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Abstract

Fermentable carbohydrates are gaining interest in the field of human nutrition because of

their benefits in obesity-related comorbidities. The aim of this study was to investigate the

influence of fermentable carbohydrates, such as pectin and inulin, in an atherogenic diet on

metabolic responses and plaque formation in coronary arteries using a Saddleback pig

model. Forty-eight healthy pigs aged five months were divided into four feeding groups (n =

10) and one baseline group (n = 8). Three feeding groups received an atherogenic diet (38%

crisps, 10% palm fat, and 2% sugar with or without supplementation of 5% pectin or inulin),

and one group received a conventional diet over 15 weeks. Feed intake, weight gain, body

condition score, and back fat thickness were monitored regularly. Blood and fecal samples

were collected monthly to assess the metabolites associated with high cardiovascular risk

and fat content, respectively. At the end of 15 weeks, the coronary arteries of the pigs were

analyzed for atherosclerotic plaque formation. Independent of supplementation, significant

changes were observed in lipid metabolism, such as an increase in triglycerides, bile acids,

and cholesterol in serum, in all groups fed atherogenic diets in comparison to the conven-

tional group. Serum metabolome analysis showed differentiation of the feeding groups by

diet (atherogenic versus conventional diet) but not by supplementation with pectin or inulin.

Cardiovascular lesions were found in all feeding groups and in the baseline group. Supple-

mentation of pectin or inulin in the atherogenic diet had no significant impact on cardiovascu-

lar lesion size. Saddleback pigs can develop naturally occurring plaques in coronary

arteries. Therefore, this pig model offers potential for further research on the effects of die-

tary intervention on obesity-related comorbidities, such as cardiovascular lesions, in

humans.
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Introduction

The increasing incidence of obesity has become a major global health concern as it is well

known that obesity is associated with an elevated risk of cardiovascular disease [1,2]. Various

animal models have been developed to investigate the link between obesity and cardiovascular

diseases [3–8]. Rodent and lagomorpha models can provide important insights into the influ-

ence of metabolism, such as fat metabolism, on the development of atherosclerotic lesions [9–

11]. However, rodent and lagomorpha models are limited because atherosclerotic plaques

must be artificially induced. In addition, induced plaques occur in arteries different from those

in humans [4,11].

In contrast, pig models have attracted interest due to the similarity of their cardiovascular

anatomy and physiology with that of humans [12–15]. Moreover, due to similarities in human

and pig digestive systems, pig models are advantageous for understanding potential dietary

implications in humans [16]. The dietary spectrum of pigs is more similar to that of humans

than those of rodents and lagomorpha [13]. Furthermore, the body size of pigs offers advan-

tages in terms of relevant blood and tissue sampling [16]. Previous pig models have used cho-

lesterol with or without the addition of cholic acid to induce the formation of atherosclerotic

plaques [17,18]. In Rapacz pigs, familial predisposition to atherosclerosis has been described

[19–21]. Furthermore, transgenic pig models have been also used [22]. These studies showed

that atherosclerotic plaques developed at similar predilection sites in pigs and humans [13,17–

22]. Interestingly, pigs can also spontaneously develop atherosclerotic lesions [23,24]. Using

spontaneously occurring lesions in pigs enables the feeding of a typical western-style diet with

high amounts of saturated fatty acids, sugar, and salt [25–27].

Recently, various strategies have been developed to counteract obesity-related cardiovascu-

lar risk factors. Several studies in humans have shown that fermentable carbohydrates such as

pectin and inulin have health benefits in obesity comorbidities [28,29]. In this context the

effects of fermentable carbohydrates have been also confirmed by the extensive meta-analysis

by Zhou et al. [30].

In the small intestine, pectin and inulin are not digested by endogenous enzymes. Instead,

these carbohydrates are available in the large intestine for fermentation by microbiota. The

resulting fermentation products are short-chain fatty acids (SCFAs) such as acetate and propi-

onate [31–33]. Consequently, pectin and inulin may lead to a shift in the composition of the

microbiota, such as an increase in bifidobacteria [34–39]. Furthermore, a number of positive

effects are known from SCFAs, such as immune and inflammation regulation [40]. Studies in

humans and pigs have reported a cholesterol-lowering effect of pectin and inulin supplementa-

tion [41–43]. Moreover, supplementing high-fat diets with inulin slowed body weight gain in

pigs [44]. In addition, inulin supplementation increased satiety by influencing glucagon-like

peptides, thereby reducing total energy intake in humans [45,46].

This study aimed to investigate whether fermentable carbohydrates such as pectin and inu-

lin can mitigate cardiovascular risk factors in pigs as a model for obese humans. We hypothe-

sized that SCFA modulation by pectin and inulin will lead to changes in lipid metabolism and

may reduce the spontaneous formation of atherosclerotic plaques in pigs fed a western-style

diet.

Materials and methods

Animals and housing

Forty-eight healthy Saddleback pigs owned by the Institute of Animal Nutrition, Nutrition

Diseases and Dietetics, Leipzig University, were included in this study. The animal sample
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included 21 female and 27 castrated male pigs from five litters with the same sire. The pigs were

aged five months and had a mean (± SD) body weight (BW) of 97.5 ± 9.36 kg. The median

[25th / 75th] percentiles of body condition score (BCS) were 3.13 [3.0 / 3.5] out of five, and the

mean (± SD) back fat thickness (BFT) was 20.3 ± 2.08 cm at the beginning (t0) of the study. Pigs

were housed in the same stable and separated in one pen per group according to the allotted

treatment. The ambient temperature was 16–18˚C, and the humidity was 60–75%. The pigs

were bedded with wood shavings. Water was provided ad libitum by using an automatic water-

ing system. Animals were adapted to the general experimental environment for at least three

weeks. During the adaptation period, pigs were fed the same conventional diet. The project was

approved by the Ethics Committee for Animal Rights Protection of the Leipzig District Govern-

ment (no. TVV 04/20) in accordance with German legislation for animal rights and welfare.

Supporting information on the project are provided in a supplementary file (S1 File).

Study design

The pigs were randomly divided into four feeding groups of ten each (atherogenic diet = AD,

atherogenic diet + 5% pectin = ADp, atherogenic diet + 5% inulin = ADi, and conventional

diet = CD) and one baseline group (BL; n = 8). After the adaptation period, BL pigs were

slaughtered to obtain baseline values of the coronary artery samples. The remaining groups

were fed treatment diets for 15 weeks. At the end of the feeding period, pigs were slaughtered

for sample collection (January 29 to February 8, 2021).

Feed management

During the feeding period of 15 weeks, the three groups (AD, ADp, and ADi) received an ath-

erogenic diet that contained high amounts of saturated fatty acids, sugar, and salt. For the

ADp group, 5% pectin (agroPECT-A 100/70, agro Food Solution GmbH, Werder, Germany)

was added to the atherogenic diet. In the ADi group, 5% inulin (Orafti1 IPS; Beneo GmbH,

Tienen, Belgium) was added according to literature [36,43,44,54]. The feed was provided ad

libitum. The nutrient composition of the different diets is shown in Table 1.

Health monitoring and morphometric measurements

The health status of each animal was examined in two-day intervals by clinical examination,

including evaluations of general behavior, feed and water intake, fecal quality, breathing rate,

and body temperature. In addition, blood tests (blood count and chemistry) were performed

Table 1. Composition of atherogenic and conventional experimental diets.

Atherogenic diet Conventional diet

Percentage Components Percentage Components

10

18

17.5

2.5

2

38

10

2

Wheat

Oats

Soy bean meal

Vitamins and Minerals1

Fiber supplement2

Crisps3

Palm fat4

Sugar

43.5

38

14

2.5

2

Wheat

Oats

Soy bean meal

Vitamins and Minerals1

Fiber supplement2

Data are presented as component percentages. 1Troumix1M1, Trouw Nutrition Deutschland GmbH, Burgheim, Germany; 2FaserSpezial 2.0, Trouw Nutrition

Deutschland GmbH; 3By-product of snack industry, feedstuff according to Regulation (EU) No. 575/2011; 4BEWI-SPRAY1 99L, BEWITAL agri GmbH & Co. KG,

Südlohn-Oeding, Germany.

https://doi.org/10.1371/journal.pone.0275214.t001
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before and after the feeding period. During the feeding period, the daily feed intake per group

was recorded. BW was measured weekly using a portable electronic scaling system (Minipond

21; Baumann Waagen und Maschinenbau GmbH, Thiersheim, Germany). BCS was evaluated

weekly using a scale from 0 to 5 [47,48]. BFT was obtained monthly by transcutaneous ultra-

sound measurements (Portable Ultrasonic Diagnostic System A6V, SonoScape Co., Shenzhen,

China) at six measurement points according to the ABC-6-method [49].

Blood sampling

Blood samples were collected at the beginning of the study (t0; October 8–13, 2020) via a single

puncture of the left or right jugular vein. Follow-up blood samples of the four feeding groups

were collected after one (t1; November 11, 2020), two (t2; December 17, 2020), and three

months (t3; January 21, 2021) of experimental diet feeding. For blood chemistry and metabo-

lome analyses, serum tubes (Monovette1 Z; Sarstedt AG & Co. KG, Nümbrecht, Germany)

containing a coagulation activator was used. Blood count tubes containing EDTA (Monov-

ette1 K3E (1.6 mg EDTA/mL); Sarstedt AG & Co. KG) were analyzed immediately after sam-

pling. Serum tubes were centrifuged after 30 min of clotting at room temperature, and the

serum was frozen in multiple aliquots of 1 mL at −80˚C until analysis.

Fecal sampling

Fecal samples were collected at the same time points (t0–t3) as the blood samples. Rectal feces

were collected from each animal. Pooled fecal samples were prepared for each feeding group

and analyzed directly.

Slaughtering and sampling of coronary arteries

The pigs were stunned using electrical stunning equipment (TGB 200; Hubert Haas, Neuler,

Germany). Blood was withdrawn immediately after electrical stunning by severing the bra-

chiocephalic trunk and jugular vein. Pigs were slaughtered in accordance with European and

German law [Council Regulation (EC) No 1099/2009 of 24 September 2009, Tierschutz-

Schlachtverordnung, § 4 Tierschutzgesetz]. After slaughter, the hearts were separated in toto

for subsequent sampling and washed with isotonic saline (NaCl, Carl Roth GmbH + Co. KG,

Karlsruhe, Germany). The left anterior descending branch of the left coronary artery (LAD)

was manually flushed with isotonic saline, and four 2 mm segments of each animal were

removed 3 mm after the bifurcation of the left main stem of the coronary artery, where the

artery got divided into the left circumflex and the LAD. The 1st and 3rd LAD segments per ani-

mal were shock-frozen in liquid nitrogen and stored at -80˚C until frozen sections were pre-

pared. The 2nd and 4th LAD segments were fixed in 10% neutral-buffered formalin (Sigma-

Aldrich, St. Louis, USA) for at least two days to prepare polyethylene glycol sections.

Analysis

Diets. All diets were analyzed for crude nutrient and fiber fractions. Dry matter (DM) was

determined after oven-drying (103˚C). Crude nutrient contents were assayed using the

Weende system [50]. Crude fiber (CF), ash free neutral detergent fiber (NDF), and ash free

acid detergent fiber (ADF) were analyzed using ANKOM A2201 (ANKOM Technology, Sal-

zwedel, Germany) according to Van Soest, Robertson, & Lewis (1991) [51]. The content of

nitrogen-free extracts (NFE) was calculated as follows:

NFE = DM – (CA + CP + CL + CF); (CA = crude ash, CP = crude protein, CL = crude

lipid). Starch was quantified polarimetrically (VDLUFA III, 7.2.1 Erg. 2012), and sugar content
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was determined gravimetrically (VDLUFA III, 7.1.3, 1976; LKS mbH, Lichtenwalde, Ger-

many). Sodium was analyzed using inductively coupled plasma optical emission spectrometry

(ICP-OES) according to DIN EN ISO 11885:2009–09 (LKS mbH). The analyzed values were

used to calculate the metabolizable energy (ME) content in DM [52]: ME (MJ/kg DM) =

0.021503 × CP (g/kg) + 0.032497 × CL (g/kg)– 0.021071 × CF (g/kg) + 0.016309 × starch (g/

kg) + 0.014701 × organic residue (g/kg); organic residue = organic fraction–(CP + CL + starch

+ CF). The nutrient composition of each diet is shown in Table 2.

Serum parameters of liver and lipid metabolism. Serum triglyceride (TG), bile acids

(BA), hepatic triglyceride lipase (LIPC), cholesterol (CHOL), alkaline phosphatase (ALP),

aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), lactate dehydrogenase

(LDH) and amylase (AMYL) levels were analyzed using an automated chemistry analyzer

(Roche Cobas C311, Roche Diagnostic GmbH, Mannheim, Germany). Blood counts were

evaluated in all pigs before and after the 15-week feeding period using an ADVIA 120 (Sie-

mens Healtheneers, Dreieich, Germany).
1H Nuclear magnetic resonance (NMR) spectroscopy of serum samples. Metabolomic

analysis was performed using NMR spectroscopy (Lifespin GmbH, Regensburg, Germany).

Serum samples were thawed at room temperature and inverted five-fold; 350 μL serum and

350 μL aqueous buffer (H2O p.A., 0.1 g/L NaN3, 0.067 mol/L Na2HPO4, 0.033 mol/L

NaH2PO4 (pH-value: 7.15 ± 0.05), 5% D2O, 6 mM pyrazine as an internal standard for quanti-

fication) were mixed. Then, 600 μL of the mixture was transferred to a 5 mm NMR tube (Bru-

ker Corporation, Billerica, USA). The samples were kept at 4˚C prior to measurement and

analyzed within 24 h.

NMR spectra of the serum were recorded at 310 K using an AVANCE NEO spectrometer

(Bruker Corporation) operating at a proton frequency of 600 MHz. Spectra were recorded

using a NOESY pulse sequence with water presaturation “noesygppr1d” in Bruker notation.

For each sample, 16 subsequent scans were collected with a 10 s relaxation delay, an acquisition

time of 2.75 s, 96 k data points, and a spectral width of 30 ppm.

The spectra were processed, and 102 blood serum metabolites were quantified using Life-

spin’s proprietary profiling software version 1.4 (Lifespin GmbH). The concentration of any

Table 2. Nutrients and calculated metabolizable energy levels of experimental diets.

Crude nutrients in DM (%) AD AD

+ 5 % pectin

AD

+ 5 % inulin

CD

CA 5.27 5.42 5.02 4.77

CL 27.2 25.7 25.2 3.40

CP 15.1 14.7 14.2 19.0

CF 7.22 7.94 7.34 7.13

NDF 11.7 10.7 10.7 21.7

ADF 5.60 5.56 5.45 9.46

NFE 39.2 39.9 41.9 55.4

Starch 34.4 34.3 32.4 45.5

Sugar 6.71 6.16 10.8 3.35

Sodium 0.34 0.35 0.34 0.14

ME

(MJ/kg DM) [51]

17.8 17.2 17.3 14.1

The data are presented as percentages of DM. DM, dry matter; AD, atherogenic diet; CD, conventional diet; CA,

crude ash; CL, crude lipid; CP, crude protein; CF, crude fiber; NDF, ash-free neutral detergent fiber; ADF, ash-free

acid detergent fiber; NFE, nitrogen-free extracts; ME, metabolizable energy.

https://doi.org/10.1371/journal.pone.0275214.t002

PLOS ONE Effects of fermentable carbohydrates on metabolic responses in pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0275214 October 7, 2022 5 / 18

https://doi.org/10.1371/journal.pone.0275214.t002
https://doi.org/10.1371/journal.pone.0275214


NMR-measured metabolite was obtained as a signal integral of non-overlapping resonances or

a cluster of partly overlapping resonances. The metabolite resonances were identified accord-

ing to chemical shift assignments using Lifespin´s proprietary substance reference database

(Lifespin GmbH).

Fat content of the pooled fecal samples. The amount of CL was determined in pooled

fecal samples from the four feeding groups (AD, ADp, ADi, and CD) and at each sampling

point (t0–t3). The analysis of CL in feces was performed analogously to the analysis of CL in

the diets.

Histological examination of the LAD. To prepare frozen artery sections, a freezing

microtome (CM 1859, Leica Biosystems Nussloch GmbH, Nussloch, Germany, -25˚C) was

used. The segments were aligned in embedding medium (Epredia™ Neg-50™ Frozen Section

Medium, Thermo Fisher Scientific, Waltham, USA) and fixed with a freezing spray (Shandon

Enviro-Tech Freezing Spray, ThermoFisher Scientific). Cross sections with a layer thickness of

7 μm were prepared.

To prepare PEG sections according to Mulisch and Welsch (2015) [53], the segments were

first dehydrated and then embedded in polyethylene glycol (PEG 1500, Merck KGaA, Darm-

stadt, Germany). After embedding, sections with a layer thickness of 4 μm were prepared with a

rotary microtome (HM 335 E, Microm International GmbH, Walldorf, Germany). The arterial

sections were stained by Movat‘s Pentachrome to quantify the size of the vascular lesions. Based

on the histological data, the ratio between the plaque and vessel area was calculated. Addition-

ally, LAD sections were stained with Oil red to visualize lipids and with Von Kossa staining to

detected vascular calcification. An immunohistochemical analysis was performed to identify

macrophages using a specific mouse anti pig macrophages antibody (MCA2317GA, BIO-RAD,

Hercules, USA). To detected smooth muscle cells a mouse anti human actin alpha (smooth

muscle) antibody (MCA5781GA, BIO-RAD), previously applied for porcine tissue was used.

Statistics

Data analysis was performed using commercial statistical software (SPSS Statistics 27.0, IBM,

New York, USA and STATISTICA 14.0, TIBCO, Palo Alto, USA). All data were checked for

normal distribution using the Shapiro–Wilk test and for variance homogeneity using the

Levene test. The datasets of BWs, BCS, BFT, CHOL and GGT were normally distributed and

homogeneous. Repeated measures ANOVAs were used for these parameters, and as a post hoc

test, the Tukey HSD test was applied. As the data sets were not normally distributed, the Krus-

kal–Wallis test with Bonferroni correction was performed (TG, BA, LIPC, AST, LDH, AMYL,

ALP and plaque size). The chi-square test was used to evaluate plaque frequency per group.

The level of significance was set at P< 0.05. Data are shown as medians and [25th / 75th] per-

centiles for TG, BA, CHOL, and plaque size or mean values ± standard deviation (mean ± SD)

for BW, BCS, and BFT.

Further statistical analyses were conducted using R (R version 4.0.2. 2021, R Core Team).

Principal component analysis (PCA) was performed on the serum NMR data to show that the

groups could be separated by metabolites. In addition, NMR data were analyzed using partial

least squares-discriminant analysis (PLS-DA). A default seven-fold cross-validation strategy

and a permutation test (200 permutations) were performed to avoid overfitting PLS-DA.

Results

Feed intake and morphometric measurements

The total feed intake was similar between the different feeding groups (3680 ± 360 kg). All pigs

showed significant increases in BW, BCS, and BFT. However, there were no significant group
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differences in BW gain (P = 0.82), BCS (P = 0.99), or BFT (P = 0.42) (Table 3). Original data of

BW, BCS and BFT are provided in a supplementary table (S1 Table).

Fecal fat content

The CL content in the DM of pooled fecal samples (Table 4) increased after diet change (t1) in

the groups fed atherogenic diets (AD, ADp, and ADi).

Serum parameters of liver and lipid metabolism

Serum parameters were significantly different between the feeding groups (Fig 1 and

Table 5A–5D). For example, significantly higher concentrations of TGs and BAs were deter-

mined at times t1 and t2 in pigs in the AD, ADp, and ADi groups than in the CD group. The

same significant group difference between the pigs fed the atherogenic diet and the pigs fed

the conventional diet was observed for LIPC at time t1. The concentration of CHOL was sig-

nificantly higher in the AD group than in the CD group at time t1. The other parameters

(ALP, AST, GGT, LDH and AMYL) without treatment related effects are provided in a supple-

mentary table (S2 Table). Original data of serum analysis are also provided in a supplementary

table (S3 Table).

Multivariate data analyses of serum 1H NMR data

First, unsupervised PCA was performed on the centered and scaled to unit variance serum

NMR data to determine the general structure of each dataset. The PCA score plots (Fig 2)

showed that the metabolite profiles of the AD groups (AD, ADp, and ADi) differed signifi-

cantly from the CD group and could be clearly distinguished at t1, t2, and t3 but not at t0.

Additionally, supervised PLS-DA with mean-centered and unit variance NMR data was

performed. A permutation test (200 permutations) was performed to confirm the reliability of

the models. PLS-DA score plots (Fig 3) revealed a separation among the four feeding groups

Table 3. Increases in BW, BCS, and BFT in the four feeding groups during the observation period.

Parameter in (%) Group AD Group ADp Group ADi Group CD

BW 61.2 ± 16.3 58.1 ± 12.0 62.1 ± 11.8 58.9 ± 8.60

BSC 32.1 ± 13.9 33.8 ± 6.30 33.6 ± 11.2 33.0 ± 12.3

BFT 110 ± 41.9 90.9 ± 45.3 109 ± 53.1 82.3 ± 44.7

Data are presented as mean ± SD. Significant differences between feeding groups (n = 10) were identified by P values� 0.05, using repeated measures ANOVA with

Tukey’s HSD. AD, group fed atherogenic diet; ADp, group fed atherogenic diet + pectin; ADi, group fed atherogenic diet + inulin; CD, group fed conventional diet; BW,

body weight; BCS, body condition score; BFT, back fat thickness. The observation period was 15 weeks.

https://doi.org/10.1371/journal.pone.0275214.t003

Table 4. Crude lipid content in pooled fecal samples of each dietary group (AD, ADp, ADi, CD) at each sampling point (t0–t3).

CL in DM (%) Groups t0

(start)

t1

(1 month)

t2

(2 months)

t3

(3 months)

AD 6.27 24.6 17.5 21.1

ADp 6.44 24.2 25.3 17.9

ADi 7.21 21.8 18.5 20.9

CD 5.98 4.10 4.81 4.14

Data are presented as percentages (in DM) for one pool of ten animals per group. CL, crude lipid; DM, dry matter; AD, group fed an atherogenic diet (n = 10); ADp,

group fed an atherogenic diet + pectin (n = 10); ADi, group fed an atherogenic diet + inulin (n = 10); CD, group fed a conventional diet (n = 10).

https://doi.org/10.1371/journal.pone.0275214.t004
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for t1 (Q2 = 0.29, R2X = 0.38, R2Y = 0.4, pQ2 = 0.005) and t2 (Q2 = 0.59, R2X = 0.48, R2Y = 0.81,

pQ2 = 0.005). At t3 (Q2 = 0.9, R2X = 0.41, R2Y = 0.97, pQ2 = 0.005), only ADs (including AD,

ADp and ADi) and CD could be distinguished. At time point t0, a visual separation is possible;

however, it can be classified as overfitting based on the performance indicators (Q2 = -0.02,

pQ2 = 0.09).
In total, 102 metabolites were identified in this study. In particular, metabolites related to

fat metabolism, including cholesterol, fatty acid residues, and saturated carbon chain elements,

were more abundant in the AD, ADp, and ADi groups than in the CD group.

Plaque formation

Moderate plaque formation in the LAD was found in the baseline group and in the four feed-

ing groups (Fig 4). All plaques detected in the LAD sections represent very early lesion stages

of atherosclerosis without calcification, high amounts of lipids, invasion of macrophages or

differences in stainable smooth muscle cells. In the ADp group, significantly more animals had

Fig 1. Triglycerides, bile acids, hepatic triglyceride lipase, and cholesterol concentrations in serum. Box plots show the concentration of TG, BA, LIPC and

CHOL at the time point before the feed change (t0) and time points 1–3 months after the feed changes (t1–t3) for all feeding groups (AD, ADp, ADi, CD). TG,

triglycerides; LIPC, hepatic triglyceride lipase; BA, bile acids; CHOL, cholesterol; AD, group fed atherogenic diet (n = 10); ADp, group fed atherogenic diet

+ pectin (n = 10); ADi, group fed atherogenic diet + inulin (n = 10); CD, group fed conventional diet (n = 10);˚�, outliers and extreme values.

https://doi.org/10.1371/journal.pone.0275214.g001
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plaques (10/10 animals affected) than in the AD group (5/10 animals affected, Table 6). Plaque

sizes did not differ significantly between the groups (P = 0.33, Kruskal-Wallis test with Bonfer-

roni correction). Additionally, no association was found between the plaque frequency per

group and plaque size. The smallest plaque was observed in the baseline group. Original data

of plaque formation are provided in a supplementary table (S4 Table).

Discussion

In our study, we developed a pig model under well-defined feeding and housing conditions as

an atherogenic dietary model for humans. Dietary modeling using pigs is advantageous

Table 5. a: Triglycerides concentrations in serum (mmol/L) of all groups at each sampling point (t0–t3). b: Bile

acids concentrations in serum (μmol/L) of all groups at each sampling point (t0–t3). c: Hepatic triglyceride lipase con-

centrations in serum (mmol/L) of all groups at each sampling point (t0–t3). d: Cholesterol concentrations in serum

(mmol/L) of all groups at each sampling point (t0–t3).

Groups t0 t1 t2 t3

BL 0.38

[0.28 / 0.49]

n/a n/a n/a

AD 0.34

[0.33 / 0.44]

0.73#, a

[0.62 / 0.82]

0.66#, a

[0.52 / 1.21]

0.40

[0.29 / 0.53]

ADp 0.39

[0.28 / 0.50]

0.76#, a

[0.62 / 0.95]

0.62#, ab

[0.38 / 0.71]

0.43

[0.27 / 0.60]

Adi 0.32

[0.30 / 0.41]

0.63#■, a

[0.44 / 0.82]

0.76■, a

[0.54 / 1.17]

0.43#

[0.26 / 0.63]

CD 0.30

[0.25 / 0.34]

0.29b

[0.25 / 0.30]

0.31b

[0.24 / 0.35]

0.29

[0.25 / 0.32]

Triglycerides concentrations are presented as medians and [25th / 75th] percentiles in mmol/L. #■Different symbols

indicate significant differences within a row (time-point differences in a group). abLowercase letters indicate

significant effects within a column (group differences at one timepoint). Significant differences are identified by P

values� 0.05 using Kruskal–Wallis test with Bonferroni correction. BL, baseline group (n = 8); AD, group fed

atherogenic diet (n = 10); ADp, group fed atherogenic diet + pectin (n = 10); ADi, group fed atherogenic diet

+ inulin (n = 10); CD, group fed conventional diet (n = 10); n/a, not available.

https://doi.org/10.1371/journal.pone.0275214.t005

Groups t0 t1 t2 t3

BL 5.25

[3.83 / 5.70]

n/a n/a n/a

AD 4.70

[3.68 / 6.40]

21.2#, a

[17.2 / 23.5]

15.8#, a

[11.0 / 27.9]

11.3#

[7.73 / 17.6]

ADp 4.85

[3.88 / 5.70]

17.4#, a

[14.0/ 21.2]

8.55#, ab

[7.08 / 15.3]

11.8#

[7.60 / 16.4]

ADi 5.95

[4.25 / 11.8]

14.7#, ab

[7.48 / 22.3]

13.0#, a

[11.7 / 15.0]

12.6#

[6.30 / 13.5]

CD 5.85

[5.00 / 8.30]

7.70b

[6.38 / 11.1]

6.55b

[4.38 / 10.5]

8.65

[6.25 / 11.3]

Bile acids concentrations are presented as medians and [25th / 75th] percentiles in μmol/L. #■Different symbols

indicate significant differences within a row (time-point differences in a group). abLowercase letters indicate

significant effects within a column (group differences at one timepoint). Significant differences are identified by P

values� 0.05 using Kruskal–Wallis test with Bonferroni correction. BL, baseline group (n = 8); AD, group fed

atherogenic diet (n = 10); ADp, group fed atherogenic diet + pectin (n = 10); ADi, group fed atherogenic diet

+ inulin (n = 10); CD, group fed conventional diet (n = 10); n/a, not available.

https://doi.org/10.1371/journal.pone.0275214.t006
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compared to that using other laboratory animals due to factors such as similarities in food

spectra, digestive systems, and the manifestation of coronary heart disease. The atherogenic

diet used in this study was comparable to a typical western-style human diet. Analyses of sev-

eral parameters relevant to evaluating cardiovascular and cardiometabolic health were per-

formed. We hypothesized that supplementation of an atherogenic diet with two different

fermentable carbohydrates, pectin and inulin, has beneficial effects on metabolism and plaque

formation.

As expected, feed intake was high in all feeding groups, and the amount of feed intake was

comparable between the groups. Significant increases in BW, BCS, and BFT were observed in

all the groups. However, despite differences in energy content between atherogenic diets

(17.2–17.8 MJ ME/kg DM) and the conventional diet (14.1 MJ ME/kg DM) increase in BW,

Groups t0 t1 t2 t3

BL 2.37

[2.18 / 2.58]

n/a n/a n/a

AD 2.47

[2.27 / 2.66]

2.47a

[2.33 / 2.53]

2.32

[2.10 / 2.49]

2.49a

[2.17 / 2.71]

ADp 2.24#

[2.04 / 2.31]

2.40, ab

[2.21 / 2.51]

2.43

[2.34 / 2.51]

2.14#, ab

[1.96 / 2.35]

ADi 2.17

[1.98 / 2.35]

2.24#, ab

[2.14 / 2.37]

2.35#

[2.21 / 2.52]

2.38#, a

[2.24 / 2.48]

CD 2.27

[2.09 / 2.36]

2.10#, b

[1.87 / 2.33]

2.14#

[1.92 / 2.29]

1.88#, b

[1.75 / 2.09]

Cholesterol concentrations are presented as medians and [25th / 75th] percentiles in mmol/L. #■Different symbols

indicate significant differences within a row (time-point differences in a group). abLowercase letters indicate

significant effects within a column (group differences at one timepoint). Significant differences are identified by P

values� 0.05 using repeated measures ANOVA with Tukey HSD. BL, baseline group (n = 8); AD, group fed

atherogenic diet (n = 10); ADp, group fed atherogenic diet + pectin (n = 10); ADi, group fed atherogenic diet

+ inulin (n = 10); CD, group fed conventional diet (n = 10); n/a, not available.

https://doi.org/10.1371/journal.pone.0275214.t008

Groups t0 t1 t2 t3

BL 5.00

[4.25 / 5.00]

n/a n/a n/a

AD 4.00

[4.00 / 4.00]

6.50#, a

[6.00 / 7.00]

6.50#, ab

[5.00 / 7.50]

5.00#

[5.00 / 5.25]

ADp 4.00

[4.00 / 4.00]

6.00#■, a

[6.00 / 7.25]

7.00■, a

[6.00 / 7.25]

5.00#

[5.00 / 5.00]

ADi 4.00

[4.00 / 4.00]

6.00#, a

[5.75 / 6.25]

6.00#, ab

[5.00 / 6.25]

4.50

[4.00 / 5.00]

CD 4.00

[4.00 / 4.25]

5.00#, b

[5.00 / 5.00]

6.00#, b

[5.00 / 6.00]

5.00#

[4.00 / 5.25]

Hepatic triglyceride lipase concentrations are presented as medians and [25th / 75th] percentiles in mmol/L.
#■Different symbols indicate significant differences within a row (time-point differences in a group). abLowercase

letters indicate significant effects within a column (group differences at one timepoint). Significant differences are

identified by P values� 0.05 using Kruskal–Wallis test with Bonferroni correction. BL, baseline group (n = 8); AD,

group fed atherogenic diet (n = 10); ADp, group fed atherogenic diet + pectin (n = 10); ADi, group fed atherogenic

diet + inulin (n = 10); CD, group fed conventional diet (n = 10); n/a, not available.

https://doi.org/10.1371/journal.pone.0275214.t007
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BCS and BFT did not significantly differ between the four feeding groups. One reason for this

difference may be the incomplete digestion of fat, as fecal fat content increased after diet

change (t1) in the groups fed the atherogenic diets.

Independent of supplementation with pectin and inulin, significant changes in blood

parameters were observed after one month of feeding with the atherogenic diet. PCA showed a

clear clustering into the groups fed the atherogenic diet (AD, ADp, Adi) and the convention-

ally fed group (CD) after the feed change (t1–t3). These effects were also observed in blood

parameters such as TG, BA, LIPC and CHOL.

PLS-DA did not allow a clear metabolome-based distinction between the four feeding

groups for t1 and t2 because of the small differences in circulating metabolites between the

AD, ADp, and ADi groups. Additionally, at time t3, no separation was possible in the PLS-DA

between the groups fed an atherogenic diet (AD, ADp, and ADi). These results were also sup-

ported by the blood levels of TG, BA, LIPC and CHOL at time t3, which did not show signifi-

cant differences between these groups. Therefore, NMR spectroscopy for metabolome analyses

has been demonstrated to be a powerful tool for expanding the density of data in veterinary

Fig 2. PCA analysis of the 1H NMR spectra of serum samples. Data present the time point before the feed change (t0) and time points 1–3 months after the

feed changes (t1–t3) for all feeding groups (AD, ADp, ADi, CD).

https://doi.org/10.1371/journal.pone.0275214.g002
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nutrition research and should be considered in future studies. However, our results might be

somewhat confounded by the fact that the pigs were kept on wood shavings per ethical consid-

erations, and the intake of wood shavings could not be excluded.

Interestingly, supplementation with pectin or inulin did not affect atherogenic diet-induced

changes in blood parameters such as cholesterol. These findings are in contrast to those

obtained by other authors, who reported beneficial effects of pectin on circulating cholesterol

in pigs and humans [42,43,54,55]. It is tempting to speculate that 5% of pectin used in the cur-

rent study was too low. Similar pectin levels have been used in other pig studies, showing cho-

lesterol-lowering effects [43,54]. It is possible that the high-energy intake of pigs in the present

study overlapped with the effects of pectin and inulin. Another factor could be the duration of

the study, which lasted 15 weeks. Other studies have been conducted over a shorter feeding

period (10–12 weeks), showing cholesterol-lowering effects for pectin [54] and lower BW gain

for inulin [44] in pigs.

Interestingly, all groups, including the baseline group, developed moderate lesions in the

coronary arteries. It can be speculated that the Saddleback pigs in our study may have a

Fig 3. PLS-DA analysis of 1H NMR spectra of serum samples. Data present the time point before the feed change (t0) and the time points 1–3 months after

feed changes (t1–t3) for all feeding groups (AD, ADp, ADi, CD).

https://doi.org/10.1371/journal.pone.0275214.g003
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Fig 4. Representative images of LAD cross-sections of all groups. Movat‘s Pentachrome staining (frozen). Scale bar 500 μm. a BL. b AD. c ADp. d ADi. e

CD.

https://doi.org/10.1371/journal.pone.0275214.g004
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predisposition to plaque development. A familial disposition for plaque formation is also

known for other pig breeds, such as Rapacz pigs [20,21]. However, the etiology in Rapacz pigs

is hypercholesterolemia. In contrast, in this study, the cholesterol levels of all pigs remained

within the normal range [56] despite significant increases in cholesterol after feeding the ath-

erogenic diet. Beside these findings, it must be emphasized that the plaques represent very

early lesion stages of atherosclerosis.

An unexpected finding was related to the higher lesion rate per group in the coronary arter-

ies of the ADp group with pectin supplementation (10/10 animals affected) compared with the

atherogenic diet without supplementation (5/10 animals affected). Interestingly, pectin supple-

mentation induced smaller lesions in the coronary arteries than the atherogenic diet alone or

the atherogenic diet supplemented with inulin. It remains unclear whether a higher lesion rate

or smaller lesions are more beneficial. In contrast, the effect of inulin on plaque formation in

coronary arteries was similar to that in pigs fed an atherogenic diet without fermentable carbo-

hydrates. The plaques in the coronary arteries of the pectin-supplemented group were similar

in size to those of the conventionally fed group. The baseline group, which was 15 weeks youn-

ger than the other groups, had the smallest plaques in their coronary arteries. Because the base-

line group was slaughtered earlier, the younger age is probably the reason for the smallest

plaques in this group. Therefore, age may be a critical factor in plaque formation in the coro-

nary arteries. This indicates that Saddleback pigs are capable of developing vascular lesions

within a comparatively young age. In the present study, the pigs were five months old at the

beginning of the feeding study. However, it is possible that earlier or longer administration or

higher doses of pectin and inulin would have exerted more beneficial effects on the vascular

system and metabolism. In particular, to investigate the progression of lesion development,

changes during a longer supplementation period should be the focus of future studies.

Conclusion

Our findings indicate that Saddleback pig models are very useful for studying the effects of

diets on atherosclerosis because these pigs develop spontaneous vascular lesions in their coro-

nary arteries in early life. In contrast to our hypothesis, pectin and inulin supplementation of

Table 6. Parameters of LAD plaque formation in all groups.

Group Percentage of pigs within a group showing vascular lesions in

LAD (%)

Plaque size in plaque-positive pigs

(μm2)

BL 63ab 35061

[22930 / 71273]

AD 50a 157062

[73901 / 198848]

ADp 100b 40207

[21287 / 181180]

ADi 70ab 128539

[34196 / 212237]

CD 70ab 46162

[14275 / 139486]

Data show the plaque frequency per group (%) and plaque size (μm2) of the plaque-positive pigs per group, expressed

as medians and [25th / 75th] percentiles.
abLowercase letters indicate significant effects within the columns. Significant differences between the groups (BL,

n = 8; AD, ADp, ADi, CD, n = 10) were identified using the chi-squared test (P� 0.05). LAD, left anterior

descending branch of the left coronary artery; BL, baseline group; AD, group fed atherogenic diet; ADp, group fed

atherogenic diet + pectin; ADi, group fed atherogenic diet + inulin; CD, group fed conventional diet.

https://doi.org/10.1371/journal.pone.0275214.t009
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an atherogenic diet did not show any major beneficial effects on atherosclerosis and cardiome-

tabolic risk factors under the applied conditions. In human medicine, in addition to supple-

mentation with pectin, inulin, or other fermentable carbohydrates, energy restriction is

indispensable.
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56. Kraft W, Dürr UM, Ballauf B. Klinische Labordiagnostik in der Tiermedizin. 6th ed. Stuttgart: Schat-

tauer; 2005.

PLOS ONE Effects of fermentable carbohydrates on metabolic responses in pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0275214 October 7, 2022 18 / 18

https://doi.org/10.1038/ejcn.2011.208
http://www.ncbi.nlm.nih.gov/pubmed/22190137
https://doi.org/10.1002/clc.4960110903
https://doi.org/10.1002/clc.4960110903
http://www.ncbi.nlm.nih.gov/pubmed/2852566
https://doi.org/10.1371/journal.pone.0059581
http://www.ncbi.nlm.nih.gov/pubmed/23573202
https://doi.org/10.1038/sj.ejcn.1602350
http://www.ncbi.nlm.nih.gov/pubmed/16340949
https://doi.org/10.1093/jn/137.11.2547S
https://doi.org/10.1093/jn/137.11.2547S
http://www.ncbi.nlm.nih.gov/pubmed/17951500
http://www2.ca.uky.edu/agcomm/pubs/asc/asc158/asc158.pdf;1-2
https://doi.org/10.4148/2378-5977.6706
https://epub.boku.ac.at/obvbokhs/content/titleinfo/1035657/full.pdf
https://epub.boku.ac.at/obvbokhs/content/titleinfo/1035657/full.pdf
https://doi.org/10.3168/jds.S0022-0302%2891%2978551-2
https://doi.org/10.3168/jds.S0022-0302%2891%2978551-2
http://www.ncbi.nlm.nih.gov/pubmed/1660498
https://doi.org/10.1093/jas/sky327
https://doi.org/10.1093/jas/sky327
http://www.ncbi.nlm.nih.gov/pubmed/30102377
https://doi.org/10.1016/j.foodhyd.2020.106369
https://doi.org/10.1371/journal.pone.0275214

