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Glioblastoma is an aggressive and inevitably recurrent primary intra-axial brain tumor with
a dismal prognosis. The current mainstay of treatment involves maximally safe surgical
resection followed by radiotherapy over a 6-week period with concomitant temozolomide
chemotherapy followed by temozolomide maintenance. This review provides a summary
of the epidemiological, clinical, histologic and genetic characteristics of newly diagnosed
disease as well as the current standard of care and potential future therapeutic prospects.
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INTRODUCTION

Glioblastoma, a World Health Organization grade IV astrocytoma, with an incidence in North
America of 5.0 per 100,000 population, representing 15 to 20% of all primary intracranial neoplasms,
in adults (1), is highly aggressive, with an unusually dismal prognosis (death typically results in the
first 15-16 months after diagnosis) (2), with a 5-year survival rate of 5%. These tumors arise from
astrocytes and oligodendrocytes. The majority of glioblastoma are found in the supratentorial brain
(frontal, temporal, parietal, and occipital lobes), with rare occurrence in the cerebellum, the brain stem
and the spinal cord (3). Glioblastomas may develop in de novo patients as a primary glioblastoma or
through progression from lower-grade astrocytomas in as secondary glioblastomas (4).

The incidence of glioblastoma is low compared with other cancers (5) such as lung, breast,
prostate and colon cancer, but it dwarfs these other tumor types in terms of “average years of life
lost” (20.1 years vs. 6.1 years for prostate cancer and 11.8 years for lung cancer) (6), often affecting
patients in the prime of their lives. From this perspective, glioblastomas represent a very important
problem in oncology, whose grim prognosis has changed little since the 1970s (7).

The surgical approach, if feasible, is the initial mainstay of treatment for patients with newly
diagnosed glioblastoma. However, glioblastoma is a highly diffusive, invasive and vascularized
tumor, and is not curable with surgical intervention. Therefore, concomitant and adjuvant
temozolomide (TMZ), combined with radiation therapy has become established as the standard
of care after surgery (8), with high dose steroids (dexamethasone) often prescribed to reduce
vasogenic edema. FDA approved treatments for newly diagnosed glioblastomas are limited and
include the Optune portable device, also known as Tumor Treating Fields (TTFs), which delivers an
electric field to the tumor (9).

Unfortunately, GBM recurrence is inevitable and virtually all patients will relapse, with the majority
of relapses occurring centrally within 2 cm of the original gadolinium-enhanced mass onMRI (10). This
accounts for its unfavorable prognosis, and, despite decades of investment and research, there is still an
unmet medical need for a more efficacious treatment (11). Extracranial metastasis are rare, occurring in
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less than 2% of patients. This is thought to be due, in part, to the
dura mater and the thickened basement membrane of blood vessels
that can prevent hematogenous and lymphatic spread, and also
because central nervous system (CNS) tumor cells lack extracellular
matrix protein required to invade surrounding connective tissue
(12). Quality of life in these patients is progressively and
significantly impacted due to the emergence of debilitating
symptoms arising from infiltrative tumor growth far into
functionally intact brain tissue that restricts and disrupts normal
day-to-day activities (13).

For all these reasons, the identification and integration of new
treatment options that enhance the cytotoxic effects of the
standard-of-care radiation/temozolomide regimen constitute an
urgent unmet medical need.
CLASSIFICATION AND HISTOLOGY

The WHO (World Health Organization) Classification of Tumors
of the Central Nervous System is the current international standard
for the nomenclature used for the classification of gliomas. It
designates gliomas according to level of histologic malignancy and
mitotic activity (14). Grades I and II gliomas are referred to as low-
grade due to their low proliferative potential, while grade III and IV
gliomas are high-grade because of their high proliferative rate and
aggressive phenotype. As the most aggressive, invasive and
undifferentiated type of tumor, glioblastoma is classified as
Grade IV.

Glioblastoma were previously classified into 4 subtypes: 1)
proneural, 2) neural, 3) classical, and 4) mesenchymal, with the
proneural subtype possibly conferring amore favorable prognosis in
younger patients. However, recent analysis of transcriptomes of
glioma have revealed 3 subtypes strongly enriched with mRNAs
associated with classical, proneural and mesenchymal subtypes, but
not with the neural subtype, suggesting that this subtype may have
arisen from contamination of the original samples with nontumor
cells (15).

Over time, molecular biomarkers have played an important role
in histological typing and diagnosis of glioblastomas (16), as well as
for predicting survival and response to therapy. The best-known
biomarker in this disease is the methylation status of the promoter
for MGMT (O6-methylguanine-DNA methyltransferase).
Epigenetic silencing of MGMT by methylation of the promoter is
a favorable prognostic indicator and is associated with increased
overall survival (OS) in patients treated with radiation therapy and
alkylator chemotherapy (e.g. TMZ) (17, 18). The median OS of
patients with MGMT-methylated tumors is 22-26 months
compared with non-MGMT-methylated tumors of 12-15 months,
respectively (17). Importantly, alteration in MGMT in MGMT-
deficient glioblastoma cells has been implicated in acquired TMZ
resistance in several ways, including modulation of DIP2A/MGMT
signaling by Fstl1 (19), IKBKE-induced upregulation of MGMT
(20) and regulation of MGMT expression by miRNAs resulting in
degradation of MGMT mRNA before translation (21).

Another clinically relevant biomarker is the mutation status
of IDH (isocitrate dehydrogenase)1 and IDH2, with
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approximately 10% of patients with glioblastoma (14)
expressing a mutation in either of these genes, which is an
early genetic event in gliomagenesis. Mutant IDH1 is a
metabolic marker of secondary glioblastoma because of its
ubiquitous expression in lower grade gliomas that eventually
progress to glioblastoma. Given the increasing importance of
molecular subtyping in glioblastoma (22), the WHO has
classified glioblastoma into glioblastoma, IDH-wildtype,
glioblastoma, IDH-mutant, and glioblastoma not otherwise
specified (NOS) (14). While the WHO classification system has
historically served as the primary source of updates on diagnostic
classes, grades and criteria, in an effort to more rapidly integrate
advances in understanding of brain tumor molecular
pathogenesis into practice, cIMPACT-NOW (the Consortium
to Inform Molecular and Practical Approaches to CNS Tumor
Taxonomy) was established.

Examples of recent cIMPACT-NOW activities include
recognition that the lack of an IDH mutation alone
is insufficient for designating a glioma as WHO Grade IV.
Therefore, the cIMPACT-NOW Update 3 provided diagnostic
criteria for “Diffuse astrocytic glioma, IDH-wildtype, with
molecular features of glioblastoma WHO Grade IV,” and
recommended that histologic grade II and III IDH-wildtype
diffuse astrocytic glioma that contain a high level of EGFR
amplification, the combination of whole chromosome 7 gain
and whole chromosome 10 loss, or TERT promoter mutations,
correspond to WHO grade IV and be referred to as diffuse
astrocytic glioma, IDH-wildtype, with molecular features of
glioblastoma, WHO grade IV (23). Furthermore, they also
concluded that subsets of IDH-wildtype diffuse astrocytic
glioma with specific molecular signatures have better
outcomes and should not be given high grade designation,
including those with MYB/MYBL or BRAF mutations (23).
cIMPACT-NOW update 1 clarified the use of the term
NOS (Not Otherwise Specified) and proposed the use of
NEC (Not Elsewhere Classified) (24). cIMPACT-Now Update
6 defined astrocytoma, IDH-mutant as diffusely infiltrative
astrocytic glioma with microvasculature proliferation
or necrosis with a CDKN2A/B homozygous deletion, connotating
grade IV (25).

The clinical significance of IDH in glioblastoma is related to
its function in the Krebs Cycle. IDH normally decarboxylates
isocitrate to a-ketoglutarate (a-KG) and produces NADPH,
which, in turn, reduces GSSG to glutathione (GSH) (22, 26).
Mutated IDH instead catalyzes the conversion of a-KG to a-
hydroxyglutarate (a-HG), a putative oncometabolite (27), at the
expense of NADPH production. While, IDH mutations
contribute to tumorigenesis, they also are associated with a
better prognosis, possibly as a result of decreased antioxidative
levels of NADPH, and by extension, GSH, which render the
tumor more radio- and chemosensitive (28). Of note, IDH
mutations are virtually absent in the elderly (29).

Besides IDH, secondary glioblastomas are characterized by
TP53, PDGF and ATRX mutations, as well as loss of
chromosome 19q (30), while in the majority of IDH-wildtype,
epidermal growth factor receptor (EGFR) overexpression,
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phosphate and tensin homolog (PTEN) mutations, and loss of
chromosome 10q are common (31).

Conventional histologic hallmarks of glioblastoma include
cellular polymorphism, nuclear atypia, a high mitotic index (14),
pseudopalisading necrosis (32) and microvascular hyperplasia or
neovascularization. Glioblastoma is a highly hypoxic and
prothrombotic (33) tumor, which promotes compensatory
neovascularization driven by the secretion of pro-angiogenic
factors, resulting in local vascular hyperplasia, stasis and
thromboembolic vascular occlusion that, in turn, augment the
hypoxia and accelerate progression. (Figure 1) Pseudopalisades,
a pathognomic feature of glioblastoma, are densely-packed rows
of cells that encircle hemorrhagic necrotic foci in which are
found a multitude of thrombosed vessels (34). This local
alignment and aggregation of cells is thought to represent a
coordinated mass migration event, away from a nutrient- and
oxygen-impoverished microenvironment (35). (Figure 2)

According to the Go-or-Grow hypothesis, cells can either
migrate or proliferate, but not do both, which accounts for the
relative quiescence of pseudopalisading cells (36). Those cells
that do not migrate undergo apoptosis, eventually leading to a
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zone of central necrosis. These repeated cycles of angiogenesis,
vascular collapse and cellular migration/infiltration contribute to
resistance, making treatment of these tumors difficult (37), as
tumor cells that have spread far and wide from the main tumor
in search of a more hospitable microenvironment around new
vasculature make the tumor deeply infiltrative. Interestingly,
hypoxia is only marginally present in low grade gliomas, where
the vasculature remains largely intact (38), which suggests that
low oxygenation created by the tumor itself maybe a driving
force responsible for progression and aggressiveness (39).
EPIDEMIOLOGY AND CAUSATIVE
FACTORS

Glioblastoma, which accounts for about 15% of all CNS cancers
(41), is an orphan disease, with less than 20,000 cases in the
United States. Nearly half of patients with a new diagnosis of
glioblastoma are over age 65, although glioblastoma can occur
at any age including childhood (42). Of note, survival markedly
FIGURE 1 | Hypoxia-neovascularization cycle in glioblastoma. The steps below are as follows: 1. Glioma cells consume oxygen provided by the functional
vasculature. 2. Endothelial injury, prothrombotic factors and increased mechanical pressure in regions of high glioma cell density induce vaso-occlusion and necrosis.
3. Perivascular glioma cells switch to a “go” phenotype based on presence of hypoxia. 4. Pseudopalisading glioma cells secrete pro-angiogenic factors. 5. Pro-angiogenic
factors stimulate the formation of aberrant, highly permeable neovasculature, which results in more hypoxia and accelerated progression. 6. Pseudopalisading cells migrate to a
new vasculature where the cycle begins anew.
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decreases with advancing age (41). The tumor is twice as
common in whites as in Africans and African-Americans,
with a lower incidence in Asians and Native Americans, and
slightly more males than females affected (43). No definitive
links with smoking, diet, cellular phones, environmental
exposures or electromagnetic fields have been identified (44).
In 5% of cases a family history is reported and rare syndromes,
such as Li-Fraumeni syndrome, neurofibromatosis I and II,
Turcot’s syndrome, Ollier disease and Maffucci syndrome have
been associated with elevated risk (45, 46). While ionizing
radiation is a well-established risk factor, only a minority of
presumed radiation-induced cranial tumors are glioblastomas
(47). One possible driver of gliomagenesis that has been
proposed is infection from CMV or EBV since both viruses
have been detected in glioma samples, but it is presently
unknown whether this is a causative or epiphenomenal
association (48, 49).
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CLINICAL PRESENTATION AND
DIAGNOSIS

The clinical presentation of glioblastoma varies depending on the
size and location of the tumor as well as the degree of
peritumoral edema (50). The most common general symptoms
are new-onset headache and seizure, although seizures are more
frequent in low grade glioma (51). Focal symptoms such as
neurological deficits, and cognitive and personality changes are
due to compression and infiltration of normal brain tissue (52).
The presence and degree of peritumoral edema correlates with
symptomatology. High dose steroids (10-20 mg IV
dexamethasone loading dose followed by dexamethasone 4-24
mg in divided doses) (53) are typically administered to reduce
tumor-associated vascular permeability and edema.

Gadolinium-enhancedmagnetic resonance imaging (MRI) is the
gold standard for glioblastoma diagnosis, due to the permeability of
immature tumor vessels, which leads to extravascular accumulation
of contrast agent with T1 shortening and signal enhancement on
T1-weighted images (54). However, true delineation of the tumor is
difficult because glioma cells invariably extend beyond the
Gadolinium-enhanced abnormality (55).

Characteristically, with MRI, glioblastomas appear as a
variegated or multiform contrast-enhancing mass(es), with thick,
irregular rinds of enhancement surrounding hypointense, necrotic
cores. (Figure 3) The appearance of necrosis, a hallmark of
glioblastoma, is related both to the presence of thrombosed
vessels and the rapid proliferative rate of the tumor cells, which
leads to an extreme mismatch between accelerated oxygen
consumption and the scarcity of blood supply (57). Surrounding
vasogenic edema with mass effect, hemorrhage, and distortion or
displacement of adjacent structures may also be visible (58).

Radiographic patterns of disease include: local (unifocal
disease), distant (second lesion noncontiguous with the
primary lesion), multifocal (>2 non-contiguous lesions and/or
cerebral spinal fluid dissemination) and diffuse (> 3 cm beyond
the primary site) (59).

Advanced neuroimaging techniques, including assessment of
perfusion, diffusion and spectroscopy, are very useful for
purposes of characterizing glioblastomas at the time of
diagnosis and for monitoring response to therapy and
recurrence post treatment (60–64). Magnetic resonance
spectroscopy (MRS) can be used to study metabolic changes in
brain tumors. For example, use of proton MRS for biochemical
profiling and measurement of phosphocholine, creatine and N-
acetylaspartate, as well as associated relevant concentration
ratios, have a role in the diagnosis of glioblastoma (63).
Clinical applications include use of 1H-MRS for the
differentiation of glioma recurrence from radiation necrosis
(65). This approach is not only applicable to Hydrogen, but
also to many other nuclei or isotopes (66). In diffusion-weighted
imaging, water molecule diffusion is characterized by an
apparent diffusion coefficient (ADC) (64). In glioblastoma,
ADC is useful for early characterization of tumor, as there is
an inverse correlation between ADC and grade (67), and may
also help to detect early recurrence, especially in non-enhancing
FIGURE 2 | Palisades and pseudopalisading cells. Palisades are defined as
a protective layer, similar to a fence or perimeter of wooden stakes or iron
railings. (top figure) In glioblastoma, pseudopalisades or “false palisades” are
dense migratory zones of cells in picket-fence or perimeter formation, which
surround necrotic tissue; hence the term, “pseudopalisading necrosis”. The
pervasive hypothesis is that pseudopalisading cells are “microenvironmental
migrants” that co-localize in search of better oxygenated conditions due to
the presence of vascular collapse and necrosis (40). (bottom figure)
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regions of the brain (68). Another imaging technology, diffusion
tensor imaging, generates a mathematical model of diffusion in
3-D (66), and can be useful for the detection of tumor infiltration
of adjacent normal appearing white matter (69). Perfusion
weighted imaging allows for imaging of neovascularization,
with assessment of blood flow, volume and leakage (70), and
has been useful for prognostication in glioblastoma (71),
assessment of treatment response, and differentiation of
recurrence/progression from stable disease (72). Lastly, a new
imaging approach, chemical exchange saturation transfer (64)
allows for detection of specific molecules present at very
low concentrations.
THERAPEUTIC MANAGEMENT

Treatment
Treatment of glioblastoma is quadripartite: 1) surgery 2)
adjuvant radiotherapy and TMZ 3) maintenance TMZ and 4)
alternating electric fields

Surgery
The bedrock of glioblastoma treatment is gross total resection or
subtotal resection to immediately relieve the tumor-associated
mass effect, delay recurrence, and obtain tissue for molecular
Frontiers in Oncology | www.frontiersin.org 5
testing (73). Complete resection is currently impossible due to
the diffuse infiltrative nature of the disease and the potential for
iatrogenic damage to intact brain tissue as a result, especially
when the tumor is located in or near the eloquent cortex, critical
areas whose removal permanently compromises sensory
processing, linguistic ability, and/or motor function (74). The
presence of residual disease is responsible for the inevitable
subsequent disease progression or recurrence, usually six
months after surgery (75).

Nevertheless, aggressive resection is warranted on the basis of
several studies, which have demonstrated that the smaller the
residual tumor burden, the longer the progression-free survival
(PFS) and OS, which makes the extent of resection a crucial
prognostic factor (76–78). However, despite the introduction of
several new surgical techniques and innovations (79), including
neuronavigation, fluorescence, and intraoperative imaging (MRI,
CT, ultrasound) to maximize visualization of tumor borders and
optimize the extent of resection, while minimizing damage to
adjacent normal brain, the prognosis and the quality of life for
glioblastoma patients remains poor (80).

Chemoradiation Therapy
After maximal surgical resection, the standard of care is post-
operative radiotherapy (81) to a field encompassing the primary
tumor with a 2-3 cm margin. Radiation is commonly given over
FIGURE 3 | Magnetic resonance imaging (MRI) appearance of glioblastoma: contrast enhancing rind of tumor surrounding a necrotic core (56).
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six to weeks with three-dimensional conformal beam or
intensity-modulated radiotherapy (RT) (2 Gy per daily fraction
(Monday to Friday) for a total dose of 60 Gy) with concomitant
TMZ chemotherapy at a dose of 75 mg per square meter of body-
surface area per day, 7 days per week followed by maintenance
TMZ at a dose of 150-200 mg per square meter for 5 days during
each 28-day cycle for up to 6 adjuvant chemotherapy cycles.
Because the addition of TMZ to surgery and radiotherapy for
newly diagnosed glioblastoma resulted in a clinically meaningful
and statistically significant survival benefit with minimal
additional toxicity, concomitant TMZ and radiotherapy
followed by 6 cycles of adjuvant TMZ was adopted as the new
standard of care for newly diagnosed glioblastoma (8). This
practice change was based on a Phase 3 EORTC 26981-22981/
NCIC CTG trial in patients with WHO performance status of 2
or more. In this study median PFS was 6.9 months in the TMZ
arm vs. 5.0 months with radiation therapy arm, and a median
survival of 14.6 months vs. 12.1 months, respectively. Of note, in
the United States, non-progressive patients have been treated
with TMZ for up to 12 cycles or more (82). Importantly, a recent
phase II trial of continuing TMZ beyond 6 adjuvant cycles was
associated with more toxicity, without any additional benefit in 6
month PFS (83).

The Stupp protocol (8), based on the EORTC-NCIC trial paper
discussed above, established the primacy of TMZ and RT to RT
alone. The analysis of this trial also correlated outcomes with
MGMT (O6-methylguanine-DNA methyltransferase) methylation
status. As an alkylating agent, temozolomidemethylates DNA at the
O6, N3, and N7 positions, which, if unrepaired, leads to DNA
strand breaks (84). MGMT is a DNA repair enzyme located on
chromosome 10q26 whose methylation is associated with loss of
MGMT expression (85) and, hence, enhanced sensitivity to TMZ as
a result of reduced DNA-repair activity (86). Conversely, an
unmethylated MGMT enzyme results in high activity of MGMT
and reduced activity of TMZ. Therefore, methylated MGMT is a
favorable prognostic factor (87). More recently, in an effort to
improve upon the standard of care regimen using TMZ, a phase 3
trial was performed comparing the combination of lomustine and
TMZ vs. standard TMZ in patients with newly diagnosed
glioblastoma with methylated MGMT promoter, with a median
survival of 31.4 m vs. 48.1m (88).

In elderly or poor performance patients, hypofractionated
radiotherapy (e.g., 40 Gy/15 Fractions) has emerged as a viable
alternative to standard radiation therapy (e.g., 60 Gy/30 Fractions)
on the basis of several studies, which collectively indicate that while
both confer a similar survival benefit, hypofractionated radiation
therapy is associated with less neurotoxicity and steroid
administration (89).

Given the potential role of hypoxia in the biology of
glioblastoma, there has been considerable interest in anti-
angiogenesis therapies, but concern that long term treatment with
agents such as bevacizumab might increase tumor hypoxia and
result in a more infiltrative phenotype (90). Two Phase 3 trials of
bevacizumab in the first line setting (91, 92), demonstrated
improvement of PFS without a corresponding improvement in
OS and, on this basis, bevacizumab is not administered in the first
Frontiers in Oncology | www.frontiersin.org 6
line therapy. Moreover, bevacizumab was associated with
pseudoresponse, a term which refers to a rapid regression of
enhancement due to vascular regression with a corresponding
increase of invasiveness due to induction of hypoxia (93).

A number of new combination regimens incorporating
immunotherapy have been conducted in the newly diagnosed
setting. Immunotherapy is a potentially promising strategy due to
the presence of a functional CNS lymphatic system and an altered
blood brain barrier, which facilitate immune cell trafficking in and
out of the CNS (94). Of note, glioblastoma is an “immune
cold tumor”, meaning that it is not very immunogenic, with a
very low mutational burden, and a highly immunosuppressive
microenvironment, characterized by a low level of T cell
infiltration (95). Nevertheless, several studies have shown that
neoadjuvant PD1 blockade can modulate the glioblastoma
microenvironment resulting in enhanced anti-tumor immune
responses, elevated expression of chemokine transcripts,
increased immune cell infiltration into tumors, and greater T
cell receptor clonal diversity (96–98). The question remains
whether or not these biological effects will translate into clinical
benefit. Recent and ongoing trials combining immunotherapy
with standard of care therapy are addressing this question.
Unfortunately, Phase 3 clinical trials with nivolumab in newly
diagnosed glioblastoma patients with unmethylated MGMT
promoter status (CheckMate-493; NCT02617589) combined
with radiation therapy (99), and in patients with methylated
MGMT promoter status (CheckMate-548; NCT02667587) (100)
combined with standard of care radiation therapy and TMZ (vs.
standard of care treatment) failed to demonstrate a significant
improvement in OS in CheckMate-498, and failed to meet the PFS
primary endpoint in CheckMate-548. However, CheckMate-548
will be continued to allow the other primary endpoint, OS, to
mature. Another immunotherapy combination trial, PERGOLA
(NCT03899857) is evaluating the efficacy and toxicity of adding
pembrolizumab to concurrent radiation therapy and TMZ in
newly diagnosed glioblastoma patients. One caveat with
immunotherapy in this setting is that the frequent use of high-
dose corticosteroids to attenuate cerebral edema may serve to
dampen anti-tumor immune responses.

Tumor Treating Fields
In October 2015, Optune®, a noninvasive portable device, which
delivers alternating electric fields (TTFs) to disrupt cell division
(101), was approved by the U.S. Food and Drug Administration
(FDA) as an adjunct to TMZ in first-line glioblastoma on the
basis of a Phase 3 trial called EF-14 in which the median OS and
PFS at interim analysis (n=315) was 19.6 months for TTFs/TMZ
vs. 16.6 months for TMZ alone (HR 0.75; log-rank p = 0.034) and
7.1 months for TTFs/TMZ vs. 4.0 months for TMZ alone(HR
0.6; log-rank p = 0.0014), respectively (9). In addition, an
increase in 5-year survival from 5% to 13% was observed
(102). Moreover, TTFs was safe with skin reactions from the
application of electrodes to the head as the main adverse event
(103). Nevertheless, use has been limited due to cost, patient
stigmatization/inconvenience and the novelty of the
mechanism (104).
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Recent and Anticipated Results From
Clinical Trials
Among some of the most eagerly anticipated results are those
from a Phase 3 trial with DCVax-L, an autologous dendritic cell
vaccine, with radiation therapy and TMZ. While final results are
pending, an interim analysis demonstrated a mean OS of 23.1
months, with 2 and 3 year survival of 46.2% and 25.4%,
respectively, with a higher OS in patients with methylated
MGMT of 34.7 months vs. 19.8 months. To date DCVax has
been safe and well tolerated with only 2.1% SAEs (105). Other
promising vaccine approaches include SurVaxM, a peptide
vaccine to survivin, with a single arm Phase II trial showing
benefit in terms of PFS and OS (106). A prospective randomized
trial is planned and expected to open to accrual in 2020.

There was also considerable interest in a Phase 3 trial using the
antibody-drug conjugate depatuxizumab mafodotin (ABT-414),
which binds activated EGFR, in combination with standard-of-
care treatment in patients with newly diagnosed, EGFR-amplified
glioblastoma. Unfortunately, an interim analysis failed to show an
OS benefit, and the study was stopped for futility (107). EGFR has
been thought of as an attractive target, due to EGFR amplification
and overexpression in approximately 50% of glioblastoma tumors
(108), even though, to date, trials with EGFR-pathway inhibitors
have been disappointing (109), likely due to poor BBB permeability
with subtherapeutic drug levels. Unfortunately, so far there is no
evidence to date of an OS benefit with the addition of anti-EGFR
treatments in first line or recurrent glioblastoma (110).

A large number of targeted agents are currently under
investigation in early clinical trials (111). An example is the use of
poly-(ADP-Ribose)-DNA Polymerase (PARP) inhibitors to
enhance the efficacy of standard of care chemoradiation. There is
considerable interest, in particular, in the use of veliparib. However,
preliminary results with veliparib in the VERTU trial, a randomized
Phase II trial in MGMT-unmethylated glioblastoma patients found
that the combination of veliparib with chemoradiation was well
tolerated, but did not improve outcomes (112). This combination is
now being evaluated in a Phase III trial in MGMT-methylated
Frontiers in Oncology | www.frontiersin.org 7
newly diagnosed glioblastoma patients with adjuvant
temozolomide, with results expected soon. Another active area of
investigation is the use of targeted agents in place of TMZ, While
trials replacing TMZ with targeted agents in unselected patients
without MGMT promoter hypermethylation have also shown no
OS benefit, an important new Phase 1/11a NCT Neuro Master
Match umbrella trial is ongoing in newly diagnosed glioblastoma
patients with IDH-wild type, without MGMT promoter
hypermethylation, with a variety of promising agents in
combination with standard radiation therapy (113). In addition,
there are a number of promising new therapies and new agents in
the pipeline (114, 115) in early preclinical/clinical development,
such as TORC ½ inhibitors (116), tumor targeting peptides (117),
immunotherapies (118, 119); combination therapies with anti-
CD47 (120), and approaches targeting cancer cell metabolism (121).
CONCLUSION

Despite decades of research, glioblastoma remains one of the
deadliest and most feared of all cancers. Treatment for it has
reached a relative impasse with the use of surgery, radiation,
TMZ, and TTFs, since the addition of other targeted agents such
as angiogenesis and EGFR inhibitors have failed to date to
improve survival, and there is no standard treatment for
recurrence, which is inevitable. New therapies are desperately
needed for first line treatment, with a number of promising
therapeutic agent currently in development.
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