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SUMMARY

Targets and medical approaches to prevent progression of
chronic liver disease to liver fibrosis or cirrhosis are ur-
gently needed. We describe p70S6K being dysregulated in
human liver fibrosis and define this protein as checkpoint of
human hepatic stellate cell activation and liver fibrosis
in vivo. Furthermore, we provide a clinical viable approach
to inhibit this protein by the employment of CEP-1347.

BACKGROUND & AIMS: Progression of chronic liver disease
(CLD) to liver cirrhosis and liver cancer is a major global cause
of morbidity and mortality. Treatment options capable of
inhibiting progression of liver fibrosis when etiological treat-
ment of CLD is not available or fails have yet to be established.
We investigated the role of serine/threonine kinase p70 ribo-
somal protein S6 kinase (p70S6K) as checkpoint of fibrogenesis
in hepatic stellate cells (HSCs) and as target for the treatment of
liver fibrosis.
APPROACH & RESULTS: Immunohistochemistry was used to
assess p70S6K expression in liver resection specimen. Primary
human or murine HSCs from wild-type or p70S6K–/– mice as
well as LX-2 cells were used for in vitro experiments. Specific
small interfering RNA or CEP-1347 were used to silence or
inhibit p70S6K and assess its functional relevance in viability,
contraction and migration assays, fluorescence-activated cell
sorting, and Western blot. These results were validated in vivo
by a chemical model of fibrogenesis using wild-type and
p70S6K–/– mice. Expression of p70S6K was significantly
increased in human cirrhotic vs noncirrhotic liver-tissue and
progressively increased in vitro through activation of primary
human HSCs. Conversely, p70S6K induced fibrogenic activation
of HSCs in different models, including the small interfering
RNA–based silencing of p70S6K in HSC lines, experiments with
p70S6K–/– cells, and the pharmacological inhibition of p70S6K
by CEP-1347. These findings were validated in vivo as
p70S6K–/– mice developed significantly less fibrosis upon
exposure to CCl4.
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CONCLUSIONS: We establish p70S6K as a checkpoint of
fibrogenesis in vitro and in vivo and CEP-1347 as potential
treatment option that can safely be used for long-term treat-
ment. (Cell Mol Gastroenterol Hepatol 2022;13:95–112; https://
doi.org/10.1016/j.jcmgh.2021.09.001)

Keywords: Fibrosis; Cirrhosis; Chronic Liver Disease; Trans-
forming Growth Factor-b; Platelet-Derived Growth Factor BB.

hronic liver disease (CLD) with its associated mor-
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steatohepatitis; p70S6K, p70 ribosomal protein S6 kinase; PDGF,
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Ctality and morbidity represents a considerable and
increasing global socioeconomic problem.1,2 Independently
of its underlying etiology, CLD can cause liver fibrosis,
eventually progressing to liver cirrhosis and its complica-
tions. Once liver cirrhosis becomes clinically apparent, 5-
year mortality without liver transplantation amounts to
85%3 owing to the clinical complication such as variceal
bleeding, ascites, kidney failure, and the occurrence of he-
patocellular carcinoma, currently the most common cause of
death in patients with liver cirrhosis and the fourth most
common cause of tumor-related death worldwide.3–7

Several advances have been made in the therapy of CLD,
the latest and most remarkable perhaps being the devel-
opment of direct-acting antiviral agents for the treatment of
chronic hepatitis C.8 However, for other CLD, an effective
medical treatment is still lacking, only partially effective, or
effective only in a subgroup of patients.

Establishing a medical treatment capable of directly
targeting fibrogenesis and delaying or abolishing the pro-
gression of fibrosis will be indispensable to reduce CLD-
related morbidity and mortality until causal treatment
options are established. The relevance of this issue is
highlighted by the epidemiological trend of nonalcoholic
steatohepatitis (NASH), a condition poorly responsive to
treatment and due to become the leading cause of CLD and
mortality globally.9,10 Unfortunately, several promising
agents, such as simtuzumab or selonsertib, failed to meet
their primary endpoint of inhibiting fibrosis in the treat-
ment of CLD.11-13

The lack of treatment options in liver fibrosis to com-
plement existing etiological treatment therefore represents
an unmet medical need for an ever-increasing number of
patients worldwide.

On the mechanistic level, liver fibrosis is thought to be
caused mainly by hepatic stellate cells (HSCs) that, upon
activation, transdifferentiate into myofibroblasts, cause
deposition of extracellular matrix, and induce portal hy-
pertension by contractility.14–16

Profibrotic activation of HSCs can, in turn, be initiated
at different sites, eg, the activation of transforming
growth factor-b (TGF-b) or of platelet-derived growth
factor BB (PDGF-BB), 2 molecules that trigger intracel-
lular signaling converging to activate the PI3K-AKT-mTOR
signaling.17–19 However, attempts at blocking these re-
ceptors or the PI3K-AKT-mTOR axis by currently available
agents poses several safety issues concerning long-term
tolerability of their antiproliferative and immunosup-
pressive effects.
To establish a potentially accessible molecular target for
antifibrotic treatment, we chose to investigate the serine/
threonine kinase p70 ribosomal protein S6 kinase (p70S6K),
a molecule phosphorylated downstream of mTOR and
possibly representing a distal effector of fibrogenesis, with
the rationale that its pharmacological inhibition could be
safer and more tolerable than that of its upstream targets.
To this regard, we also assessed the potential use of CEP-
1347 as p70S6K inhibitor, an agent for which extensive
clinical research has proved to be safe and very well toler-
ated for long-term treatment in a previous clinical phase III
trial for Parkinson’s disease.20
Results
p70S6K expression is significantly increased in
human liver resection specimens from cirrhotic
patients compared with nonfibrotic liver tissue,
and expression of p70S6K increases during the
activation of primary human HSCs

To assess whether p70S6K is differentially expressed in
liver tissue with advanced stages of fibrosis or cirrhosis in
comparison to tissue from healthy liver, immunohisto-
chemical staining for p70S6K, along with immunohisto-
chemical staining of a-smooth muscle actin (a-SMA), an
established marker of HSC activation, was performed and
quantified in surgical liver tissue specimens from patients
with and without liver cirrhosis who had undergone partial
hepatectomy. Staining for a-SMA was significantly higher in
cirrhotic livers and was detectable predominantly along the
fibrotic septa. Staining for p70S6K was also approximately
6-fold higher in cirrhotic liver compared with healthy liver
tissue (Figure 1A and B). p70S6K was costained with a-SMA
or glial fibrillary acidic protein (GFAP) in mice treated with
CCl4 but not in vehicle-treated animals (nonfibrotic con-
trols). This supports the observation that p70S6K is spe-
cifically increased in HSCs (Figures 1C and D and 2C).
However, expression of p70S6K was not restricted to HSCs
because p70S6K staining was observed in association with
non-HSC markers such as F4/80 and cytokeratin 19 (CK19)
(Figure 2A and B).

Because HSCs are thought to be the central regulators of
fibrogenesis, in a next set of experiments we aimed to assess
the role of p70S6K on HSC activation. For this purpose, we
used a surrogate model of HSC activation by seeding primary
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Figure 2. Costaining of p70S6K and markers of nonparenchymal liver cells was done. (A) Costaining of Hoechst (blue),
p70S6K (green), and (A) F4/80 or (B) CK19 (red) was performed in mice treated with vehicle or CCl4 (scale bars ¼ 100 mm). (C)
Costaining of Hoechst (blue), p70S6K (green), and a-SMA (red) was performed in human liver samples from patients with liver
cirrhosis. An overlapping expression of p70S6K (green) and a-SMA (red) can be observed in the septa (scale bars ¼ 100 mm).
(D) Nuclear staining of p70S6K in cirrhotic liver tissue (scale bar ¼ 20 mm).
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human HSCs (phHSCs) on uncovered plastic dishes for 13
days to induce their spontaneous transdifferention to acti-
vated myofibroblasts.21 We observed that the expected in-
crease of a-SMA, a hallmark of activation in these cells over 3
different time points (on days 2, 7, and 13 after isolation) was
accompanied by an increased expression of p70S6K, as shown
by Western blot (Figure 3). In summary, both the histological
examination and the progressive increase of p70S6K during
HSC activation support the hypothesis that this molecule plays
a causal role in the process of fibrogenesis.
Silencing of p70S6K counteracts TGF-
b–dependent activation of LX-2 cells and
spontaneous activation of isolated primary cells

To assess whether the observed increase of p70S6K is
an actual cause of fibrogenic HSC activation, p70S6K was
Figure 1. (See previous page). p70S6K staining is higher in c
immunohistochemical staining of a-SMA and p70S6K in cirrh
staining is observed along the fibrous septa; p70S6K-positive
Immunohistochemical staining of a-SMA and p70S6K was quan
tissues samples. The data express the area with positive stainin
D) A costaining of Hoechst (blue), p70S6K (green), and a-SMA o
(nonfibrotic control) or CCl4. Control mice show a lower express
overlapping (yellow) staining pattern of p70S6K (green) and a-S
silenced by small interfering RNA (siRNA) both in LX-2
cells and in isolated phHSCs. As shown in Figure 4A,
silencing of p70S6K inhibited the activation of HSCs, as
judged by the lack of a-SMA expression upon co-
incubation with TGF-b in LX-2 cells. Similar results
were obtained with phHSCs plated on uncovered plastic
wells and harvested after undergoing incubation for 7
days with siRNA targeting p70S6K or control siRNA
(Figure 4B).

To further validate this observation, we assessed the
activation of primary murine HSCs (pmHSCs) isolated from
p70S6K–/– mice or syngeneic age-matched wild-type (Wt)
control mice. While assessing the phenotype of sponta-
neous ageing of Wt vs p70S6K–/– mice, we did not detect
differences in body to liver or spleen weight, or in liver
serum biochemistry between the 2 strains (Figure 5A and
B). Also, there were no differences in liver histology and
irrhotic vs healthy livers. (A) Representative images showing
otic and healthy livers (brown staining and arrows). a-SMA
cells are visible as clusters along or within the septa. (B)

tified automatically from whole slide scans from the respective
g as a percentage of the total area (n ¼ 5; **P < .01; t test). (C,
r GFAP (both red) was performed in mice treated with vehicle
ion of p70S6K vs CCl4-treated animals. The images show an
MA or GFAP (red). Scale bars ¼ 100 mm.



Figure 3. Expression of p70S6K increases during the activation of phHSCs. (A) phHSCs were seeded on uncovered
plastic to cause their activation. A time-dependent, progressive activation of HSCs is evident with increasing green
immunofluorescence of a-SMA, which was most prominent on day 13 after isolation. (B) Likewise, a progressive increase
of both a-SMA and p70S6K could be seen by Western blot (left panel). Densitometry of protein-expression were quan-
titated from at least 4 samples and expressed as density units relative to the baseline (right panel; *P < .05; **P < .01;
analysis of variance).
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fibrosis markers as judged by Western blot or Sirius red
staining (Figure 5C–E). However, when we examined the
ex vivo activation of pmHSCs isolated from p70S6K–/– mice vs
Wt mice, we observed a significantly lower increase of a-SMA
expression in pmHSCs isolated from p70S6K–/– mice in
comparison with Wt mice throughout a 13-day time period
(Figure 4C). This suggests that p70S6K regulates HSC
response to activation by external fibrogenetic stimuli. The
findings on p70S6K activation in these 3 model systems
pointed to a causal role of p70S6K in determining activation
of HSC and a-SMA expression in both human and murine
cells.
p70S6K knockout confers protection from liver
fibrosis in mice

To validate these results, an in vivo model was
employed, with the hypothesis that a lesser degree of
fibrosis should be expected in p70S6K–/– mice upon
exposure to chemically induced fibrogenetic stimuli. Male
Wt and p70S6K–/– mice were thus challenged for 12
weeks with CCl4 (Figure 6A). In agreement with the
in vitro experiments, we observed that p70S6Kwt mice
exhibited a much higher extent of fibrosis vs their
p70S6K–/– counterpart, as measured by Sirius red and a-
SMA staining of liver sections from the respective strains
(Figure 6B). This was accompanied by numerically lower
(though not significant) serum bilirubin values and he-
patic Acta2 and collagen 1a1 messenger RNA expression
(Figure 7).
The effects of p70S6K silencing can be
reproduced by CEP-1347 in vitro

In a next set of experiments, we aimed at assessing
whether p70S6K can be inhibited pharmacologically. To
this purpose, we used CEP-1347, a kinase inhibitor which
we established as an effective inhibitor of p70S6K
(Figure 8A–C). When LX-2 cells were incubated with TGF-b
in the presence or absence of CEP-1347, the activation of
this HSC cell line was almost completely inhibited. Specif-
ically, CEP-1347 strongly inhibited the induction of a-SMA,
PDGF receptor-b, and collagen 1a1 protein-expression
(Figure 9A–E) as well as the migratory capacity and the
contractility of HSCs (Figure 10A–D). The capability of CEP-
1347 to inhibit p70S6K was demonstrated by a significantly
diminished phosphorylation of p70S6K when cells were
incubated with TGF-b in the presence of CEP-1347
(Figure 8A). Similar results were obtained when PDGF-BB
(a well-established inducer of the PI3K-AKT-mTOR
signaling in HSCs)22,23 was used to activate HSCs
(Figure 8B and C). In comparison, CEP-1347 did not show



Figure 4. Silencing of
p70S6K abolishes TGF-
b–dependent activation
of human LX-2 cells and
the spontaneous activa-
tion of phHSCs and
pmHSCs. (A) LX-2 cells
were transfected with
p70S6K-targeting siRNA
or control siRNA (b-galac-
tosidase–targeting siRNA).
Silencing of p70S6K,
confirmed by Western blot
(left panel) (n ¼ 4; *P < .05;
t test), inhibited the acti-
vation of HSCs, as shown
by the abolished increase
of a-SMA caused by co-
incubation with TGF-b for
24 hours (right panels) (n ¼
4; *P < .05; Kruskal-Wallis
test). (B) Similar results as
in A were obtained with
phHSCs plated on uncov-
ered plastic wells and har-
vested after undergoing
continuous incubation with
siRNA targeting p70S6K or
control siRNA for 7 days.
The illustrations and the
quantitative assessment
shown are representative
of at least 4 separate ex-
periments (*P < .05; t test).
(C) pmHSCs were isolated
from age-matched Wt and
p70S6K–/– mice. Protein
expression of a-SMA was
measured by Western blot
and expressed as fold-
increase vs baseline levels
on day 2. pmHSCs from
p70S6K–/– mice showed a
smaller increase in a-SMA
protein expression over
time (n ¼ 3; *P < .05;
analysis of variance).
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any relevant effect on other kinases known to affect fibro-
genesis (Figure 8A).

Interestingly, CEP-1347 induced a significant G2 cell cycle
arrest (Figure 11), an effect that might contribute to
decreased fibrogenesis of HSCs. However, the possibility that
this occurred solely as a consequence of a loss of cell viability
caused by CEP-1347, rather than as a consequence of a direct
antifibrotic effect of this drug, was excluded by viability as-
says, Hoechst staining and fluorescence-activated cell sorting
analysis, which failed to show a relevant decrease in cell
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Figure 6. p70S6K knockout confers protection from liver fibrosis in mice. (A) The time course of in vivo experiments with
Wt and p70S6K–/– male mice, which were challenged with CCl4 for altogether 12 weeks. (B) Hepatic fibrosis was assessed by
Sirius red staining and immunohistochemistry for a-SMA. The positive area was quantified automatically from whole-slide
scans (n ¼ 3 per group; *P < .05; **P < .01; t test).
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viability or apoptosis within the time frame in which anti-
fibrotic effects were observed (Figures 11 and 12). These
results were further validated in experiments with phHSCs,
showing that CEP-1347 inhibits p70S6K along with collagen
1a1 expression (Figure 13A and B). These results show that
CEP-1347 effectively inhibits p70S6K, hereby counteracting
the profibrotic effects of HSC activation in different models.
Figure 5. (See previous page). Spontaneous phenotype of p
parison of age-matched Wt mice vs p70S6K–/– mice did not sho
serum bilirubin, alanine aminotransferase (ALT), aspartate-am
Likewise, no differences were detected in the expression of a-S
Sirius red staining and quantitatively expressed as the fraction o
from whole-slide scans. All figures are representative of exper
statistical differences.
Discussion
Progression of liver disease to fibrosis and
cirrhosis as unmet medical challenge

Many advances have been made in the prevention and
causal treatment of CLD, including the widespread use
of anti-Hepatitis B virus vaccines and antiviral drugs, with
the latest and most significant achievement being the
70S6K–/– mice in comparison with Wt mice. (A, B) Com-
w significant differences in body, liver, or spleen weight or in
inotransferase (AST), and alkaline phosphatase (ALP). (C)
MA and collagen 1a1. (D, E) Hepatic fibrosis was assessed by
f Sirius red–positive area, which was quantified automatically
iments conducted from 3 independent samples showing no



Figure 7. CCl4 challenge in Wt vs p70S6K–/– mice. (A) Male Wt and p70S6K–/– mice were challenged with CCl4 for 12 weeks.
Body, liver, and spleen weight; bilirubin; and messenger RNA expression of Acta2 and Collagen 1a1 were assessed (n ¼ 3 per
group).
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development of direct-acting antiviral agents for the treat-
ment of chronic hepatitis C.24 For other CLDs, however,
causal treatment is still lacking or poorly effective. Until
individual curative etiological treatment options are estab-
lished for all etiologies of CLD, the development of direct-
acting agents capable of preventing progression of CLD to
liver cirrhosis and its complications represents an impor-
tant strategy to reduce CLD-related mortality. The impor-
tance of this approach is exemplified by NASH, a condition
poorly responsive to treatment and due to become the
leading cause of CLD globally.25,26 However, attempts at
establishing clinically successful primary antifibrotic agents
have so far failed.11–13 While setting out to investigate
alternative molecular targets for antifibrogenic treatment,
we chose to focus on p70S6K, as this molecule is located
downstream of the PI3K-AKT-mTOR signaling, where
several pathways of fibrogenesis converge. We speculated
that p70S6K might be a potential downstream effector of
fibrogenesis. Thus, we expect that the effects of its phar-
macological inhibition should be restricted to the preven-
tion of collagen deposition, limiting the possible spectrum of
adverse effects common to upstream regulators of this axis.
Three topics describe the main findings of our article and
their clinical significance.
P70S6K is a central mediator of fibrogenesis
downstream of PI3K-AKT-mTOR signaling

Firstly, we provide novel mechanistic data on fibro-
genesis by describing p70S6K as a distal effector of fibrosis
downstream of mTOR activation by consistent results
obtained in cell lines, isolated primary cells, human tissues,
and p70S6K–/– mice. The several-fold increase of in p70S6K
staining observed in cirrhotic human tissue suggested that
p70S6K plays an important role in fibrogenesis, an indica-
tion supported by the fact that p70S6K also progressively
increased during the process of activation of isolated
phHSCs in vitro. The causal role of p70S6K in inducing liver
fibrosis was confirmed by experiments showing that (1)
silencing of p70S6K abolishes activation in human HSCs
(Figure 4A and B); (2) p70S6K–/– HSCs are protected from
fibrogenic activation (Figure 4C); (3) the effects of p70S6K
silencing could be reproduced by CEP-1347, a clinically
viable drug that we established as an effective inhibitor of
p70S6K (Figure 8A–C); and (4) when exposed to CCl4,
p70S6K–/– mice exhibited decreased liver fibrosis compared
with Wt mice (Figure 6). These results are in line with the
body of evidence that established the importance of the
PI3K-AKT-mTOR axis in determining liver fibrosis and with
2 previous reports assessing the role of p70S6K in a rodent
NASH model27 and in bile acid–induced activation of HSCs.28

We are aware of the limitation of our study that we cannot
totally rule out that p70S6K expressed in other cell types
(including F4/80 and CK19-positive cells) might also
contribute to fibrogenesis.

Staining of p70S6K was not limited to HSCs. Future
studies using cell-specific knockout models may shed more
light in the role of p70S6K for hepatic fibrogenesis in spe-
cific cell compartments. Nevertheless, the current knowl-
edge on the role of HSCs in fibrogenesis supports a likely
function of p70S6K as a checkpoint of liver fibrogenesis by
HSC activation.



Figure 8. CEP-1347 does not inhibit phosphorylation of JNK, ERK1, ERK2, or SMAD2 but reduces phosphorylation of
p70S6K in human HSCs (LX-2). Human LX-2 cells were stimulated with (A) TGF-b or (B, C) PDGF-BB and co-stimulated
with 1000 nM CEP-1347 (CEP) for (A) 24 hours or (B, C) 1 hour. (A) Densitometry data of phosphorylated protein expression
levels were normalized to that of unphosphorylated proteins. The results are illustrated as representative blots (at least 6 per
group; *P < .05; **P < .01; analysis of variance). (B) Phosphorylation of p70S6K (pp70S6K) was assessed by immunomi-
croscopy (green) and compared with unphosphorylated p70S6K. (C) Protein expression of pp70S6K was quantified by
densitometry. Densitometric values of p70S6K were normalized to unphosphorylated p70S6K (n ¼ 13; * P < .05; analysis of
variance).
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Clinical implications
However, our results are not only relevant in terms of

the definition of the mechanistic role of p70S6K within the
pathways regulating fibrogenesis; our finding defining CEP-
1347 as an effective inhibitor of this molecule has important
potential clinical implications. Owing to the role of PI3K-
AKT-mTOR signaling in the regulation of immune
response and cell proliferation, several inhibitors of PI3K
(comprising copanlisib, duvelisib, or idelalisib) and mTOR
(sirolimus, everolimus) have been approved as anticancer
or immunosuppressive agents.29,30 However, the use of
these substances to prevent the progression of liver fibrosis
does not seem to be feasible in the setting of long-term
treatment required to treat CLD, owing to potential
adverse events anticipated by the well-known anti-
proliferative or immunosuppressive effects of these agents.
Targeting p70S6K would restrict the blockage of PI3K-AKT-
mTOR axis to its effect on liver fibrosis without interfering
with the actions of the upstream members of this signaling
pathway, hereby representing a potentially safer and more
tolerable therapeutic strategy. However, to our knowledge,
no clinically viable p70S6K inhibitor had been previously
described.
Clinical use of CEP-1347
Here, we suggest for the first time the kinase inhibitor

CEP-1347 as an effective inhibitor of p70S6K. CEP-1347
was developed to treat Parkinson’s disease and has
proved to be safe, well tolerated, and devoid of long-term
unwanted effects in a large cohort of patients (cumula-
tively, 1467 patient-years).20,31 The extensive clinical data



Figure 9. CEP-1347 inhibits TGF-b–dependent activation of human HSCs (LX-2). (A–E) Human HSCs (LX-2) were activated
by TGF-b in the presence or absence of CEP-1347 at the concentration of 1000 nM (CEP) for 24 hours before being harvested
for immunoblotting or fluorescence microscopy. (A) Representative Western blot of a-SMA, PDGF receptor-b, and collagen
1a1, and (B–D) corresponding quantitative optical densitometry are shown. Densitometry data of protein-expression levels
from at least 11 replicates were quantified (at least 11 per group; * P < .05; **P < .01; analysis of variance). (E) Representative
fluorescencemicroscopypattern ofHSCs fora-SMAstaining (green). Cell nuclei, counterstainedwithHoechst, are visible in blue.
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already available and the excellent safety profile of CEP-
1347 fulfils a stringent prerequisite for its clinical assess-
ment as a therapeutic agent for CLD and liver fibrosis,
alone or in combination with established causal treatment
of CLDs.
Conclusion
In summary, we describe p70S6K as a checkpoint of

fibrogenesis and as an actionable target for CEP-1347, a
clinically viable and available compound that can safely be
administered for long-term treatment. Further studies



Figure 10. CEP-1347 inhibits TGF-b–dependent migration and contractility of human HSCs (LX-2). (A, B) Representative
figures of a migration assay upon stimulation with PDGF-BB and CEP-1347 (CEP). The reduction in gap size was quantified at
baseline (left) and at 48 h (right) (n ¼ 4; **P < .01; t test). (C, D) Collagen matrix was populated with human LX-2 cells and
contractility induced by addition of TGF-b with or without CEP-1347 for 120 hours. The gel area is expressed as a percentage
of the well-area (n ¼ 5; **P < .01; analysis of variance).
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should be conducted to investigate p70S6K as a therapeutic
target to treat CLD.

Materials And Methods
Cell lines

LX-2 cells were purchased from Merck Millipore
(Darmstadt, Germany). Their authenticity was assessed by
the Leibniz-Institut (DSMZ-Deutsche Sammlung von Mik-
roorganismen und Zellkulturen GmbH), and confirmed
based on DNA-fingerprinting.

Human samples
The use of all human material presented in this article

was approved by the ethics committee of the Faculty of
Medicine of the University of Munich (Project ID: 17-619).
The material was provided by the Biobank under the
administration of the Human Tissue and Cell Research
Foundation at the Hospital of the University of Munich. The
framework of the Human Tissue and Cell Research Foun-
dation (http://www.htcr.org)32 includes written informed
consent from all donors, and had been previously approved
by the ethics committee of our institution (approval Nr. 025-
12) as well as by the Bavarian State Medical Association
(approval Nr. 11142). The biobank and the cell isolation
core facility of the department of surgery have implemented
total quality management and are certified to ISO
9001:2008. The study protocol conforms to the ethical
guidelines of the 1975 Declaration of Helsinki as reflected in
a priori approval by the institution’s human research
committee.
Cell culture
Cells were kept in Iscove Basal Medium (Merck Milli-

pore; phHSCs) or in Dulbecco’s modified Eagle medium
(Sigma-Aldrich, Darmstadt, Germany; pmHSCs and LX-2
cells) containing 2% (LX-2) or 10% (phHSCs and pmHSCs)
fetal bovine serum (Merck Millipore) and antibiotics (Sigma-
Aldrich). All cells were cultivated in a humidified atmo-
sphere with 5% CO2 and 21% O2 at 37�C. LX-2 cells were
stimulated with 10 ng/mL TGF-b (PeproTech, Hamburg,

http://www.htcr.org


Figure 11. CEP-1347 induces G2/M cell cycle phase arrest
in human HSCs (LX-2). Cell cycle was evaluated using
fluorescence-activated cell sorting analysis after being incu-
bated for 24 hours with PDGF-BB, CEP-1347, or their com-
bination (n ¼ 6; **P < .01; analysis of variance).
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Germany) or 30 ng/mL PDGF-BB (Biomol, Hamburg, Ger-
many) and co-incubated with 1000 nM CEP-1347 (Tocris,
Bristol, United Kingdom) for 1 hour, 24 hours, or 48 hours,
where indicated. phHSCs and pmHSCs were cultured on
uncovered plastic dishes for up to 13 days to induce a
spontaneous activation. For these long-term experiments,
culture media in phHSCs were replaced with fresh media
and CEP-1347 3 times a week.

Isolation of phHSCs
A liver cell suspension was prepared using a 2-step

collagenase perfusion technique with modifications as
described previously.33,34 In brief, hepatocytes were
removed by multiple cycles of low-speed centrifugation,
which resulted in a supernatant that contained the non-
parenchymal cells. phHSCs were subsequently purified from
the nonparenchymal cell fraction by discontinuous density
centrifugation using Percoll.33 Quality of isolation was
checked using immunocytomicrocopy against a-SMA
(Sigma-Aldrich), Desmin (Sigma-Aldrich), GFAP (Sigma-
Aldrich), and CK-19 (Merck Millipore) (Figure 14).

Isolation of pmHSCs
Isolation of pmHSCs was performed by pronase-

collagenase perfusion followed by density gradient centri-
fugation in 13.2% Nycodenz (Axis-Shield PoC, Oslo, Norway)
as described previously.21

Viability assays
The effect of CEP-1347 on cell viability was assessed by

2 kinds of viability assays—PicoGreen (Invitrogen, Wal-
tham, MA) and by water-soluble tetrazolium assay (Prom-
ega, Walldorf, Germany)—according to the instructions
provided by the manufacturers.

Western blot
Proteins were loaded in equal amounts and separated by

sodium dodecyl sulfate polyacrylamide gel electrophoresis
and transferred onto polyvinylidene difluoride membranes
(Merck Millipore). Membranes were incubated with the
primary antibodies directed against the following mole-
cules: a-SMA (Sigma-Aldrich) PDGF receptor-b (Cell
Signaling Technology, Danvers, MA), collagen 1a1 (R&D
Systems, Minneapolis, MN), JNK, phospho-JNK (pJNK),
ERK1/2, phospho-ERK1/2 (pERK), SMAD2, phospho-
SMAD2 (pSMAD2), AKT, phospho-AKT (pAKT), p70S6K,
phospho-p70S6K (pp70S6K) (all from Cell Signaling Tech-
nology), GAPDH (Abcam, Cambridge, United Kingdom) and
b-actin (Sigma-Aldrich). The following secondary antibodies
were used as needed: a goat-anti-mouse-IgG-HRP antibody
(Bio-Rad, Feldkirchen, Germany), a goat-anti-rabbit-IgG-HRP
(Bio-Rad), or a goat-anti-sheep-IgG-HRP antibody (R&D
Systems). Visualization was performed using the ChemoCam
(INTAS, Homburg, Germany) after incubation with Clarity
Western ECL Substrate (Bio-Rad).

Real-time polymerase chain reaction
Real-time polymerase chain reaction was performed in a

SYBR Green system (QuantiTect SYBR Green PCR Kit; Qia-
gen, Venlo, the Netherlands) using a LightCycler 96 (Roche,
Penzberg, Germany). Expression was calculated according
to the DDCt method with Gapdh and 36b4 as the house-
keeping genes and normalized to the means of the controls.
The following primer sequences were used:

Gapdh: Fwd.: AGTATGACTCCACTCACGGC Rev.:
ATGTTAGTGGGGTCTCGCTC

36b4: Fwd.: TCTAGGACCCGAGAAGACCT Rev.:
CCCACCTTGTCTCCAGTCTT

Acta2: Fwd.: GAGACTCTCTTCCAGCCATCTT Rev.:
CCCTGACAGGACGTTGTTAGC

Collagen 1a1: Fwd.: CCTGGCAAACAAGGTCCTTC Rev.:
GGATCCCTCACGTCCAGATT.

Hoechst staining and immunocytomicroscopy
Cells were stimulated for 24 hours with 1000 nM CEP-

1347 before undergoing incubation with Hoechst 33342
(Fluka, Buchs, Switzerland). For immunocytomicroscopy
following antibodies were used: a-SMA (Sigma-Aldrich),
p70S6K (Cell Signaling Technology), phospho-p70S6K (Cell
Signaling Technology), CK-19 (Merck Millipore), Desmin
(Sigma-Aldrich), and GFAP (Sigma-Aldrich). As secondary
antibody, an Alexa-Fluor 488 goat anti-mouse IgG or goat
anti-rabbit IgG was used. Hoechst or phalloidin (Invitrogen)
were used for counterstaining. Microscopy was performed
using a Zeiss Axiovert TV 135 (Zeiss, Oberkochen,
Germany).

Immunohistochemistry and immunofluorescence
Paraffin-embedded sections (3 mm) of primary human or

primary murine liver tissues were used for p70S6K or a-
SMA immunohistochemical staining. p70S6K monoclonal
rabbit antibody (Cell Signaling Technology) or a-SMA
polyclonal rabbit antibody (Abcam) were applied as primary
antibodies and detected by EnVisionþSystem-HRP–labeled
polymer anti-rabbit (Dako, Santa Clara, CA). For immuno-
fluorescence studies, human or murine liver tissues were



Figure 12. Effect of CEP-1347 on apoptosis and cell viability in LX-2 cells. (A) The effect of CEP-1347 (CEP) on apoptosis
was assessed in LX-2 cells by Hoechst 33342 staining, which failed to show alteration of nuclear chromatin staining upon
incubation with CEP-1347 at the concentration of 1000 nM vs control cells. (B, C) No decrease of cell viability was detected by
using water-soluble tetrazolium assays and Pico-Green 24 and 48 hours after stimulation with the indicated concentrations of
CEP-1347 (data are representative of measurement from at least 4 different experiments).
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co-incubated with p70S6K monoclonal rabbit antibody (Cell
Signaling Technology) and anti-a-SMA monoclonal mouse
antibody (Sigma-Aldrich) GFAP mouse antibody (Sigma-
Aldrich), F4/80 monoclonal mouse antibody (Santa Cruz
Biotechnology, Dallas, TX), CK19 monoclonal mouse anti-
body (Proteintech, Rosemont, IL), or monoclonal mouse
antibody in 5% bovine serum albumin (Merck Millipore),
and detected with Alexa Fluor 488 goat anti-rabbit IgG
(Invitrogen, Darmstadt, Germany) and Alexa Fluor 594 goat
anti-mouse IgG (Invitrogen). Nuclei were counterstained
with Vectashield (Vector Laboratories, Burlingame, CA)
containing Hoechst 33342 (Sigma-Aldrich). Pictures were
taken using the Leica fluorescence microscope (Leica
Microsystems, Wetzlar, Germany).



Figure 13. CEP-1347 in-
hibits p70S6K protein
expression and collagen
1a1 deposition in phHSCs.
PhHSCs were cultured on
uncovered plastic to induce
spontaneously activation
for 7 days. Fresh media
with 1000nM (CEP) were
replaced 3 times a week.
(A, B) Expression of
collagen 1a1 and p70S6K
were determined by
Western blot and quanti-
fied by densitometry (n ¼
7; *P < .05; Wilcoxon test).
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Sirius red staining
Liver samples were fixed using 4% formaldehyde. After

embedding in paraffin, 4-mm sections were stained with
Sirius red according to standard protocols.
Quantification of positive stained area
Slides from human or murine liver tissue were scanned

as indicated after Sirius red or after immunhistochemical
staining of p70S6K, a-SMA, and collagen 1a1 using a Pan-
noramic MIDI II digital slide scanner from 3D-Histech
Figure 14. Characterization of isolated phHSCs. Representa
95% of isolated cells exhibit typical markers of HSCs, including
(Sysmex, Norderstedt, Germany). The stained fibrotic area
was quantified via QuPath software (https://qupath.github.
io/) and ImageJ2 software (National Institutes of Health,
Bethesda, MD) as described previously.35
Si-RNA silencing
p70S6K siRNA was purchased from Qiagen; b-galactosi-

dase siRNA, which was used as a control, was purchased
from Dharmacon (Lafayette, CO). Lipofectamin 2000 (In-
vitrogen) was used as transfectant for siRNA experiments.
tive immunocytomicroscopy figures showing that more than
a-SMA, GFAP, and Desmin.

https://qupath.github.io/
https://qupath.github.io/
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LX-2 cells were treated 48 hours after transfection with 10
ng/mL TGF-b for 24 hours. For siRNA transfection in
phHSCs, cells were cultured on uncovered plastic for 7 days.
Transfection with the respective p70S6K and control siRNA
was performed on day 2 and day 5.
Fluorescence-activated cell sorting
For analysis of cell cycle, cells were stimulated with

PDGF-BB, CEP-1347 or their combination for 24 hours
before being harvested and undergoing propidium iodide
staining (Sigma, Germany) as described previously.
Fluorescence-activated cell sorting analysis was performed
by using the Accuri C6 flow cytometer (BD Biosciences,
Franklin Lakes, NJ) and its built-in software.
Gel-contraction assay
The gel-contraction assay was performed according to

the method described by Ikenaga et al.36 After polymeriza-
tion of the collagen, the gel was mobilized from the surface
using a pipette tip. Medium containing stimulating agents
was added to the gels. After 24 hours of incubation, the gel
area was measured using ImageJ software. The ratio of the
well area to the gel area was calculated.
Migration assay
LX-2 cells were seeded in 6-well plates. When cells

reached confluence, a horizontal scratch was made with the
tip of a 100-mL pipette. Afterward, the wells were washed
once with cell culture medium and stimulated with the
different agents for 24 hours. Images were acquired before
and after incubation with these agents to determine (ImageJ
software) the reduction of the initial cell-free area as marker
of cell migration activity.
Animal experiments
Liver fibrosis was induced using CCl4 (Sigma-Aldrich)

dissolved in corn oil (Sigma-Aldrich) as described previ-
ously.35 Male C57BL/6 p70S6Kþ/þ (Wt) vs p70S6K–/– mice
were bred from p70S6Kþ/- mice (purchased from RIKEN
[Tokyo, Japan]) and challenged 3 times weekly with intra-
peritoneal injections of CCl4. A first dose of 0.25-mL CCl4 per
kg body weight was administered when animals reached the
eighth week of age and was followed by injections of 0.5-mL
CCl4 per kg body weight for altogether 3 months.35 Animals
were kept on a 12-hour light/dark cycle, fed ad libitum, and
received human care in compliance to the standard local
and international regulations outlined in the Guide for
the Care and Use of Laboratory Animals. All experiments
were approved by the local authorities (Regierung von
Oberbayern). All experiments conforms to the ARRIVE
guidelines.
Figures
Figures were created using GraphPad Prism 7 (GraphPad

Software, San Diego, CA) or Adobe Illustrator CC 2019
(Adobe, San Jose, California).
Statistical analysis
Statistical calculations were performed by using SPSS 25

(IBM, Armonk, NY) or GraphPad Prism 7 using analysis of
variance, t test, Mann-Whitney U test, or Wilcoxon or
Kruskal-Wallis test as indicated in the presentation of the
specific experiments. When a relevant influence of an
experiment was observed, univariate analysis of variance
was performed and degrees of freedom, means of squares,
and F values were calculated. P values lower than .05 were
referred to as statistically significant. All data are presented
as mean ± SEM.
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