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Abstract
Bats	and	rodents	are	recognized	to	host	a	great	diversity	of	viruses	and	several	im‐
portant	viral	zoonoses,	but	how	this	viral	diversity	is	structured	and	how	viruses	are	
connected,	shared	and	distributed	among	host	networks	is	not	well	understood.	To	
address	this	gap	in	knowledge,	we	compared	the	associative	capacity	of	the	host–virus	
networks	in	rodents	and	bats	with	the	identification	of	those	viruses	with	zoonotic	
potential.	A	virus	database,	detected	by	molecular	methods,	was	constructed	in	the	
two	taxonomic	groups.	We	compiled	5,484	records:	825	in	rodents	and	4,659	in	bats.	
We	identified	a	total	of	173	and	166	viruses,	of	which	53	and	40	are	zoonotic	viruses,	
in	rodents	and	bats,	respectively.	Based	on	a	network	theory,	a	non‐directed	bipar‐
tite	host–virus	network	was	built	for	each	group.	Subsequently,	the	networks	were	
collapsed	to	represent	the	connections	among	hosts	and	viruses.	We	identified	both	
discrete	and	connected	communities.	We	observed	a	greater	degree	of	connectivity	
in	bat	viruses	and	more	discrete	communities	in	rodents.	The	Coronaviridae	recorded	
in	bats	have	the	highest	values	of	degree,	betweenness	and	closeness	centralities.	In	
rodents,	higher	degree	positions	were	distributed	homogeneously	between	viruses	
and	hosts.	At	least	in	our	database,	a	higher	proportion	of	rodent	viruses	were	zo‐
onotic.	Rodents	should	thus	not	be	underestimated	as	 important	 reservoirs	of	zo‐
onotic	disease.	We	found	that	viruses	were	more	frequently	shared	among	bats	than	
in	rodents.	Network	theory	can	reveal	some	macroecological	patterns	and	identify	
risks	that	were	previously	unrecognized.	For	example,	we	found	that	parvovirus	 in	
megabats	and	Gbagroube	virus	in	rodents	may	represent	a	zoonotic	risk	due	to	the	
proximity	to	humans	and	other	zoonotic	viruses.	We	propose	that	epidemiological	
surveillance	programmes	 should	 consider	 the	 connectivity	 of	 network	 actors	 as	 a	
measure	of	the	risks	of	dispersion	and	transmission.
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1  | INTRODUC TION

Bats	and	rodents	are	hosts	of	a	significant	proportion	of	zoonoses,	
higher	than	any	other	mammalian	order.	Over	200	viruses	belonging	
to	27	viral	families	have	been	isolated	or	detected	in	bats;	however,	
bat–human	transmission	has	only	been	observed	for	11	viruses,	be‐
longing	 to	 four	 different	 viral	 families:	 Rhabdoviridae,	 Filoviridae,	
Coronaviridae	 and	 Paramyxoviridae	 (Allocati	 et	 al.,	 2016).	 Some	
examples	of	those	viruses	are	as	follows:	SARS‐related	coronavirus,	
Sosuga	 rubulavirus,	 Ebola	 virus	 and	Marburg	 virus,	 rabies	 lyssavi‐
rus,	Nipah	henipavirus	and	Hendra	henipavirus	(Allocati	et	al.,	2016;	
Calisher,	Childs,	 Field,	Holmes,	&	Schountz,	2006;	Hayman,	2016;	
O'Shea	et	al.,	2014;	Plowright	et	al.,	2015).

Rodents	have	similar	zoonotic	potential	to	bats	and	are	associ‐
ated	with	a	 large	number	of	zoonotic	viruses,	such	as	Sin	Nombre	
virus,	 Puumala	 virus,	 Crimean‐Congo	 hemorrhagic	 fever	 virus,	
Kyasanur	forest	virus,	tick‐borne	encephalitis	virus,	Lassa	fever	virus	
and	Venezuelan	equine	encephalitis	virus,	among	others.	All	of	the	
aforementioned	bat‐	and	rodent‐associated	viruses	have	a	large	im‐
pact	on	public	health.	However,	it	is	important	to	take	into	count	that	
not	all	of	these	viruses	are	obligate	pathogens;	some	are	generally	
commensal.

Previous	studies	have	explored	viral	associations	on	relatively	re‐
stricted	spatial	or	phylogenetic	scales.	For	example,	Hayman	(2016)	
propose	maps	of	viral	distributions	according	to	the	distribution	of	
hosts'	families,	Streicker	et	al.	(2010)	explored	rabies	viruses	using	a	
phylogenetic	approach,	and	Cui,	Tachedjian,	and	Wang	(2015)	com‐
pared	retrovirus	associations	between	bats	and	rodents.	Anthony	et	
al.	(2017)	explored	coronavirus	networks	at	the	level	of	host	family,	
and	Bordes,	Caron,	Blasdell,	Garine‐Wichatitsky,	and	Morand	(2017)	
analyse	the	relationships	among	zoonotic	diseases	in	Southeast	Asia.	
Luis	et	al.	(2015)	analyse	viral	networks	between	rodents	and	bats	at	
global	scale	identifying	several	ecology	factors	to	explain	virus–host	
associations.	Recently,	works	explored	the	specificity	and	frequency	
of	sharing	DNA	and	RNA	viruses	among	Carnivores	and	bats	(Wells,	
Morand,	Wardeh,	&	Baylis,	2018)	and	the	importance	of	the	phylog‐
eny	 to	explain	 the	viral	 richness	associated	with	bats	 and	 rodents	
(Guy,	Thiagavel,	Mideo,	&	Ratcliffe,	2019).	However,	there	are	cur‐
rently	no	studies	at	a	global	level	that	incorporate	the	human	influ‐
ence	in	the	viral	networks.

While	some	authors	consider	bats	and	rodents	to	belong	to	a	sim‐
ilar	category	of	high	zoonotic	risk	potential	(Han,	Schmidt,	Bowden,	
&	Drake,	2015),	other	work	examines	the	differences	between	bats	
and	rodents	(Luis	et	al.,	2015).	Several	different	distinctive	features	
of	 bats	 have	 been	 hypothesized	 to	 explain	 their	 particularly	 high	
viral	richness,	such	as	their	ability	to	fly,	 long	migrations,	high	tro‐
phic	diversity	and	social	structure	(Brook	&	Dobson,	2015;	Moratelli	
&	 Calisher,	 2015).	However,	 currently	 the	 viral	 diversity	 and	 con‐
nectivity	among	different	 species	of	bats	are	not	well	understood	
(Moratelli	&	Calisher,	2015;	O'Shea	et	al.,	2014)	making	 it	difficult	
to	evaluate	the	implications	of	those	relationships	for	emerging	and	
re‐emerging	zoonoses.	While	 the	 literature	does	explain	why	bats	
harbour	a	particularly	high	number	of	viruses,	 it	does	not	describe	

viral	associations	at	the	level	of	host	species	or	describe	direct	re‐
lationships	 (only	 associations),	 does	 not	 address	 the	 whole	 viral	
species	complex	and	does	not	describe	the	statistics	or	metrics	that	
characterize	the	associations.

Bats	and	rodents	are	similar	in	that	both	are	highly	diverse,	are	
basal	taxa	within	the	mammal	phylogeny	and	have	similar	life	history	
characteristics	(Luis	et	al.,	2013).	Rodents,	like	bats,	have	been	rec‐
ognized	as	reservoirs	for	several	zoonotic	viruses	(Han	et	al.,	2015),	
such	as	virus	of	hantaviridae	(Schmaljohn	&	Hjelle,	1997)	and	arena‐
viridae	families	(Charrel	&	de	Lamballerie,	2010).	However,	there	are	
differences	 in	 rodent–virus	associations	 that	 impact	 their	zoonotic	
potential	compared	with	bats.

In	 disease	 ecology,	 analytical	 tools	 have	 been	 used	 to	 holis‐

tically	 explain	 the	 dynamics	 of	 infections	 and	 provide	 novel	 hy‐

pothesis	 to	explain	macroecological	patterns	 (Johnson,	Roode,	&	

Fenton,	2016).	One	of	the	theories	that	helps	to	predict	dynamic	

changes	in	host–pathogen	systems	is	graph	theory,	also	known	as	

network	 theory	 (Bordes	 et	 al.,	 2017;	 Johnson	 et	 al.,	 2016).	 This	

approach	can	be	used	to	gain	better	understanding	of	how	interac‐

tions	take	place	within	pathogen	communities,	how	hosts	are	con‐

nected	with	pathogens,	their	preferred	association	and	patterns	of	

pathogen	 transmission	 (Godfrey,	 2013;	White,	 Forester,	&	Craft,	

2017).
The	graphs,	better	known	as	networks,	focus	on	the	interactions	

between	 entities	 (Newman,	 2014),	 and	 they	 have	 the	 potential	 to	
infer	relationships	within	a	larger	framework	(Hossain	&	Feng,	2016;	
Luke	&	Stamatakis,	2012).	A	network	is	capable	of	emphasizing	the	
preferred	union	as	a	process	(Hartonen	&	Annila,	2011)	and	captur‐
ing	both	the	individual	elements	in	a	system	as	well	as	their	relevant	
interconnections	(Kolaczyk	&	Csardi,	2014).	In	disease	ecology,	this	
kind	of	analysis	could	be	applied	to	describe	viral	diversity	associ‐
ated	with	 different	 hosts	 and	detect	 hosts	 and	 viruses	 that	 share	
associations,	and	therefore	identify	groups	that	share	similar	charac‐
teristics	(White	et	al.,	2017).

In	network	theory,	centrality	and	dispersion	metrics	quantify	the	
importance	 of	 each	 component	 member	 (Martínez‐López,	 Perez,	
&	 Sánchez‐Vizcaíno,	 2009;	 Newman,	 2014;	 Opsahl,	 Agneessens,	
&	 Skvoretz,	 2010).	 The	 parameter	 “betweenness”	 can	 be	 used	 to	

Impacts
•	 The	 analysis	 of	 virus	 and	 host	 networks	 (rodents	 and	
bats)	allows	us	to	measure	the	potential	risk	of	zoonotic	
diseases.

•	 Measuring	network	connectivity	can	be	a	useful	tool	for	
identifying	hosts	and	viruses	of	potential	 importance	 in	
the	transmission	dynamic	of	zoonotic	diseases.

•	 Bats	presented	twice	as	many	connections	between	virus	
and	host	as	rodents,	indicating	a	higher	zoonotic	potential	
transmission.
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recognize	dispersing	hosts	and	key	viruses	in	the	evolution	or	viral	
transmission	(Opsahl	et	al.,	2010;	White	et	al.,	2017),	while	“close‐
ness”	can	indicate	hosts	and	viruses	that	may	have	little	direct	con‐
nectivity	but	are	surrounded	by	important	highly	connected	nodes	
(Opsahl	et	al.,	2010;	White	et	al.,	2017).	In	terms	of	disease	ecology,	
we	can	employ	these	and	other	parameters	to	explore	the	host–host,	
virus–host	and	virus–virus	 interactions	by	collapsing	 the	networks	
and	identifying	communities.	Network	analysis	thus	offers	the	op‐
portunity	to	recognize	highly	diverse	viruses	and	hosts	based	on	a	
high	degree	of	connectedness.	Bats	and	rodents	are	excellent	taxa	in	
which	to	implement	this	tool	because	they	harbour	a	large	number	of	
highly	adaptable	viruses	and	hosts	with	high	resistance.

Therefore,	in	this	study	we	aimed	to	compare	and	recognize	the	
differences	in	the	associative	capacity	of	the	host–virus	networks	in	
rodents	and	bats	worldwide,	as	well	as	to	identify	the	viruses	that	may	
shift	across	species,	including	humans,	suggesting	zoonotic	potential.

2  | METHODS

2.1 | Database

Data	were	 compiled	 from	 several	 sources.	 For	 bats,	 we	 retrieved	
data	from	the	DBatVir	database	(http://www.mgc.ac.cn/DBatV	ir/).	
For	 rodents,	 data	 on	 viruses	 in	 rodents	were	 searched	 in	Web	 of	
Science	(https	://login.webof	knowl	edge.com),	Elsevier	(https	://www.
elsev	ier.com/advan	ced‐search)	 and	 World	 Wide	 Science	 (https	://
world	wides	cience.org/).

In	each	of	the	aforementioned	databases,	we	searched	the	key‐
words:	rodent,	virus,	PCR,	wild	and	zoonotic.	We	then	constructed	
two	separate	 large	databases	of	viruses	 isolated	from	rodents	and	
bats.	When	the	taxonomic	classification	of	the	virus	was	not	clear,	
we	 searched	 the	 ICTV	 database	 (https	://talk.ictvo	nline.org/)	 to	
confirm.	In	the	case	of	Coronaviridae	and	Paramyxoviridae	families,	
we	 assigned	 as	 bat	 coronavirus	 and	 bat	 Paramyxovirus	 all	 unclas‐
sified	 coronaviruses	 and	 paramyxoviruses.	 Because	 bat	 astrovirus	
does	 not	 exist	 in	 the	 ICTV	 classification,	 we	 assigned	 all	 reports	
from	Astroviridae	family	as	astrovirus.	To	increase	the	certainty	of	

identification	of	the	viruses,	only	studies	that	used	molecular	meth‐
ods	 to	detect	viruses	were	 included	 in	 the	database	we	compiled.	
Subsequently,	each	of	the	viruses	identified	in	rodents	or	bats	was	
classified	as	direct	zoonotic	or	non‐zoonotic	pathogens	(Allocati	et	
al.,	2016;	Calisher	et	al.,	2006;	Han	et	al.,	2015).

2.2 | Overall networks analyses

An	 independent	 undirected	 bipartite	 network	 was	 built	 for	 each	
of	the	orders	of	Rodentia	and	Chiroptera.	That	 is	to	say,	each	net‐
work	 included	two	types	of	nodes—viruses	and	hosts.	Viral	nodes	
were	connected	to	host	nodes	when	the	virus	indicated	by	the	node	
has	 been	detected	 in	 the	 species	 indicated	by	 the	host	 node.	We	
included	a	human	host	node,	which	was	connected	to	viruses	that	
have	been	classified	as	zoonotic.	This	helped	us	to	group	and	iden‐
tify	 zoonotic	 viruses	 and	 viruses	 close	 to	 them	 (which	 could	 have	
zoonotic	potential).

2.3 | Collapsed networks

Then,	host‐to‐host	and	virus‐to‐virus	networks	were	constructed	
in	 order	 to	 explore	 these	networks	 in	 different	 dimensions.	 The	
“bipartite.projection”	function	in	the	igraph	package	implemented	
in r	software	version	3.4.2	(R	Core	Team,	2017)	was	used	to	col‐
lapse	 the	bipartite	network.	Basically,	 in	 the	 collapsed	networks	
a	host	was	connected	 to	another	host	when	they	shared	a	com‐
mon	virus	and	a	virus	to	a	virus	when	they	shared	a	common	host	
(Figure	1).

In	each	host–host	collapsed	network,	the	host	nodes	were	con‐
served	and	the	virus	nodes	were	transformed	using	the	weight	of	
corresponding	links	in	order	to	illustrate	the	relationships	among	
different	 hosts	 (Figure	 1a,b).	 In	 each	 virus–virus	 network	 (one	
for	 bats	 and	 one	 for	 rodents),	 the	 virus–virus	 relationship	 was	
highlighted	by	 collapsing	 the	host	nodes	 into	 the	weighted	 links	
(Figure	1c).

2.4 | Network measurements

We	measured	the	networks	on	two	levels:	individual	node	and	the	
entire	network.	At	 the	node	 level,	we	measured	different	 central‐
ity	values	 including:	degree	 (number	of	 links	 that	 a	node	has),	 be‐
tweenness	 (number	of	 times	a	node	 is	an	 intermediary	to	connect	
each	possible	pair	of	nodes)	and	closeness	(the	degrees	of	average	
separation	in	relation	to	other	nodes)	(Martínez‐López	et	al.,	2009;	
Newman,	2014).	At	the	network	level,	we	measured	density	and	di‐
ameter.	Network	density	is	the	proportion	of	links	that	are	actually	
observed	in	the	network	divided	by	those	that	could	possibly	occur	
and	network	diameter	is	the	length	of	the	longest	geodesic	distance	
(Newman,	2014).

Network	 level	measurements	were	useful	 for	 summarizing	 the	
“big	 picture”	 of	 the	 network	 and	 identify	 the	 key	 nodes	 that	 are	
closely	related	to	humans.	Network	level	measurements	were	gen‐
erated	using	the	algorithms	provided	in	the	packages	“igraph”	(Csárdi	

F I G U R E  1  Collapsed	networks.	(a)	Bipartite	network,	(b)	
Collapsed	host–host	network	and	(c)	Collapsed	virus–virus	network	
[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

http://www.mgc.ac.cn/DBatVir/
https://login.webofknowledge.com
https://www.elsevier.com/advanced-search
https://www.elsevier.com/advanced-search
https://worldwidescience.org/
https://worldwidescience.org/
https://talk.ictvonline.org/
www.wileyonlinelibrary.com
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&	Nepusz,	 2006)	 and	 “network”	 (Butts,	 2008;	 Table	 1),	 and	 plots	
were	produced	using	 the	packages	 “igraph”	and	“ggplot2”	 (Gómez‐
Rubio,	2017)	in	r	(R	Development	Core	Team,	2011).

2.5 | Community detection

Communities	were	detected	using	the	Maximization	of	Modularity	
method	 (Newman,	 2016),	 which	 recognize	 nodes	 with	 dense	 and	
weak	connections	between	groups.	We	used	the	function	“cluster_
edge_betweenness”	 (Girvan,	 Girvan,	 Newman,	 &	 Newman,	 2002;	
Newman	&	Girvan,	2003)	in	the	“igraph”	package	(Csárdi	&	Nepusz,	
2006)	 to	 identify	 the	nodes	with	dense	connections	with	humans,	
which	is	based	on	the	following	equation:

where m	denotes	the	total	number	of	links	in	the	network,	Aij	refers	to	
the	actual	number	of	links	between	nodes	i and node j, γ	is	a	parameter	
calculated	by	the	algorithm;	K,	degree	of	i; δgigj	is	a	randomized	number	
of	links	between	a	pair	of	nodes.	Community	detection	facilitates	the	
recognition	of	groups	of	hosts	that	share	viruses	and	viruses	that	share	
hosts,	and	which	therefore	may	continue	to	enter	in	contact	with	each	
other	because	they	share	similar	characteristics.

2.6 | Subnetwork

A	subnetwork	was	built	by	 choosing	communities	with	more	 than	
four	host–virus	pairs,	which	is	above	the	minimum	number	accepted	
in	 statistical	 normality	 samples	 (n	 =	 3)	 (Hammer,	 Harper,	 &	 Ryan,	
2001;	Royston,	1982).	These	subnetworks	were	 illustrated	 to	gain	
better	 community	 visualization	 and	 recognize	 the	 most	 relevant	
communities	for	the	detection	of	potentially	zoonotic	viruses.

2.7 | Subcommunities

From	the	subnetwork,	the	most	 important	communities	were	cho‐
sen	using	to	the	measures	of	the	members	(top	five	nodes)	and	the	
number	of	zoonotic	viruses	(80%)	as	selection	criteria.	Then,	a	socio‐
gram	representing	the	preferential	unions	and	the	complex	interac‐
tion	on	the	largest	communities	was	constructed	using	the	package	
“visnetwork”	(Almende,	Thieurmel,	&	Robert,	2016)	in	r.	This	choice	
of	subnetworks	helps	us	to	focus	and	observe	in	more	detail	the	in‐
teractions	within	these	important	communities.

3  | RESULTS

3.1 | Database

The	 rodent	 database	 contained	 825	 records	 including	 172	 rodent	
species	and	123	viruses,	of	which	53	are	zoonotic	viruses.	The	bat	
database	 contained	 4,659	 records,	 consisting	 of	 220	 bats	 species	
associated	with	166	viruses,	of	which	40	viruses	were	classified	as	
zoonotic.	Both	databases	are	detailed	in	Appendix	S1.

3.2 | Rodentia network

3.2.1 | Overall network analyses

The	bipartite	Rodentia	network	contained	269	nodes	(172	rodents,	
123	viruses,	human	node)	and	323	links	(Figure	2a).	The	diameter	of	
the	network	was	nine,	 and	 the	density	was	0.0044.	Mus musculus 
was	 the	host	with	 the	highest	degree	and	betweenness	values,	 at	
17	and	2,496,	respectively.	The	top	five	nodes	based	on	centrality	
values	are	shown	in	Table	2,	and	centrality	values	are	 in	Appendix	
S2.	78.06%	of	the	nodes	had	a	degree	value	of	1	or	2,	making	them	
uninformative	in	terms	of	epidemiological	information,	though	they	
may	be	involved	in	co‐evolutionary	processes.

3.2.2 | Community detection

Thirty‐nine	different	communities	were	detected.	Sixteen	communi‐
ties	included	only	two	members,	while	the	largest	group	consisted	
of	32	members.	This	particular	group	included	humans,	as	shown	in	
Appendix	S2.

3.2.3 | Subnetwork

Ten	communities	with	at	least	eight	members	were	selected	in	the	
subnetwork	(Figure	2b).	We	excluded	communities	1	and	9	despite	
fulfilling	the	inclusion	criteria	because	they	are	linear,	with	a	single	
virus	that	influences	the	whole.

(1)Q(�)=
1

2m

∑

ij

(

Aij−�
kikj

2m

)

�gigj,

TA B L E  1  Formulas	applied	to	calculate	networks	parameters

Measure Formula Reference

Degree	centrality	(D)
D=

n
∑

i=1

a(pi ,pk)
Freeman	(1978)

Betweenness	central‐
ity	(B)

B=
n
∑

i

n
∑

<j

gij (pk )

gij

Freeman	(1978)

Closeness	central‐
ity	(C)

C=
n−1

∑n

i=1
nd (pi ,pk )

Freeman	(1978)

Density	(ρ) �
2E

n(n−1)
Martínez‐López	et	
al.	(2009)

Diameter	(Ø) maxik d(i, k) West	Douglas	
(2001)

F I G U R E  2  Rodentia	networks.	(a)	Whole	Rodentia	network.	(b)	Subnetwork,	with	10	selected	communities,	renamed	with	a	consecutive	
number.	Lines	were	added	to	separate	the	communities.	(c)	Subcommunities	selected	to	show	the	host–species	interactions;	(d)	Sociogram	to	
facilitate	the	visualization	of	the	interactions	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.2.4 | Subcommunities

Communities	3,	4	and	5	satisfied	our	selection	criteria.	Community	
3	included	23	hosts	and	11	viruses.	This	community	was	considered	
a	dense	network	because	the	number	of	 links	greatly	exceeds	the	
number	of	nodes	 (34	nodes	and	55	 links).	 In	 this	 community,	only	
two	 viruses	 are	 non‐zoonotic:	 herpesvirus	 1	 and	 cytomegalovirus	
(CMV3).	 Figure	 2c3	 shows	 the	 gradient	 representing	 the	 number	
of	viruses	associated	with	each	host	within	that	community.	It	was	
noteworthy	that	Myodes glareolus	is	linked	with	the	highest	number	
of	 associated	 viruses	 (eight),	 and	 all	 of	which	 are	 zoonotic.	 In	 the	
fourth	community,	32	nodes	and	33	links	were	observed.	Within	this	
subcommunity,	 16	 rodent	 species	 were	 recognized	 along	with	 16	
viruses,	and	of	which,	only	one	virus	was	not	zoonotic,	Gbagroube	
virus,	proposed	as	Arenaviridae	virus	(Coulibaly‐N'Golo	et	al.,	2011).	
Figure	2c4	highlights	the	proximity	of	Peromyscus maniculatus	to	the	
human	 node,	 indicating	 a	 large	 number	 of	 shared	 viruses.	On	 the	
other	hand,	community	5	consisted	of	20	nodes	and	19	 links,	rep‐
resenting	six	rodent	species	and	14	viruses.	Only	two	viruses	in	this	
community	were	zoonotic:	lymphocytic	choriomeningitis	virus	(LCV)	
and	California	encephalitis	virus.	In	this	subcommunity,	most	viruses	
linked	only	with	M. musculus.

3.3 | Host–host Rodentia network

This	network	contained	147	nodes	of	rodent	species	with	502	links.	
The	 diameter	 of	 the	 network	was	 5,	 and	 the	 density	was	 0.0627	
(Figure	 3a).	 The	 top	 five	 nodes	 in	 terms	 of	 degree,	 betweenness	
and	closeness	are	shown	in	Table	2,	and	the	remaining	values	are	in	
Appendix	S3.	Thirty‐five	different	communities	were	detected,	and	
the	largest	of	which	contained	43	members,	followed	by	a	group	of	
21	members	(Appendix	S3).

3.4 | Virus–virus Rodentia network

In	virus–virus	network,	there	were	122	nodes	and	1,661	links.	The	
diameter	and	density	were	4	and	0.3494,	 respectively	 (Figure	3b).	

The	five	viruses	with	the	highest	centrality	values	are	all	zoonoses	
(Table	3).	Fifty‐three	different	communities	were	detected,	the	larg‐
est	of	which	contained	52	members,	and	the	second	largest	had	only	
12	members.	Centrality	values	and	community	detection	are	given	
in	Appendix	S3.

3.5 | Chiroptera network

3.5.1 | Overall networks analyses

A	total	of	387	nodes	(220	bat	species,	166	viruses,	human	node)	and	
736	links	were	contained	in	the	bipartite	bat	network.	The	network	
diameter	 was	 10,	 and	 the	 density	 was	 0.0049	 (Figure	 4a).	 Three	
zoonotic	 viruses	had	 the	highest	degree	 and	betweenness	 values;	
these	were	bat	coronavirus,	 rabies	 lyssavirus	and	bat	paramyxovi‐
rus	 (Table	4).	65.71%	of	 the	nodes	had	degrees	of	1	or	2,	 so	 they	
do	not	provide	much	 information	to	the	network	but	 they	may	be	
involved	in	co‐evolutionary	processes.	All	centrality	values	are	given	
in	Appendix	S2.

3.5.2 | Community detection

Twenty‐nine	 different	 communities	 were	 detected;	 four	 of	 those	
had	 only	 two	members,	 and	 the	 largest	 community	 contained	 38	
members	(Appendix	S2).

TA B L E  2  Rodent	network.	The	top	five	nodes	with	the	highest	
centrality	values

Node

Centrality values

Degree Betweenness Closeness

Homo sapiens 53 18,475.0 6.4	×	10−5

Mus musculus 17 2,496.5 6.3	×	10−5

Andes	virus 13 2003.5 6.3	×	10−5

Rattus norvegicus 13 1,362.6 6.3	×	10−5

Cowpox	virus 11 1869.2 6.3	×	10−5

F I G U R E  3  Collapsed	networks	(a)	
host–host	rodentia	network;	(b)	virus–
virus	rodentia	network	[Colour	figure	can	
be	viewed	at	wileyonlinelibrary.com]
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3.5.3 | Subnetwork

Eleven	communities	contained	eight	or	more	members	(Figure	4b).	
Communities	 1,	 3	 and	 4	were	 linear	 and	 possessed	 simple	 edges,	
with	a	virus	that	influenced	the	whole	community.	Community	7	was	
a	 homogeneous	 community	 with	 rich	 ecological	 interactions,	 but	
which	was	not	highly	related	to	zoonotic	viruses.	The	last	commu‐
nity	was	associated	with	humans	had	the	highest	number	of	zoonotic	
viruses	involved	(Figure	4c,d,	details	below).

3.5.4 | Subcommunities

A	low	number	of	zoonotic	viruses	were	found	in	homogeneous	bat	
network	 communities.	 We	 focused	 only	 on	 the	 community	 that	
included	the	human	node.	In	Figure	4a,	three	red	lines	represent‐
ing	 the	 three	 highly	 connected	 viruses	 in	 the	 network	 followed	
by	a	homogeneous	community	and	later	in	green	the	human	node	
connections.

The	community	that	included	humans	(Figure	4c,d)	has	13	host	
nodes	 (including	 human)	 and	 23	 virus	 nodes	 with	 45	 links.	 Fruit	
bat	parvovirus	was	the	only	non‐zoonotic	virus	in	that	community.	
Miniopterus,	Mormopterus	and	Saccolaimus	were	the	only	bat	gen‐
era	that	directly	shared	viruses	with	humans.

3.5.5 | Host–host Chiroptera network

The	host–host	Chiroptera	network	contained	221	nodes	and	6,949	
links.	The	diameter	and	density	of	the	network	were	5	and	0.2911,	
respectively	(Figure	5a).	The	five	nodes	with	the	highest	centrality	
values	are	shown	in	Table	5,	and	detailed	results	are	in	Appendix	S4.	
Sixty‐seven	different	communities	were	detected;	the	largest	had	69	
members.	The	second	largest	community	consisted	of	56	members	
including	humans	(Appendix	S4).

3.5.6 | Virus–virus Chiroptera network

The	 virus–virus	 network	 contained	 164	 nodes	 and	 2,132	 links.	
The	 diameter	 of	 the	 network	was	 4,	 and	 the	 density	 was	 0.1655	
(Figure	5b).	The	three	highest	centrality	viruses	were	coronaviruses	
(Bat	coronavirus,	alphacoronavirus	and	betacoronavirus),	and	all	of	
which	are	zoonotic	(Appendix	S4).	Ninety‐seven	communities	were	
detected,	 the	 largest	of	which	contained	35	viruses,	and	all	of	 the	
zoonotic	(Appendix	S4).

4  | DISCUSSION

Bats	are	well‐known	as	excellent	reservoirs	for	zoonotic	viruses	that	
usually	result	in	high	public	health	impact	(Gay	et	al.,	2014;	Luis	et	al.,	
2013,	2015;	Plowright	et	al.,	2015).	Nevertheless,	 in	our	database,	
53	of	123	(43%)	rodent	viruses	are	zoonotic,	nearly	twice	the	pro‐
portion	of	bat	viruses,	40	of	166	(24%).	Rodents	should	thus	not	be	
overlooked	as	potential	hosts	of	zoonotic	viruses.	However,	bats	are	
more	linked	to	more	cosmopolitan	viruses	with	broad	distributions	
of	their	hosts.

In	the	bipartite	network	of	bats,	the	main	actors	(top	values	of	
degree,	 betweenness	 and	 closeness)	 are	 all	 viruses,	 including	 bat	
coronavirus,	 rabies	 lyssavirus,	 bat	 paramyxovirus	 and	 astrovirus	
(Table	4).	In	the	rodent	bipartite	network,	in	contrast,	the	main	ac‐
tors	 are	 two	 host	 species	 (M. musculus and Rattus norvegicus)	 and	
two	viruses	(Andes	virus	and	Cowpox	virus)	(Table	2).	Hence,	the	bat	
viruses	have	a	higher	degree	of	connectivity	with	a	large	number	of	
bat	hosts.

The	ratio	of	nodes	to	edges	in	the	bat–virus	network	was	1:1.9	
and	 in	 rodents	was	1:1.2.	 In	other	words,	each	bat	 species	on	av‐
erage	interacts	with	nearly	two	viruses	and	vice	versa,	while	in	ro‐
dents,	on	average	there	is	a	near	one‐to‐one	host–virus	interaction,	
leading	to	the	rodent	network	having	more	divisions.	This	is	similar	

Network Node

Centrality values

Degree Betweenness Closeness

Host–host Homo sapiens 105 4,932.8 2.1	×	10−4

Rattus rattus 35 443.7 2.1	×	10−4

Rattus norvegicus 30 293.6 2.1	×	10−4

Myodes glareolus 26 111.8 2.1	×	10−4

Apodemus sylvaticus 21 75.3 2.1	×	10−4

Virus–virus Venezuelan	equine	encepha‐
litis	Virus

76 516.6 3.0	×	10−4

Encephalomyocarditis	virus 70 181.2 3.0	×	10−4

Severe	Fever	With	thrombo‐
cytopenia	syndrome

69 203.1 3.0	×	10−4

Eastern	equine	encephalitis	
virus

68 202.8 3.0	×	10−4

Lymphocytic	choriomeningitis	
virus

65 171.5 3.0	×	10−4

TA B L E  3  Rodent	collapsed	network.	
Top	five	nodes	with	the	highest	centrality	
values
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to	results	found	by	Luis	et	al.	(2015)	when	building	viral	association	
networks	 in	Rodentia	 and	Chiroptera,	who	 then	used	 the	 central‐
ity	metrics	as	a	 response	variable	 in	a	generalized	 linear	model	 to	
determine	 the	 phylogenetic,	 functional	 and	 ecological	 character‐
istics	 that	 are	 responsible	 for	 this	 high	 connectivity	 in	 bats.	 This	
pattern	of	higher	host	diversity	among	bat	viruses	 than	rodent	vi‐
ruses	 has	 been	observed	 in	 viral	metacommunities	 using	 analyses	
at	 different	 spatial	 scales	 (Nieto‐Rabiela,	 Suzán,	 Wiratsudakul,	 &	
Rico‐Chávez,	 2018),	 and	 it	 has	 been	 suggested	 that	 this	 is	 due	 to	
their	higher	dispersal	ability	compared	with	rodents	(Wang,	Walker,	
&	Poon,	2011).	However,	since	studies	on	viruses	detected	in	others	
mammals	have	not	yet	been	carried	out	at	a	similarly	large	scale,	it	is	
not	clear	whether	bats'	level	of	host–virus	connectivity	is	atypically	
high	among	mammals;	we	can	only	conclude	that	it	is	higher	than	in	
rodents.

In	collapsed	host–host	networks	 in	both	bats	and	 rodents,	 the	
human	 node	 is	 closely	 linked	with	 the	 species	 that	 host	 zoonotic	
viruses.	 The	 largest	 community	 including	 the	 human	 node	 is	 sur‐
rounded	by	three	to	four	smaller	groups	in	both	networks.	We	can	

F I G U R E  4  Chiroptera	networks	
(a)	Chiroptera	host–virus	network,	(b)	
Subnetwork,	with	11	communities	
selected.	Lines	were	added	to	separate	
the	different	communities	to	observe	
their	composition	and	detect	the	relevant	
communities;	(c)	Human	subcommunity	
selected	to	show	the	host–species	
interactions;	(d)	Sociogram	to	facilitate	the	
visualization	of	the	interactions	[Colour	
figure	can	be	viewed	at	wileyonlinelibrary.
com]

TA B L E  4  Top	five	nodes	of	Chiroptera	network	with	the	highest	
centrality	network

Node

Centrality values

Degree Betweenness Closeness

Bat	coronavirus 80 26,930.5 2.8	×	10−4

Rabies 56 15,539.7 2.6	×	10−4

Bat	paramyxovirus 55 13,920.7 2.7	×	10−4

Homo sapiens 39 13,233.5 2.7	×	10−4

Astrovirus 31 4,857.4 2.6	×	10−4

www.wileyonlinelibrary.com
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highlight	that	in	the	largest	community	where	the	human	is	embed‐
ded,	 the	bats	and	 rodent	hosts	have	a	high	adaptability,	wide	dis‐
tribution	 and	 low	phylogenetic	 distinction.	Also,	 the	 closest	 hosts	
to	 the	 human	 node	 are	 the	main	 reservoirs	 of	 viral	 diseases	with	
worldwide	distribution	like	hantaviridae	viruses,	rabies‐related	virus	
and	dengue	virus	(Tables	3	and	5).	However,	the	clusters	in	the	bat	
network	are	four	times	denser	compared	with	rodents;	this	makes	
it	 easier	 to	 continue	 sharing	 the	 viruses.	 In	 addition,	 they	 can	 act	
as	virus	mixers,	allowing	the	viruses	to	acquire	characteristics	that	
allow	them	to	infect	other	host	species,	including	humans.	In	addi‐
tion,	 the	human	node	 is	more	closely	 connected	 to	bats.	 It	 shows	
that	viruses	are	shared	to	a	greater	degree	among	bats	as	discussed	
earlier	 (Figures	3a	and	5a).	One	plausible	explanation	 is	 that	many	
species	of	bats	live	in	high‐density	populations,	with	many	individu‐
als	in	close	proximity	to	each	other,	such	as	in	caves	and	roosts	sites.	
Indeed,	there	are	always	a	larger	number	of	bat	species	than	rodent	
species	in	a	given	area	(Kerth,	Perony,	&	Schweitzer,	2011).

The	difference	in	connectivity	between	the	bat	and	rodent	host–
virus	networks	has	 implications	 for	 the	zoonotic	potential	of	each	
taxon.	High	connectivity	facilitates	viral	transmission	within	and	be‐
tween	species,	and	so,	bats	are	expected	to	have	higher	zoonotic	po‐
tential	than	rodents.	For	example,	the	nectarivorous	bat	Glossophaga 

soricina	 had	 the	highest	 closeness	value	 in	 the	host–host	network	
despite	the	fact	that	only	three	viruses	have	been	isolated	in	this	spe‐
cies:	bat	coronavirus,	bat	paramyxovirus	and	rabies	lyssavirus.	This	is	
because	these	three	viruses	have	a	high	viral	diversity	and	when	the	
network	is	collapsed	G. soricina	connects	directly	with	155	hosts;	it	
is	the	central	node,	even	more	central	than	humans.	This	suggests	
that	 this	species	 is	prone	to	harbour	several	viruses.	However,	we	
most	considered	the	biological	characteristic	of	the	host	that	could	
prevent	an	efficient	transmission	to	the	human.	In	both	the	bat	and	
rodent	 virus–virus	 networks,	 there	 are	 some	 large	 groups	 that	 in‐
clude	all	of	 the	zoonotic	viruses.	The	grouping	of	zoonotic	viruses	
suggests	a	high	capacity	for	mutation	and	adaptability	to	different	
hosts.	For	that	reason,	the	viruses	are	shared	among	different	hosts	
and	thus	intricate	communities	are	presented	(Woolhouse,	2001).	In	
bats,	these	clusters	are	disordered	and	close	together	resulting	in	a	
broad	viral	exchange	among	bats.	 In	contrast,	a	closer	relationship	
was	observed	in	rodent	viral–viral	network	indicating	smaller	groups	
around	zoonotic	viruses.	It	is	difficult	though	to	compare	our	virus–
virus	network	with	other	works,	since	most	studies	focus	on	hosts.	
Moreover,	we	faced	a	lack	of	knowledge	on	the	organization	of	the	
viral	communities,	assembly	rules,	co‐occurrences	or	even	cross‐an‐
tigenicity.	 These	 issues	 directly	 affect	 our	 network	 architectures.	

F I G U R E  5  Collapsed	networks	(a)	
host–host	rodentia	network;	(b)	virus–
virus	rodentia	network	[Colour	figure	can	
be	viewed	at	wileyonlinelibrary.com]

Network Node

Centrality values

Degree Betweenness Closeness

Host–host Homo sapiens 181 1556.6 8.2	×	10−4

Myotis daubentonii 174 767.5 8.2	×	10−4

Glossophaga soricina 155 610.8 8.3	×	10−4

Rhinolophus 
ferrumequinum

146 484.6 8.0	×	10−4

Desmodus rotundus 138 873.4 8.	2	×	10−4

Virus–virus Bat	coronavirus 138 2,402.0 1.3	×	10−3

Bat	paramyxovirus 110 917.9 1.2	×	10−3

European	bat	lyssavirus 90 376.8 1.2	×	10−3

Betacoronavirus 85 581.9 1.2	×	10−3

Alphacoronavirus 77 358.7 1.2	×	10−3

TA B L E  5  Collapsed	Chiroptera	
network.	Top	five	nodes	with	the	highest	
centrality	values

www.wileyonlinelibrary.com


664  |     NIETO‐RABIELA ET AL.

For	 that	 reason,	deeper	comprehension	 is	 required	 to	unravel	 this	
entanglement.

One	 of	 the	 objectives	 covered	 in	 this	 work	 was	 to	 recognize	
non‐zoonotic	viruses	that	may	be	strongly	connected	with	humans	
and	 therefore	 have	 zoonotic	 potential.	 The	 bat–virus	 community	
that	contained	humans	was	composed	of	bats	distributed	in	Africa	
and	Australia	may	be	explained	by	high	rates	of	human‐bat	contact	
(Allocati	et	al.,	2016;	Rupprecht,	2009).

One	non‐zoonotic	virus	that	was	included	in	the	bat–virus	com‐
munity	that	included	humans	is	fruit	bat	parvovirus.	The	parvoviri‐
dae	family	were	transmitted	from	bats	to	other	mammals	by	a	viral	
ancestor	suggesting	their	zoonotic	capacity,	and	groups	of	genes	in	
their	genome	denote	this	potential	(Canuti	et	al.,	2011).	Even	though	
the	virus	currently	infects	only	bats	(Canuti	et	al.,	2011),	it	is	firmly	
connected	with	the	human	node	in	our	network	by	Pteropus polio‐
cephalus,	a	species	endemic	to	Eastern	Australia	(Lunney,	Richards,	
&	Dickman,	2008).	Future	studies	are	recommended	to	elucidate	its	
potential	for	zoonosis.

Andes	 viruses	 (rodents),	 cowpox	 (rodents)	 and	 rabies	 lyssavi‐
rus	 (bats)	were	defined	as	main	actors	 (high	values	of	degree,	be‐
tweenness	 and	 closeness)	 in	 the	 bipartite	 networks.	 However,	
their	 importance	disappeared	when	 the	network	was	collapsed	 to	
virus–virus	 interactions,	 likely	 because	 their	 geographical	 restric‐
tion	may	 limit	 their	 viral	 connectivity.	 Andes	 virus	 is	 only	 distrib‐
uted	 in	 South	 America	 (Martinez	 et	 al.,	 2005),	 cowpox	 in	 Europe	
(Vorou,	Papavassiliou,	&	Pierroutsakos,	2008)	and	rabies	lyssavirus	
in	 America	 (Moratelli	 &	 Calisher,	 2015).	 Therefore,	 these	 viruses	
were	less	important	in	the	virus–virus	networks	compared	with	the	
worldwide	 distributed	 ones,	 so	 subsequent	 at	 geographical	 scales	
are	important.

Coronaviruses	 in	bats	 stood	out	 throughout	our	 study	 in	both	
bipartite	and	collapsed	networks	in	terms	of	connectivity,	with	high	
values	of	degree,	betweenness	and	closeness.	In	this	case,	the	three	
most	prominent	coronaviruses	are	bat	coronavirus,	alphacoronavi‐
rus	 and	 betacoronavirus.	 Also,	 each	 virus	 is	 a	 protagonist	 in	 their	
own	community.	These	are	RNA	viruses	with	high	mutation	 rates,	
and	the	viruses	possess	great	plasticity	allowing	them	to	horizontally	
transfer	accessory	genes	which	facilitate	new	host	and	niche	estab‐
lishment	(de	Groot	et	al.,	2011;	Guy	et	al.,	2019).

In	 the	 rodent	 community	 selected,	 community	3	has	members	
with	 predominantly	 European	 distribution.	 Further,	 two	 non‐zoo‐
notic	viruses	are	included	among	the	nine	zoonotic	viruses,	but	we	
do	not	think	they	are	likely	to	have	zoonotic	potential	because	they	
do	not	have	direct	contact	with	the	human	node.	Therefore,	in	this	
community	we	do	not	find	viruses	with	zoonotic	potential.

In	the	rodent	community	5,	M. musculus	has	high	values	of	con‐
nectivity	 but	 in	 the	 sociogram	 (Figure	 2d),	 it	 is	 evident	 that	 the	
connectivity	is	with	non‐zoonotic	viruses.	This	host	species	thus	is	
likely	 less	 important	 in	public	health	terms,	but	highly	relevant	for	
disease	ecology.	In	addition,	two	zoonotic	viruses	are	included	in	the	
community	5,	and	while	 they	can	 transfer	 their	 zoonotic	potential	
to	other	non‐zoonotic	viruses	using	M. musculus	as	a	virus	mixer,	we	
consider	this	unlikely	because	the	proportion	of	zoonotic	viruses	is	

low,	 adding	 the	 specificity	 of	 rodents'	 viruses	 and	 the	 associative	
characteristics	founding	in	the	rodents.	Thus,	the	one‐to‐one	virus–
host	species	relationship	suggested	by	the	node‐to‐edge	ratio	sug‐
gests	that	spillover	is	unlikely,	though	not	impossible.

In	the	human–rodent	community,	Gbagroube	virus	is	noteworthy	
because	 it	 is	 the	only	non‐zoonotic	virus	 found	 in	 the	community.	
However,	 the	genetics	of	Gbagroube	virus	 is	similar	 to	Lassa	virus	
which	is	deadly	in	humans	(Coulibaly‐N'Golo	et	al.,	2011).	Gbagroube	
virus	could	potentially	adapt	to	infect	humans	because	it	is	geneti‐
cally	 similar	 to	 Lassa	 virus	 (Coulibaly‐N'Golo	 et	 al.,	 2011)	 and	 has	
strong	 connections	with	 other	 zoonotic	 viruses	 and	with	 humans.	
Gbagroube	 virus	 should	 be	 closely	monitored	 along	with	 its	 host,	
Mus setulosus,	found	in	Central	Africa	(Granjon,	2016).

In	our	 study,	 the	human	 is	 the	most	 relevant	and	 largest	node	
connected	in	both	groups.	The	relevance	of	the	human	in	the	net‐
work	 is	 explained	 by	 several	 factors.	 First,	 humans'	 enormous	
population	and	globalization	push	human	populations	to	nearly	ev‐
erywhere	on	earth	and	greatly	increases	the	probability	of	contact	
with	 innumerable	 organisms,	 resulting	 in	 the	 emergence	 of	 zoo‐
notic	 diseases	 (Kock,	 2014).	 Secondly,	 because	 zoonotic	 diseases	
have	 clear	 social	 implications,	 once	 detected	 in	 one	 species,	 they	
are	much	more	likely	to	be	tested	for,	and	thus	detected,	in	others	
(Oliver‐Morales	&	Abarca	García,	2016).	It	is	therefore	possible	that	
the	high	 apparent	 importance	of	humans	 in	 the	networks	 is	more	
due	to	the	over‐representation	of	zoonotic	viruses	in	the	literature	
than	to	humans	actually	being	particularly	highly.

In	 the	 database,	 we	 do	 not	 have	 Ebola	 virus	 reports	 because	
in	 the	 database	 the	 DBATVIR	 database	 did	 not	 identify	 the	 host	
species	from	which	the	virus	was	isolated.	Similarly,	we	found	that	
78.06%	of	rodent	nodes	and	65.71%	of	bats	nodes	were	poorly	con‐
nected	 (1–2	degree).	Surely,	bats	have	associations	that	we	do	not	
recognize.	In	addition,	there	are	associations	that	could	occur	but	do	
not,	but	these	cannot	be	identified	because	cases	in	which	viruses	
were	tested	for	and	not	detected	are	not	often	reported.	We	there‐
fore	think	it	is	important	to	report	negative	samples	and	the	number	
of	animals	tested	in	meticulous	reports.

A	 future	 study	may	 complement	 and	 compare	 our	 study	with	
models	where	the	influence	of	humans	is	omitted.	We	must	take	into	
account	that	the	human	node	influences	the	network	structure,	and	
the	ecological	relationships	must	be	analysed	without	this	influence.	
Surely,	laxer	networks	will	be	observed	when	the	connective	force	
of	 humans	 is	 removed.	 However,	 our	 study	 does	 need	 to	 include	
both	to	identify	potentially	zoonotic	viruses.

It	is	pertinent	that,	in	future	investigations,	different	character‐
istics	of	the	viruses	must	be	considered	simultaneously	and	not	only	
by	 their	 connectivity	 in	 the	network	 such	as	gene	 sequence,	 type	
of	 transmission	and	virulence.	 In	 the	present	study,	we	focus	only	
on	viral	host	capability,	not	on	the	symbionts	and	their	associative	
nature.	Spatial	analysis	may	help	to	further	explain	how	our	findings	
apply	among	different	regions	of	the	world.

Graph	theory,	beyond	allowing	the	visualization	of	complex	 in‐
teractions,	allows	the	quantification	of	many	aspects	of	connectivity	
and	structure.
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Rodents	 should	 be	 taken	 into	 account	 as	 important	 reservoirs	
for	zoonotic	viruses,	since	in	our	database,	a	greater	proportion	of	
the	total	viruses	reported	were	zoonotic	viruses	in	rodents	than	in	
bats.	 Fruit	 bat	 parvovirus	 in	 bats	 and	Gbagroube	 virus	 in	 rodents	
should	 be	 monitored	 to	 elucidate	 their	 zoonotic	 potential.	 In	 the	
present	study,	we	only	assessed	their	network	proximity	to	humans	
and	other	zoonotic	viruses,	and	molecular	genetic	approaches	may	
help	to	confirm	our	results.	Counting	the	number	of	zoonotic	sym‐
bionts	 associated	with	 each	 order	 is	 not	 a	 conclusive	 estimate	 of	
their	zoonotic	potential.	Our	findings	reveal	that	viruses	were	more	
frequently	 shared	 among	bats	 than	 rodents.	 For	 that	 reason,	 bats	
have	more	zoonotic	potential	that	the	rodents.	However,	potential	
emerging	zoonotic	diseases	may	arise	from	both	taxonomic	groups.
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