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Abstract: Hepatitis B virus (HBV) infection affects ~350 million people and poses a major public
health problem worldwide. HBV is a major cause of cirrhosis and hepatocellular carcinoma. Fewer
than 5% of HBV-infected adults (but up to 90% of HBV-infected infants and children) develop chronic
HBV infection as indicated by continued, detectable expression of hepatitis B surface antigen (HBsAg)
for at least 6 months after the initial infection. Increasing evidence indicates that HBV interacts
with innate immunity signaling pathways of hepatocytes to suppress innate immunity. However,
it is still not clear how HBV avoids monitoring by the innate immunity of hepatocytes and whether
the innate immunity of hepatocytes can be effective against HBV if re-triggered. Moreover, a deep
understanding of virus–host interactions is important in developing new therapeutic strategies for
the treatment of HBV infection. In this review, we summarize the current knowledge regarding how
HBV represses innate immune recognition, as well as recent progress with respect to in vitro models
for studying HBV infection and innate immunity.
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1. Introduction

Chronic infection with hepatitis B virus (HBV) is the main cause of liver cirrhosis and hepatocellular
carcinoma (HCC) worldwide. Although there is a prophylactic vaccine to prevent HBV infection, HBV
still infects ~350 million people and contributes toward viral hepatitis-associated morbidity and mortality.
The HBV genome consists of a partially double-stranded DNA molecule approximately 3.2 kb long that
replicates via an RNA intermediate [1–3]. Basically, the innate immune system responds to viral infection
in three phases. Firstly, various sensors in the cytoplasm recognize pathogen-associated molecular
patterns, such as foreign DNA or RNA, and send a warning message to initiate proinflammatory
and antimicrobial responses by activating a multitude of intracellular signaling pathways, including
adaptor molecules, kinases, and transcription factors. The second phase involves the proteins of
the downstream signaling pathways transmitting the danger message to the nucleus to activate effector
elements. Finally, the consequently up-regulated effectors (i.e., inflammatory factors or interferon
(IFN)-stimulated genes) degrade exogenous viral elements such as viral DNA, RNA, and proteins [4].

It is widely accepted that the adaptive immune responses play vital roles in the clearance of
HBV infection. Early innate immune response is essential for the following induction of adaptive
immunity. Restoring or boosting innate immunity linked to adaptive immunity may help eradicate
chronic HBV infection. However, the role of innate immunity during HBV infection appears not to be
well understood, which can be attributed to the fact that the recruitment of patients in the very early,
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asymptomatic phase of HBV infection is very difficult [5,6]. HBV belongs to the hepadnavirus family
and acts as a “stealth” virus because it does not induce obvious innate immune responses such as type
I and II interferons (IFNs) in the early stage of infection [7]. Moreover, many in vitro cell and animal
models have proved that the target cells (hepatocytes) do not recognize HBV efficiently through known
innate immune signaling in the acute infection of HBV, indicating the possibility of an HBV immune
evasion mechanism [8]. In addition, HBV also has the ability to suppress functions of innate immune
cells [9,10].

In this review article, we summarize the recent knowledge and debate regarding HBV and innate
immunity signaling pathways in hepatocytes, the different HBV proteins that target innate immunity,
and different advanced in vitro cell models for the study of virus–host interactions. Collation of
such information will provide new insights into novel therapeutic treatments for chronic hepatitis B
infection (CHB).

2. Genetic Organization, Life Cycle, and Global Epidemiology of HBV

HBV is a member of the hepadnavirus family. The genetic organization HBV is shown in Figure 1.
It has a relaxed partially double-stranded circular DNA genome of about 3200 bases with four main
overlapping open reading frames (ORFs) encoding surface protein (pre-S/S), pre-core/core (pre-C/C),
transcriptional co-activator (X), and DNA polymerase (P) genes [11]. The preS/S ORF encodes three
different, enveloped structural proteins termed large (L), middle (M), and small (S) proteins. The S
protein (HBsAg) consists of 226 amino acids (aa), and the M protein has an extra N-terminal extension of
55 aa, whereas the L protein has a further N-terminal extension of 108 or 119 aa depending on the HBV
genotype. The preC/C ORF codes for two distinct products: the core protein forming the nucleocapsid
protein shell (hepatitis B core antigen (HBcAg)) and the precore protein that derives from in-frame
alternative initiation sites. The X ORF encodes the small regulatory X protein, which is essential for
viral replication. The P ORF encodes protein P, the viral DNA polymerase [12]. HBV relies on protein
P, which is also a specialized reverse transcriptase (RT), to replicate its genomic DNA via an RNA
intermediate [13]. Protein P consists of four domains: a terminal protein that is covalently linked to
the DNA primer during negative-strand DNA synthesis, a spacer domain that is tolerant to mutations,
the RT domain, and the ribonuclease H (RNase H) domain [14].

After entry into hepatocytes, the HBV genome is delivered into the nucleus where it is repaired
to form covalently closed circular DNA (cccDNA) that serves as a template for the pregenomic RNA
(pgRNA) and subgenomic RNAs for translation to HBV proteins (including the viral polymerase protein
(Pol), HBsAg, hepatitis B X protein (HBx), the core protein, and the precore protein [15]). The precore
protein contains the entire sequence of the core protein plus an amino-terminal extension of 29 amino
acids (i.e., the “precure” sequence) [16]. The first 19 amino acids of the precore protein constitute a signal
peptide that directs the precore protein to the endoplasmic reticulum (ER) for secretion. This signal
peptide is removed by the signal peptidase, located in the ER lumen, to generate the 22-kDa precore
protein derivative p22, which is further cleaved at its carboxy terminus by furin protease in the Golgi.
The secreted pre-core protein derivative is known as the e antigen called HBeAg. After the formation
of the viral core particle, the HBV pgRNA is reverse-transcribed by the viral DNA polymerase that is
also packaged to become the circular and partially double-stranded DNA genome. Finally, the core
particles subsequently interact with HBsAgs in intracellular membranes for the formation of mature
viral particles, which are then released from infected hepatocytes to infect other cells as shown in
Figure 2 [17].

Globally, chronic hepatitis B infection affects around 350 million people worldwide (3.61% of
the global population), resulting in 600,000 deaths annually from cirrhosis, liver failure, and hepatocellular
carcinoma [18]. The number of affected individuals is the highest in the Western Pacific region (defined by
the World Health Organization as the 37 countries including China, Japan, South Korea, the Philippines,
and Vietnam), with 95.3 million infected (prevalence estimates of 5.26%), and Africa, with 75.6 million
infected (prevalence estimates of 8.83%), accounting for nearly 70% of all chronic hepatitis B infection
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cases globally [19]. The percentages of liver cirrhosis and HCC caused by HBV infection are 30% and 45%
worldwide, respectively [20], while the percentages in China are 60% and 80% [21].

Figure 1. Genetic organization of the hepatitis B virus (HBV). HBV contains a small, partially
double-stranded DNA (dsDNA) of about 3.2 kb. The main four open reading frames (ORFs)
are shown: precore/core (preC/C) that encodes the e antigen (HBeAg) and core protein (HBcAg),
P for polymerase (reverse transcriptase), Pre-surface/surface (preS/S) including preS1/preS2/S for
surface proteins (small (S), middle (M), and large (L)), and X for transcriptional trans-activator protein.
The genome contains four promoters, two enhancer regions (Enh1, Enh2), and two direct repeats (DR1,
DR2). The outer lines represent the different classes of HBV mRNA transcripts.

Figure 2. Life cycle of the HBV shown by green arrows step by step. Mature HBV virions enter
hepatocytes through the sodium taurocholate cotransporting polypeptide receptor (NTCP) on the cell
membrane (Step 1). After release from the viral envelope, the nucleocapsid is then transported to
the nucleus where the genome is repaired to form covalently closed circular DNA (cccDNA) (Steps 2, 3
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and 4). Using cccDNA as the template, viral RNAs are transcribed and exported into the cytoplasm
where they are translated to form the viral proteins (Steps 5, 6 and 7). Additionally, pregenomic RNA
(pgRNA) is packaged by core protein, along with the polymerase protein, and the viral genome is
replicated through reverse transcription (RT) of the pgRNA to form the - strand, followed by partial
synthesis of the + strand (Steps 8 and 9). Mature nucleocapsids can then either be recycled back to
the nucleus to maintain a pool of cccDNA, or enveloped and secreted through the endosomal sorting
complexes required for transport (ESCRT) pathway (Steps 10, 11 and 12).

3. HBV Infection and Host Innate Immunity

Innate immunity is the first line of defense against microbial pathogens, including viruses.
Viral infection triggers the induction of type-I interferons (e.g., IFN-α and IFN-β) and other
proinflammatory cytokines through two distinct signaling pathways [22].

One of these pathways utilizes a subfamily of Toll-like receptors (TLR3, 7, 8, and 9) to detect HBV
nucleic acids in the endosome after the endocytosis of viral particles. These TLRs are localized in
the endosomal membranes of specialized cell types, such as plasmacytoid dendritic cells (pDCs) [23],
and they recruit the adaptor protein MyD88 or Toll-Like receptor adaptor molecule 1 (TRIF) to activate
protein kinases, including the inhibitor of nuclear factor kappa B kinase (IKK) complex (consisting
of IKKα, IKKβ, and NEMO/IKKγ) and the IKK-related kinases (TANK Binding Kinase 1 (TBK1)
and inhibitor of nuclear factor kappa B kinase subunit epsilon (IKKε)). The IKK complex phosphorylates
the nuclear factor kappa B subunit 1 (NF-κB) inhibitor (IκB) and targets IκB for degradation by
the ubiquitin proteasome pathway, thereby allowing NF-κB to enter the nucleus to induce a large
array of genes involved in immune and inflammatory responses [24]. TBK1 and IKKε phosphorylate
IFN-regulatory factors, IRF3 or IRF7, resulting in its dimerization and nuclear translocation [25].
The nuclear IRFs, NF-κB, and other transcription factors form an enhanceosome complex to activate
the expression of interferons [26], which are then secreted to bind to their receptors on HBV-infected
as well as neighboring non-infected cells. The engagement of interferon receptors activates the Janus
kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway to induce
interferon-stimulated genes (ISGs), which suppress HBV replication and assembly (Figure 3) [27].

The other HBV/innate immunity signaling pathway utilizes the retinoic acid inducible gene I
(RIG-I) to detect HBV double-stranded RNA (dsRNA) in the cytosol [28]. RIG-I binds to HBV dsRNA
through its C-terminal RNA helicase domain and mediates the activation of IKK and TBK1/IKKε
through its N-terminal caspase activation and recruitment domains (CARD). The adaptor protein that
links RIG-I to IKK and TBK1/IKKε activation is the recently identified mitochondrial antiviral signaling
protein (MAVS), also known as IPS-1, VISA, or CARDIF. MAVS contains an N-terminal CARD domain
that interacts with the tandem CARD domains of RIG-I and a C-terminal transmembrane domain
that localizes it to the mitochondrial outer membrane [29]. Cell culture studies have suggested that
MAVS/IPS-1 is required for interferon induction by cytosolic DNA [30].

The production of pro-inflammatory cytokines and IFNs and the activation of natural killer
(NK) cells is frequently observed during the early phase of viral infections. Previously, HBV was
considered as a “stealth virus” that could establish persistent infection in hepatocytes by evading
the host innate immune system [31]. Using an experimentally infected chimpanzee model, HBV was
unable to interfere with host cellular gene transcription and induce ISG expression in the liver [7].
However, by quantification of serum cytokines, a study which enrolled 21 HBV-infected patients
during the pre-symptomatic phase indicated that HBV infection did not elicit strong production of IFNs
and interleukin (IL)-15, but did induce the production of the anti-inflammatory cytokine IL-10 [32].
In addition to this observation, another study suggested that many cytokines are weakly induced
during acute HBV infection. After initiation of viral expansion and before the peak of viremia, IFN-α,
tumor necrosis factor (TNF)-α, IL-15, IL-10, IL-6, and IL-1β levels were detectable in serum samples
from about half of HBV patients [33].
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Figure 3. HBV suppression of type I interferon (IFN) response (Green arrows indicate the related
signaling pathways and T-arrows in red indicate blocking the targets). Different HBV proteins block
the type I IFN response. For example, hepatitis B surface antigen (HBsAg) inhibits interferon regulatory
transcription factor 7 (IFR7) and nuclear factor kappa B subunit (NF-κB) interaction to block NF-κB
translocation to the nucleus and block type 1 IFN production. Hepatitis B e antigen (HBeAg) blocks
toll-like receptor 3 (TLR3) binding to toll-like receptor adaptor molecule 1 (TRIF) to suppress the TLR3
pathway. HBV core protein inhibits production of type I IFNs and interferon-stimulated response
elements (ISREs). Hepatitis B X protein (HBX) proteins inhibit binding of mitochondrial antiviral
signaling protein (MAVS) to mitochondria to block the RIG1-MAVS pathway. HBV polymerase
inhibits binding of DEAD-Box Helicase 3 X-Linked (DDX3) to the TBK1/IKKE complex, inhibits
the RIG-I pathway, and blocks interferon-stimulated gene factor 3 (ISGF3) to inhibit ISRE production.
Abbreviations—TLR3: Toll-like receptor 3, TRIF: Toll-like receptor adaptor molecule 1, TBK1:
TANK-binding kinase 1, IKKE: inhibitor of nuclear factor-kB kinase, IRF3: interferon regulatory
transcription factor 3, NF-κB: nuclear factor kappa B, dsRNA: double-stranded RNA, dsDNA:
double-stranded DNA, MAVS: mitochondrial antiviral signaling protein, RIG-I: retinoic acid-inducible
gene I, IRF-7: interferon regulatory transcription factor 7, IFNAR1/2: interferon alpha receptor 1/2, TYK2:
tyrosine kinase 2, JAK1: Janus kinase 1, STAT1/2: signal transducer and activator of transcription 1/2,
IRF-9: interferon regulatory transcription factor 9, ISGF3: interferon-stimulated gene factor 3, ISRE:
interferon-stimulated response element, ISGs: interferon-stimulated genes, OAS1: 2’-5’ oligoadenylate
synthetase 1, MX-A: myxovirus resistance A.

On the other hand, in another study Mutz et al. elucidated the interactions between HBV
and innate immunity to better understand the mechanisms of immune activation in HBV infection
and reported that HBV does not trigger the IFN response of hepatocytes or interfere with the innate
immune-sensing functions of hepatocytes, and nor does it inhibit the IFN-stimulated pathways
of hepatocytes based on absence of interferon and cytokine production [34]. On the other hand,
macrophages can be activated by high-titer HBV to mount an immune response against HBV mainly
through production of inflammatory cytokines like TNF-α and IL6 [35]. In contrast, several other
studies have reported that HBV replication can inhibit those aforementioned pattern-recognition
receptor (PRR) functions. One study showed that HBeAg-positive chronic hepatitis B patients had
downregulated TLR2 expression in the hepatocyte plasma membrane [36]. Other studies based on
heterologous overexpression of viral proteins and/or host sensors have also addressed this issue,
but have yielded conflicting results [37,38]. Similarly, contradictory data exist regarding whether HBV
infection suppresses the cellular response to IFN. One study demonstrated the inhibition of signal
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transducer and activator of transcription 1 (STAT1) nuclear import by HBV polymerase, and showed
that HBsAg and/or HBx protein interfered with the STAT1 signaling [39].

In conclusion, these studies indicate that HBV can target the TLR system and thus attenuate
the anti-HBV responses of the innate immune system, which implies that HBV does not affect at least
some aspects of the innate immunity system. HBV, particularly HBx protein, was reported to disrupt
RIG-I-mediated IFN-β induction by downregulating MAVS [40,41]. HBx was recently reported to act
as a deubiquitinating enzyme which deubiquitinated RIG-I and other molecules including TNF receptor
associated factor 3 (TRAF3), IRF3, and IKKi. It attenuated the interaction between RIG-I and TRAF3
that plays an important role in IFN induction, and finally dampened type I IFN induction [42].
In addition, HBV proteins also interfere with JAK-STAT signaling and ISG expression. For example,
HBV polymerase was shown to inhibit nuclear translocation of STAT1 [43] and HBV precore/core
proteins inhibited myxovirus resistance A (MxA) gene expression via their interaction with the MxA
promoter [44]. All these findings provide evidence that HBV can counteract the innate immune
responses mediated by TLRs or RIG-I in the liver microenvironment, which might be strategies by
which HBV escapes the surveillance of the host innate immune system. The different HBV protein
contributions in induction of cellular innate immunity are summarized in Table 1.

Table 1. Different cellular innate immunity targets of HBV infection.

HBV Proteins Cellular Innate Immunity Targets References

Polymerase RIG-I, TLR3/TBK1, IKKε, DDX3/IFN-β, IFN/JAK-STAT [45–47]

Hepatitis B virus X protein RIG-I, melanoma differentiation-associated gene 5
(MDA5)/MAVS/IFN-β/Trim22 [40,41,48,49]

Core/precore IFN/myxovirus resistance A (MxA) [50]
Hepatitis B e antigen TLR2/ MyD88-Adapter-Like (MAL) [51,52]

3.1. Hepatitis B e Antigen (HBeAg)

TLR expression on Kupffer cells, peripheral monocytes, and hepatocytes is reduced in
HBeAg-positive CHB compared with patients with HBeAg-negative CHB [36]. However, HBV
cDNA plasmids encoding the G1896A precore stop codon mutation (which abrogates production
of HBeAg) have no effect on TLR2 expression [51]. More recently it has been shown that HBeAg
directly interacts with key adapters in the TLR2 pathway [52]. The expression of IFN-α and IFN-β
mRNA was down-regulated in stably transformed HBeAg-positive HepG2 cells as compared to
an HBeAg-negative HepG2 cell line [53]. Thus, it can be concluded that HBeAg protein downregulates
TLR innate immunity signaling pathway.

3.2. HBV Core Protein (HBcAG) and Hepatitis B Splice Protein (HBSP)

HBV core protein interfered with IFN-β expression through binding to the IFN-β promoter
as a transacting silencer in murine fibroblasts [54]. Subsequently, Rosmorduc et al. showed that HBV
core protein, encoded by spliced pgRNA, down-regulated IFN-inducible MxA protein expression,
with MxA being an important antiviral protein kinase [55]. Further to these findings, Soussan et al.
showed that in addition to the core and precore protein, the most frequently detected spliced pgRNA
also encodes a novel protein termed HBSP that may down-regulate MxA [56]. Thus, it can be concluded
that HBcAg and HBSP down-regulates IFN-inducible MxA protein expression.

3.3. Hepatitis B Virus X Protein (HBx)

Previous reports have also shown that HBx promotes MAVS ubiquitination to trigger its
proteasome-mediated degradation through the Lys136 site, and that MAVS K136R elicits a higher level
of IFN-β activation compared with wild type MAVS, suggesting that the MAVS Lys136 site could
be the ubiquitination site targeted by the ubiquitin E3 ligase RNF125 [40], enabling MAVS proteins
to undergo proteasomal degradation by RNF125-mediated ubiquitin conjugation [57]. PSMA7 is
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a subunit of the proteasome that regulates the activity of this complex associated with HBX, suggesting
that HBX may modulate the function of the proteasome by interacting with PSMA7. PSMA7 may
regulate host innate immune signaling by destabilizing MAVS, raising the possibility that HBX may be
potentially bridged by PSMA7 on the mitochondrial outer membrane to exert its inhibitory effect on
innate immune response [40]. In addition, another research group has proposed a new model where
the HBx protein blocks tripartite motif containing 22 (TRIM22) transcription, leading to a decrease in
interferon (IFN)-induced TRIM22 expression [48].

3.4. Hepatitis B Virus Polymerase Inhibits Innate Immunity (HBV Pol)

Three observations are worthy of mention to discuss the impact of HBV Pol on IFN signaling.
First, previous data indicated the inhibitory effect of HBV Pol on IRF signaling and to a lesser extent on
NF-κB signaling, which also contributes to IFN-β production. Second, abundant detection of HBV
Pol in the nonencapsidated state indicates that HBV Pol could contribute to viral pathogenesis or
immune evasion. Lastly, HBV Pol has been previously identified as one of the viral proteins that
confers resistance to IFN treatment [45]. Previous studies have shown that HBV polymerase is a potent
inhibitor of IFN-β induction in human hepatocytes, and its expression leads to inhibition of promoter
activity and transcription of IFN-β and antiviral immunity in the PH5CH8 primary hepatocytic cell
line. In addition, it has been demonstrated that HBV polymerase interferes with IFN-β induction
at the TBK1/IKKε level, expression of HBV polymerase inhibits Sendai virus (SeV)-induced endogenous
IRF3 phosphorylation, dimerization, and nuclear translocation, and RNA helicases of the DEAD-box
protein family (DDX3) may be involved in the inhibition of IFN-β induction by HBV polymerase [46].

4. Conflicts Regarding HBV and Innate Immunity

In the current review, we set out to elucidate the interactions between HBV and innate immunity
to better understand the mechanisms of immune activation in HBV infection. Previously, HBV
was considered a “stealth” virus that did not interfere with the innate immune-sensing functions of
hepatocytes. However, data obtained from recent studies suggest that circulating innate immune cells,
as well as liver cell populations, can sense and respond to HBV infection, which enables the innate
immune system to detect and restrict the invading virus. In addition, it is worth noting that HBV
induced IFN responses in hepatocytes are relatively weak as compared with other viral infections,
which is consistent with the observations from the studies obtained in chimpanzee [7] and mouse
models [35]. The previous reports highlight that HBV is recognized by host PRRs and thus induces
innate immune responses that decrease HBV replication and expansion. However, the specific PRRs
and intracellular signaling pathways involved in HBV recognition and inhibition still require further
investigation. An in-depth understanding of immune mechanisms induced by distinct components
of HBV will provide the opportunity to characterize the immunopathogenesis of HBV infection
and develop immune based therapeutic strategies for HBV infection [58,59].

In contrast, several other studies have reported that HBV replication can inhibit those
aforementioned PRR functions. One study showed that HBeAg-positive chronic hepatitis B patients
have downregulated TLR2 expression on hepatocytes [60]. One study demonstrated inhibition of STAT1
nuclear import by HBV polymerase [39] and another reported that the HBsAg and/or HBx protein
interfered with the STAT1 signaling [52]. By stimulating ex vivo-culture liver biopsies with different
TLRs ligands and SeV, it was observed that induction of the innate immune response, as measured by
IFN and ISG expression, did not differ between HBV-infected and non-infected samples, suggesting that
HBV infection neither induces nor interferes with the innate immune response, which is consistent with
the observed lack of innate immune response during acute HBV infection in experimentally infected
chimpanzees and the apparent sensitivity of HBV to TLR-mediated induction of innate immunity
as such, in contrast to many other viruses including hepatitis C virus (HCV) and hepatitis A virus
(HAV). These results support the hypothesis that HBV behaves like a “stealth virus” by staying under
the radar of the pathogen detection system [61].
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We believe that contradictory reports are mainly related to three aspects. The first is the infection
stage. It is important to find evidence of innate immune responses in the early phase of acute
hepatitis B infection even though no innate immune responses are observed in patients with chronic
HBV. The second aspect is related to the experimental models. It is critical how similar the innate
immunity pathways are in these models and primary human hepatocytes (PHH). The third aspect
relates to the HBV genotypes. There are differences in innate immunity response among different
HBV genotypes.

5. In Vitro Models to Study HBV Infection and Innate Immunity

To date, HBV research has been hampered by a distinct lack of robust infectious model
systems that both support productive HBV infection and accurately mimic virus–host interactions.
Hepatoma-derived cell lines support HBV replication and particle assembly following the transfection
of cloned viral genomes [62,63]. After differentiation, differentiated hepatic cells derived from a human
hepatic progenitor cell line (HepaRG) become susceptible to HBV, indicating expression of the HBV
receptor in the differentiated HepaRG and the differentiation-dependent expression of an HBV receptor.
It took a long time until Wenhui Li’s group from Beijing discovered the human sodium taurocholate
cotransporting polypeptide receptor (NTCP) to be the long sought-after HBV receptor [64]. This finding
was confirmed and consistent with the pronounced induction of NTCP that is unique to the hepatocyte
membrane and expression upon differentiation of HepaRG cells [65]. Prior studies have shown that
primary human hepatocytes support HBV infection, although infection is usually not robust even
upon supplementation of cell-culture medium with dimethyl sulfoxide or polyethylene glycol [65].
Moreover, primary human hepatocytes rapidly lose their hepatic phenotype shortly after isolation
from the in vivo microenvironment [66]. Several drawbacks have been found in these in vitro HBV
infection models. In the case of HepaRG cells, for example, it is impossible to evaluate the effects of
genetic background on HBV infection using HepaRG cells. There is a restricted availability of primary
human hepatocytes (PHHs), although PHHs isolated from young children can proliferate in humanized
chimera mice [66]. Besides the efforts in generating HBV-susceptible cell lines, independent approaches
have involved the generation of hepatocyte like cells (HLCs) through the differentiation of stem cells
from diverse origins, such as human embryonic stem cells (hESCs), human induced-pluripotent stem
cells (hiPSCs), liver-resident hepatic progenitor cells, or bone marrow-derived mesenchymal stem
cells [67–70].

However, there is thus an urgent need for a novel in vitro HBV infection model. Recently, human
hepatocyte-like cells differentiated from hESCs and hiPSCs have gained much attention not only due to
their promise for regenerative medicine, but also due to their potential for modeling drug metabolism
and pathogen infection in vitro [71–74]. For example, human hepatocyte-like cells differentiated from
these stem cells can be stably supplied due to the indefinite proliferation potential of hESCs and hiPSCs.
Influences on the genetic background of the cells can be evaluated because iPS cells are established
from various types of somatic cells. In addition, genome editing technology makes gene knockout
and gene replacement possible in hESCs and hiPSCs [75]. The protocols established for the production
of HLCs from hESCs usually consist of three crucial steps: (1) endodermal induction, (2) hepatic
specification, and (3) hepatocyte maturation. So far, a gain in susceptibility to HBV has not been
a criterion for the functionality of HLCs. In a former study, Shlomai and co-workers showed for
the first time that HBV can infect hiPSC-derived HLCs. They demonstrated that expression of NTCP
becomes strongly induced during hepatic maturation, which correlates with a gain in susceptibility
to HBV. This finding demonstrates the potential of human hiPSC-derived HLCs for in vitro studies
of HBV biology. Importantly it opens the door for generating HBV-susceptible cells from individual
groups of patients and individuals with certain genetic polymorphisms [76]. We thus consider that
iPS-HCLs are promising as an alternative in vitro model of infection by hepatotropic pathogens,
including HBV. Different in-vitro HBV cell models, their HBV infection efficiencies, innate immunity
pathways, advantages, and limitations are summarized in Table 2.
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Table 2. Innate immunity pathways in HBV cell models.

Cell Models HBV Infection
Efficiency

Innate Immunity Pathways
Present Advantages Limitations References

Primary human hepatocytes
(PHHs)

Average 50% in
the presence of 5%
polyethylene glycol

(PEG)

Low TLR expression

Gold standard for investigation of
HBV infection; limited availability

and unpredictable variability

[77–79]

Low stimulator of interferon
genes(STING) expression

RIG-I/MDA5
NF-κB pathway

IRF pathway
IFN pathway

Human embryonic stem cell
(hESC)/human

induced-pluripotent stem
cell (hiPSC)-derived

hepatocytes

25–90%

Low TLR expression
Close to PHHs depending on

differentiation status; can support
long-term infection, can be

generated from donors with
different genetic backgrounds;

immature status needs to
be improved

[72,76,80–82]
Low STING expression

NF-κB pathway
IRF pathway
IFN pathway

HepaRG

~10% in
the presence of
PEG, maximum

rate is 20%

Low TLR expression Close to PHHs;

[78,79,83,84]

Low STING expression suitable for drug metabolism
and HBV infection; can be

differentiated into both biliary
cells and hepatocytes; a long
period for differentiation is
needed (at least two weeks)

RIG-I/MDA5
NF-κB pathway

IRF pathway
IFN pathway

HepG2-NTCP

~70% infection
efficiency at 4%
PEG and 2.5%

dimethyl sulfoxide
(DMSO)

Poorly characterized

Can be used to screen novel drugs
and elucidate host–virus

interaction; high concentrations of
HBV genome equivalents are

needed for a high infection rate

[37,64,65,79,85–90]

TLR expression
No cyclic GMP-AMP

synthase (cGAS)
expression and low
STING expression

RIG-I/MDA5
NF-κB pathway

IRF pathway
IFN pathway

Huh7-NTCP
~5% infection

efficiency at 4%
PEG and 2.5%

DMSO

Poorly characterized

Low HBV infection rate;
defects in some innate
immunity pathways

[37,64,65,79,88–90]TLR expression
No cGAS and STING expression

Both RIG-I/MDA-5 and IFN
pathway are present but weaker

than HepG2

HepG2.2.15
HBV genome

integrated the into
HepG2 genome

No cGAS expression and low

Can be used to screen anti-HBV
drugs Unsuitable for studying

HBV entry and uncoating
[37,62,86,87,91,92]

STING expression
RIG-I/MDA5

NF-κB pathway
IRF pathway
IFN pathway

6. Conclusions

The innate immune system is the first line of host defense against HBV infection and plays
an important role in anti-HBV. HBV only triggers little innate response in host cells after infection
and has evolved escape strategies from the innate immune system. HBV proteins, including HBx,
HBV polymerase, HBs, HBc, and HBe, block TLRs, the Jak-Stat pathway (type I/III IFN response),
TBK1/IKKε (the effector kinase of the IRF-3/NF-κB pathway), and cytokines.

Current evidence obtained from experiments has highlighted the importance of innate immunity
in the early control of HBV spread. However, how HBV succeeds to avoid innate immune recognition
has still not been fully clarified. The recent development of varied novel models, such as HepaRG cells,
stem-cell derived hepatocytes, and liver organoids, may greatly contribute to clarifying the interaction
between HBV and host innate immunity. Given the central role that innate immunity plays in antiviral
responses, the enhancement of HBV-induced innate immunity may provide fundamental insights into
the therapy of HBV. We believe that a better understanding of HBV–host interactions will be achieved
by using these novel models, eventually leading to effective treatment strategies for hepatitis B.
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