk on the Markov chain to generate final scores. It essentially approximates

the risk gene probability of a gene by calculating the probabilities of visiting states that imbed a

combination of risk genes including the gene. It starts to calculate sampling rates after a ‘burn-

in’ period of 1,000 iterations and records the rates every 1,000 iterations. Convergence is

deemed reached if the average difference of the sampling rates of all genes between consecutive

records is less than 0.001.

Data simulation and method evaluation

We simulated disease the association signals of genes and systematically evaluated and com-

pared the performance of IGSP and the widely-used rare variant association test in disease risk

gene prioritization. For a thorough performance evaluation, we used the 8,959 human protein-

coding genes for which both network and phenotype information was available to us in our

data simulation. Given a disease, to simulate the association signals, we first divided these

genes into two categories: disease risk genes and non-risk genes. The former were collected

from disease gene resources such as MelaCards [57]. Disease association signals of disease risk

genes and non-risk genes were simulated separately. For non-risk genes, we simulated their

gene association signals with a P-value uniformly distributed between 0 and 1 [58]. For risk

genes, on the other hand, the distribution of their association P-values should be skewed

toward 0, with the degree of skew depending on the power of the study. We thus simulated
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association signals of disease risk genes by assigning them smaller P-values (S4 Table). In each

configuration of simulation, a different proportion of disease risk genes were assigned smaller

P-values, representing studies with different statistical power. The proportion and the statisti-

cal power were positively correlated.

WES data for CHD of 22q11DS

The WES data that we reanalyzed have been described in detail in the original association

study of CHD in 22q11.2DS [18]. Briefly, the study cohort consists of 184 22q11.2DS patients.

Among them, 90 patients having CHD (mostly tetralogy of Fallot) were cases, and the remain-

ing 94 having a normal heart and aortic arch were controls. 411,618 variants (SNVs and indels)

were identified by WES of this cohort. Among the 398,808 variants that passed quality control

(variants with missing genotype rate> 10% were removed), we retained in coding sequence

61,220 rare variants (alternative allele frequencies < 1% based on EUR samples in the 1000

Genomes Project and the study cohort) with predicted deleterious alternative alleles (CADD

score >= 20). We conducted burden tests to obtain association P-values of genes that had at

least one rare predicted deleterious SNV in the cohort. Burden tests for genes on chromosome

X were adjusted for sex by including this variable as covariates in the analysis.

Software and data availability

IGSP is freely available for academic use as a web application at http://zdzlab.einstein.yu.edu/

1/igsp.html. The web application requires only a gene list with corresponding association P-

values. The source codes of the IGSP method and obtaining gene association P-values from

the CHD sequencing data are provided at Zenodo (10.5281/zenodo.1034362 and 10.5281/

zenodo.1034177, respectively).

Supporting information

S1 Fig. The network property of disease risk genes. Red arrows point to the number of con-

nections among risk genes for the disease in the co-function network [17]. A null distribution

is constructed by counting the number of connections among random genes (10000 iterations)

with the same number of disease risk genes in the network. The risk genes of different diseases

are listed in S1 Table. (A) Breast cancer. (B) Schizophrenia. (C) Tetralogy of Fallot. (D) Sys-

temic lupus erythematosus. (E) Type 2 Diabetes.

(DOCX)

S2 Fig. The phenotype property of disease risk genes. There is a tendency that disease risk

genes tend to cluster on top principal components of MP phenotypes. The first principal com-

ponent is excluded from consideration since it mainly characterizes the number of annotated

MP terms (correlation coefficient = 0.918), which is not biological meaningful. The risk genes

of different diseases are listed in S1 Table. (A) Disease risk genes on second, third, and forth

principal components. (B) Disease risk genes on principal component 2 to 5. (C) Disease risk

genes on principal component 6 to 9.

(DOCX)

S3 Fig. Genotype-based scoring has no relationship with co-function network degree and

the number of associated MP terms. Using the CHD case-control WES data in our case

study, we collected 1,000 sets of null gene association signals. Each null set was obtained from

the burden test used in our method by permuting the original disease status label. We then

tested whether there’s a relationship between genotype-based scoring and the co-function net-

work degree or the number of associated MP terms. The relationship between genotype-based
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scoring and the co-function network degree was evaluated based on genes with both associa-

tion scores and network degrees. The relationship between genotype-based scoring and the

number of associated MP terms was evaluated based on genes with both association scores

and phenotype scores (i.e. genes with at least one associated MP terms). (A) Correlation coeffi-

cient. The median correlation coefficients were 0.0067 and 0.0082 between the association

score and the co-function network degree (‘G and N’) and between the association score and

the number of associated MP terms (‘G and P’), respectively. (B) Correlation P-value. The

median P-values were 0.469 and 0.523 for the correlation between the association score and

the co-function network degree and the correlation between the association score and the

number of associated MP terms, respectively.

(DOCX)

S4 Fig. The performance of IGSP with different x. The number of risk genes in the top 50

high scoring genes (y axis) is used to evaluate the performance. The setup of the simulation:

integrated scoring with both network and phenotype, “Moderate” association signal strength,

a (0.1), b (1), principal components in phenotype scoring (PC 2 and 3). (A) 147 CHD genes

(B) 193 SCZ genes.

(DOCX)

S5 Fig. The performance of IGSP with different a. The number of risk genes in the top 50

high scoring genes (y axis) is used to evaluate the performance. The setup of the simulation:

integrated scoring with both network and phenotype, “Moderate” association signal strength,

x (2), b (1), and principal components in phenotype scoring (PC 2 and 3). (A) 147 CHD genes

(B) 193 SCZ genes.

(DOCX)

S6 Fig. The performance of IGSP with different b. The number of risk genes in the top 50

high scoring genes (y axis) is used to evaluate the performance. The setup of the simulation:

integrated scoring with both network and phenotype, “Moderate” association signal strength,

x (2), a (0.1), and principal components in phenotype scoring (PC 2 and 3). (A) 147 CHD

genes (B) 193 SCZ genes.

(DOCX)

S7 Fig. The performance of IGSP with different top principal components in phenotype

scoring. The number of risk genes in the top 50 high scoring genes (y axis) is used to evaluate

the performance. The setup of the simulation: integrated scoring with phenotype information,

“Moderate” association signal strength, x (2), a (0.1), and b (1). (A) 147 CHD genes (B) 193

SCZ genes.

(DOCX)

S8 Fig. The distribution of network and phenotype scores. The distribution of scores was

constructed based on the network or phenotype scores of IGSP-scoring genes at the 3000th

iteration of a trial in CHD simulation. ‘S’ denotes sampled risk genes while ‘B’ denotes the

other background genes at that iteration. The setup of the simulation: integrated scoring with

both network and phenotype, ‘Moderate’ association signal strength, x = 2, a = 0.1, b = 1, and

principal components in phenotype scoring (PC 2 and 3). (A) The raw network and phenotype

scores. (B) The network and phenotype scores after normalization.

(DOCX)

S9 Fig. Normalization of network and phenotype raw scores is a necessary step for IGSP.

The result showed that IGSP using raw network and phenotype scores without normalization

barely improved upon gene association signals. ‘Gen + Net’ and ‘Gen + Phe’ represent IGSP
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with only integration of network features and phenotype features, respectively. The parameters

used in this simulation were as follows: x = 2, a = 0.1, b = 1, and principal components in phe-

notype scoring (PC 2 and 3). (A) CHD. 147 CHD genes from Sifrim et al [26] were used as the

risk genes. (B) Schizophrenia. 193 putative schizophrenia genes from MalaCards [57] were

used as the risk genes.

(DOCX)

S10 Fig. IGSP works with different normalization methods for raw score normalization.

The dashed line represents IGSP results using a different raw-score normalization method:

(score–min (scores)) / max(scores)–min(scores)). ‘Gen + Net’ and ‘Gen + Phe’ represent IGSP

with only integration of network features and phenotype features, respectively. The parameters

used in this simulation were as follows: x = 2, a = 0.1, b = 1, and principal components in phe-

notype scoring (PC 2 and 3). (A) CHD. 147 CHD genes from Sifrim et al [26] were used as the

risk genes. (B) Schizophrenia. 193 putative schizophrenia genes from MalaCards [57] were

used as the risk genes.

(DOCX)

S11 Fig. The performance of IGSP based on different types of network connectivity in net-

work-based scoring. ‘Gen + Net’ represents IGSP with only integration of network features.

We compared the performance of using two different types of network connectivity (between

a scoring gene and possible risk genes) in network-based scoring. C1 represents the network

connectivity based on a transition matrix (considering network degree). C2 represents the net-

work connectivity based on an adjacency matrix (without considering network degree). The

parameters used in this simulation were as follows: x = 2, a = 0.1, b = 1, and principal compo-

nents in phenotype scoring (PC 2 and 3). (A) CHD. 147 CHD genes from Sifrim et al [26]

were used as the risk genes. (B) Schizophrenia. 193 putative schizophrenia genes from Mala-

Cards [57] were used as the risk genes.

(DOCX)

S12 Fig. The performance evaluation of using different integrated models. The perfor-

mance of using our current integrated model (Eq 1) was compared with that of using four

other different integrated models; full integration of network and phenotype features was

applied in performance evaluation. The parameters used in this simulation were as follows:

x = 2, a = 0.1, and principal components in phenotype scoring (PC 2 and 3). b was set as 1 for

the current integrated model but as an indicator variable defined below. (A) Definition of four

alternative integrated models. In these models, the weight of network and phenotype compo-

nents, b, is set as an indicator variable dependent on risk gene status. (B) CHD. 147 CHD

genes from Sifrim et al [26] were used as the risk genes. (C) Schizophrenia. 193 putative schizo-

phrenia genes from MalaCards [57] were used as the risk genes.

(DOCX)

S13 Fig. Distribution of top IGSP scores given association signals in null as negative con-

trol. Association signals in null are gene association signals of which stronger signals do not

tend to aggregate at risk genes. Association signals in null in simulation (A, B, C and D) are

obtained through randomly assigning simulated gene association signals of all genes, including

risk and non-risk genes, to themselves. Association signals in null in a real application (E) are

obtained through permuting the original disease status label and randomly assigning the resul-

tant disease association signals to genes. The scores of top 100 high scoring genes in IGSP are

shown in the figures. 100 trials of IGSP given association signals in null are conducted and the

error bars represent standard deviation. The parameter setup of IGSP for simulation in A, B, C

and D and the real application in E: integrated scoring with both network and phenotype, x
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(2), a (0.1), b (1), and principal components in phenotype scoring (PC 2 and 3). (A) Simulation

with 147 CHD genes with a setup of “Very weak” association signal strength. (B) Simulation

with 147 CHD genes with a setup of “Weak” association signal strength. (C) Simulation with

147 CHD genes with a setup of “Moderate” association signal strength. (D) Simulation with

147 CHD genes with a setup of “Strong” association signal strength. (E) A real application in

the case study of CHD.

(DOCX)

S14 Fig. The performance of IGSP with 30 sampling risk genes and a specialized scaling

range. The performance of IGSP using a minimal number of sampling risk genes and a specialized

scaling range is compared with that of IGSP using the optimized setting of x, a, and b. Full integra-

tion of network and phenotype features was applied in performance evaluation. The parameters

used in this simulation were shown in figures and as follows: principal components in phenotype

scoring (PC 2 and 3). ‘Minimal’ represents x approximating 30 sampling risk genes; ‘Optimized’

represents (a, b) = (0.1, 1); ‘Specialized’ represents a setting of a and b in which a is set as

0.9999999 (� 1) and b is set as (the highest association score in the sequencing dataset /–

log10(0.5))– 1. (A) CHD. 147 CHD genes from Sifrim et al [26] were used as the risk genes. (B)

Schizophrenia. 193 putative schizophrenia genes from MalaCards [57] were used as the risk genes.

(DOCX)

S15 Fig. Prediction of x from the CHD sequencing data. Genes with stronger association sig-

nals (i.e., with smaller P-values) are more likely to be risk genes. This method predicts x based

on the difference between the strength of disease association and null association against the

corresponding difference when all genes have robust disease association and thus are risk

genes. Association signals of CHD sequencing data were obtained from the burden test used

in our method. Null association signals were obtained from the burden test used in our

method by permuting the original disease status label. We predicted a range of x based on two

different metrics in measuring gene association strength. (A)–log10P. For 5,987 scoring genes,

the sum of disease association and the average sum of null association for 1,000 sets of null

association signals were 2512.0 and 2380.1, respectively. The (minimum) sum of robust disease

association was calculated based on a scenario when each scoring gene has a P-value surviving

multiple correction: (–log10(0.05/5987)×5987) = 30403.2. We predicted x = 0.43 percent of

scoring genes associated with the disease in this sequencing data based on a linear interpola-

tion. Compared with the other metric in measuring association strength, this metric can better

estimate the number of risk genes with strong association but may underestimate the number

of risk genes with weak association. (B) 1–P. For 5,987 scoring genes, the sum of disease associ-

ation and the average sum of null association for 1,000 sets of null association signals were

3098.2 and 2994.8, respectively. The sum of robust disease association was calculated based on

a scenario when each scoring gene has a P-value surviving multiple correction: (1–0.05/5987)

× 5987� 5987. We predicted x = 3.4 percent of scoring genes associated with the disease in

this sequencing data based on a linear interpolation.

(DOCX)

S16 Fig. The workflow of IGSP. The workflow of IGSP can be divided into two parts: The

scoring model of risk genes and calculation of final gene scores. Given association signals s(A),

the scoring model will determine a multivariate probability distribution of integrated scores

(s) (bold denotes vectors). In final score calculation, we applied Markov chain Monte Carlo

(MCMC) in our algorithm to approximate risk gene probabilities as final gene scores accord-

ing to the multivariate probability distribution of integrated scores.

(DOCX)
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S17 Fig. Phenotype-based scoring. Principal components from 9,198 human homologs and

9,570 MP terms are used to characterize the phenotype features of each gene. Genes with a

higher propensity to share phenotype similarities with risk genes have higher phenotype

scores. The combination of risk genes is the same latent variable shown in network-based scor-

ing (S18 Fig).

(DOCX)

S18 Fig. Network-based scoring. Genes with a higher propensity to be connected to risk

genes have higher network scores. A and B can be risk genes themselves and their network

scores are calculated in the same manner. The risk gene vector depends on the combination of

risk genes (d), which is a latent variable in our model.

(DOCX)

S19 Fig. Integrated scores as adjusted signals in IGSP. G1 is a risk gene, while G2 and G3 are

two non-risk genes that have a stronger association signal than G1. (A) Gene association sig-

nals. Gene association signals are obtained through gene association tests on the investigated

sequencing data. In the figure, a red cross represents a risk gene, while a grey dot represents a

non-risk gene. Association signals of risk genes are buried in noise. (B) Signal adjustment by

linear scaling. IGSP integrates association signals with network and phenotype evidence by

multiplying a scaling coefficient to original gene association signals. The scaling coefficient of

each gene incorporates its network and phenotype information, as shown in Eq 1. Every gene

has the same scaling range. (C) The adjustment ranges of different genes. While the scaling

ranges of all genes are the same, the adjustment range of each gene depends on the magnitude

of its original signal. The final score of each gene is calculated as its risk gene probability based

on the multivariate probability distribution of adjusted signals within the adjustment ranges

determined by Eq 1.

(DOCX)

S20 Fig. The underlying Markov chain of IGSP. Each combination of risk gene determines a

state. The number of states in this Markov chain is the number of possible combination of risk

genes. Given association signals, a combination of risk genes determines integrated gene scores

according to Eq 1; the transition probability determining progression to the next state is equal

to the weighted sampling n from m genes without replacement, using s as weight. Instead of

calculating the transition probability, our MCMC-based algorithm carries out state transition

using the MATLAB “datasample” function with integrated scores s as weight. The Markov

chain is ergodic (irreducible and aperiodic) and hence has only a single equilibrium distribu-

tion. When equilibrium is reached, the probability of visiting a state (d) approximates
P

si
PðdjsiÞ � PðsijsðAÞÞ in Eq 3.

(DOCX)

S21 Fig. The probability landscape and MCMC sampling of IGSP. The upper plot shows the

probability landscape of different combinations of risk genes, d, given association gene signals

s(A). In the upper plot, each point on the plan represents a combination of risk genes. The red-

ness in the bottom plot represents the frequency of visiting the corresponding states (see S20

Fig).

(DOCX)

S1 Table. Risk genes of 5 human diseases from OMIM.

(DOCX)
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S2 Table. 147 putative CHD genes that can be scored by network and phenotype. Those

genes were obtained from Sifrim et al [26].

(DOCX)

S3 Table. 193 putative schizophrenia genes that can be scored by network and phenotype.

Those genes were obtained from Malacards [57].

(DOCX)

S4 Table. The setup of P-values of risk genes in simulation.

(DOCX)

S5 Table. Top 200 genes based on IGSP integrated scoring for the case-control WES study

of CHD in 22q11.2DS.

(DOCX)

S6 Table. Enriched biological process GO terms for top 50 genes based on IGSP integrated

scoring for CHD. This result is for 5987 genes in the CHD dataset with association signals of

rare predicted deleterious variants that can be scored by network and phenotype.

(DOCX)

S7 Table. Top 10 biological process GO terms for top 50 genes based on association P-val-

ues from burden test for CHD. This result is for 5987 genes in the CHD dataset with associa-

tion signals of rare predicted deleterious variants that can be scored by network and

phenotype.

(DOCX)

S8 Table. The required sampling steps and convergence time of IGSP.

(DOCX)

S9 Table. Enriched biological process GO terms for top 100 genes based on IGSP network-

based scoring for CHD. This result is for 11840 genes in the CHD dataset with association sig-

nals of rare predicted deleterious variants that can be scored by network.

(DOCX)

S10 Table. Top 10 biological process GO terms for top 100 genes based on association P-

values from burden test for CHD. This result is for 11840 genes in the CHD dataset with

association signals of rare predicted deleterious variants that can be scored by network.

(DOCX)

S11 Table. Curated genetic modifier genes and variants of CHD in 22q11.2DS for future

validation.

(DOCX)
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