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Abstract: The cell wall plays an important role in responses to various stresses. The cellulose synthase-
like gene (Csl) family has been reported to be involved in the biosynthesis of the hemicellulose
backbone. However, little information is available on their involvement in plant tolerance to low-
temperature (LT) stress. In this study, a total of 42 Csls were identified in Musa acuminata and clustered
into six subfamilies (CslA, CslC, CslD, CslE, CslG, and CslH) according to phylogenetic relationships.
The genomic features of MaCsl genes were characterized to identify gene structures, conserved motifs
and the distribution among chromosomes. A phylogenetic tree was constructed to show the diversity
in these genes. Different changes in hemicellulose content between chilling-tolerant and chilling-
sensitive banana cultivars under LT were observed, suggesting that certain types of hemicellulose
are involved in LT stress tolerance in banana. Thus, the expression patterns of MaCsl genes in both
cultivars after LT treatment were investigated by RNA sequencing (RNA-Seq) technique followed
by quantitative real-time PCR (qPCR) validation. The results indicated that MaCslA4/12, MaCslD4
and MaCslE2 are promising candidates determining the chilling tolerance of banana. Our results
provide the first genome-wide characterization of the MaCsls in banana, and open the door for further
functional studies.

Keywords: banana (Musa spp.); cellulose synthase-like genes; genome-wide identification; hemicel-
lulose; low temperature stress

1. Introduction

The plant cell wall consists of polysaccharides (cellulose, hemicellulose and pectin),
proteins and other compounds. It plays critical roles in the maintenance of cell integrity, and
the regulation of many developmental processes in plants [1–6]. The cell wall represents
not only a mechanical barrier, but also a signaling component during plant responses to
various biotic [7,8] and abiotic stresses [9,10].

Hemicelluloses are a diverse group of complex, non-cellulosic polysaccharides, which
constitute approximately one-third of the plant cell wall. The backbones of hemicellulosic
polysaccharides in plants are made of the cellulose synthase-like (Csl), which are members
of a much larger superfamily of genes referred to as glycosyltransferase 2 [11,12]. Early
studies of cellulose synthase (CesA) homologs in model plant organisms established that
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there are nine Csl families: CslA, CslB, CslC, CslD, CslE, CslF, CslG, CslH and CslJ [11,13,14].
Recent research in other flowering plants has identified a new CslM family [15].

It has been reported that CslAs are involved in the biosynthesis of mannan and
glucomannan backbones [5,16–19], while CslCs are related to the synthesis of xyloglucan
backbone [20–22]. CslD genes may participate in either cellulose or mannan synthesis in
tip-growing cells [23–27], as well as xylan and homogalacturonan [28]. CslF, CslH and
CslJ subfamilies are responsible for the synthesis of (1,3; 1,4)-β-glucan, also known as
mixed-linkage glucan (MLG) synthases [29–33]. However, the functions of CslB/E/G/M
remain poorly characterized [34].

Plant Csl genes play substantial roles in developmental processes, such as root hair
formation [6], the control of organ size [4], tiller number [3] and the maintenance of
adherent mucilage structure [1,2,5]. Csl genes were also reported to be involved in plant
resistance/tolerance to biotic or abiotic stresses, such as salt [35,36], boron (B) [37,38] or
heavy metal [36,39] stress, as well as pathogen infection [32,40,41]. The responses of Csl
genes or hemicellulose components to low temperatures (LTs) have been reported in many
plant species, including banana [42–46]. Recently, some hemicellulose metabolism-related
genes were proven to play important roles in plant tolerance to LT stress [47,48]. However,
the role of Csl genes in plant tolerance to LT stress has not been reported.

A detailed characterization of the plant Csl genes will be helpful for better understand-
ing their functional and biochemical properties. To date, the whole Csl gene repertoire
has been cataloged in rice (Oryza sativa) [13], poplar (Populus trichocarpa) [49,50], moss
(Physcomitrella patens) [51], maize (Zea mays) [52,53], barley (Hordeum vulgare) [54], pine
(Pinus taed) [55], tomato (Solanum lycopersicum) [56], pineapple (Ananas comosus) [57], bread
wheat (Triticum aestivum L.) [58] and white pears (Pyrus bretschneideri) [59]. However, these
genes have not been extensively studied in banana (Musa spp.), one of the most important
fruit and food crops in the tropical and subtropical regions [60,61].

To screen potential Csl candidates that determine the chilling tolerance of banana, we
provide a genome-wide characterization of Csls in banana (Musa acuminata). Moreover,
changes in the hemicellulose contents in chilling-tolerant (CT) and chilling-sensitive (CS)
banana cultivars after exposure to LT stress were investigated, and the expression of 42
MaCsl members was examined by RNA sequencing (RNA-Seq) techniques followed by
validation with quantitative real-time PCR (qPCR) in the present study. These results
will significantly facilitate studies focused on the functions of MaCsls in plant growth and
development, as well as tolerance/resistance to biotic and abiotic stresses. Furthermore,
we present the potential MaCsls candidates determining banana chilling tolerance, which
might be used for the development of new banana genotypes tolerant to chilling conditions.

2. Results
2.1. The Response of Hemicellulose in Banana to LT Stress

The CS cultivar ‘Baxijiao’ (BX) exhibited an eight-times higher content of hemicellulose
compared to the CT cultivar ‘Dongguandajiao’ (DJ) in the control condition (25 ◦C; Figure 1).
However, the hemicellulose content dramatically increased in the CT cultivar grown at
16 ◦C, followed by a significant decrease with the further decline in temperature, but it still
maintained significantly high levels. Contrary, the hemicellulose content in the CS cultivar
continuously decreased with the drop in temperature. The hemicellulose content in the CS
cultivar was significantly higher than that in the CT plants grown at 10 ◦C and 7 ◦C.
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Figure 1. Changes in the hemicellulose content of banana (Musa spp.) under low temperature stress.
Hemicellulose content is expressed as a percentage per gram of fresh leaves. The data represent an
average of three replicates ± SE. Values followed by the same letter are not significantly different
using a Duncan’s multiple range test at p < 0.05 after angular transformation of the data for each
cultivar. Values marked with a star were considered significant at p < 0.05, while values marked with
two stars were considered significant at p < 0.01 when evaluated using Student’s t-test. BX ‘Baxijiao’,
chilling-sensitive (CS); DJ ‘Dongguandajiao’, chilling-tolerant (CT).

2.2. MaCsl and Their Molecular Structural Features
2.2.1. Phylogenetic Analysis of the MaCsls

In this study, we constructed a multi-species phylogenetic tree of Arabidopsis (Ara-
bidopsis thaliana, model species for dicots), rice (monocots), and banana (monocots) Csl
genes based on full-length protein sequences using MEGA software. MaCsl subfamilies
clustered together with similar Csl subfamilies from Arabidopsis and rice, indicating a
shared evolutionary history (Figure 2). The most abundant MaCsl subfamilies are CslA and
CslC, with 13 and 12 members, respectively. Remarkably, the CslA family is abundant also
in Arabidopsis (9 genes) and rice (11 genes). The MaCslD and MaCslE subfamilies contain
9 and 3 genes, respectively. The CslG subfamily, previously reported to be specific to dicots,
harbors four Csl members in monocotyledonous banana. Only one CslH member was iden-
tified in Musa acuminata, while the rice genome possesses three CslHs. In contrast to rice,
which contains eight CslFs, this subfamily is missing in banana (as well as Arabidopsis).
Both banana and rice do not have the CslB subfamily, the specific subfamily for dicots.
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Figure 2. Phylogenetic tree of Csl proteins in banana (Musa acuminata), rice (Oryza sativa), and
Arabidopsis (Arabidopsis thaliana). Totals 42 Csl proteins in banana, 36 in rice, and 30 in Arabidopsis
were analyzed using Clustal W. Neighbor-joining trees were constructed using MEGA7.0. The
bootstrap value was 1000 replicates.

2.2.2. Identification of Csl Genes in Musa acuminata

In total, we have identified 42 candidate Csl genes in the banana (Musa acuminata)
genome. Based on phylogenetic relationships with Arabidopsis and rice, these 42 MaCsls
are grouped into six subfamilies: MaCslA, MaCslC, MaCslD, MaCslE, MaCslG, and MaCslH.
The 42 MaCsl genes are distributed over all 11 banana chromosomes. Interestingly, the
MaCslG subfamily members are located solely on Chr8, and no other subfamily members
are present on this chromosome (Figure 3, Table 1). The basic characterization of the MaCsl
gene family, including the corresponding proteins, is shown in Table 1. The length of their
open reading frames ranged from 1245 bp (MaCslD7) to 3657 bp (MaCslD5), encoding
polypeptides with 415 to 1219 amino acids. The molecular weight (MW) of the polypeptides
varied from 46.1 to 134.9 kD, with isoelectric points (pI) ranging from 6.4 (MaCslD2) to 9.5
(MaCslD7). The diversity in the amino acid length, MW and pI of MaCsls may indicate
functional differences among the members.

Figure 3. Chromosomal localization of the MaCsl genes in the banana (Musa acuminata) genome.
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Table 1. 42 MaCsl genes identified in Musa acuminata and their sequence characteristics.

Gene Name Gene ID Chr Start End Length (bp) Strand Size (aa) pI MW (kD)

MaCslA1 Ma02_t22150 chr02 27,565.079 27,570.275 1602 − 534 8.9 60,834.3
MaCslA2 Ma03_t01730 chr03 1207.899 1213.633 1629 + 543 9.0 61,799.5
MaCslA3 Ma05_t18900 chr05 25,534.488 25,538.961 1602 − 534 9.0 60,875.2
MaCslA4 Ma06_t04300 chr06 3100.141 3102.901 1635 − 545 8.7 62,234.1
MaCslA5 Ma06_t09180 chr06 6479.551 6484.223 1668 + 556 9.0 63,946.1
MaCslA6 Ma06_t14920 chr06 10,164.997 10,168.70 1602 + 534 8.9 60,781.3
MaCslA7 Ma07_t19410 chr07 27,422.775 27,428.514 1719 + 573 9.1 65,060.1
MaCslA8 Ma07_t22600 chr07 30,481.370 30,484.454 1677 + 559 9.0 64,175.8
MaCslA9 Ma09_t27610 chr09 38,562.778 38,574.772 1626 + 542 8.8 61,639.2

MaCslA10 Ma10_t11450 chr10 24,986.818 24,991.666 1602 + 534 8.9 61,025.5
MaCslA11 Ma10_t15510 chr10 27,582.419 27,587.095 1602 − 534 9.1 60,994.7
MaCslA12 Ma10_t18740 chr10 29,549.996 29,554.980 1755 − 585 8.9 65,936.2
MaCslA13 Ma11_t08690 chr11 6915.612 6920.893 1626 + 542 9.3 62,165.2
MaCslC1 Ma03_t29290 chr03 32,234.549 32,238.695 2106 + 702 8.9 79,991.8
MaCslC2 Ma04_t02130 chr04 1873.146 1876.963 2094 − 698 8.7 79,922.4
MaCslC3 Ma04_t05930 chr04 4437.079 4440.382 2085 + 695 9.1 79,398.2
MaCslC4 Ma04_t29650 chr04 30,511.868 30,515.518 2115 + 705 8.5 79,553.3
MaCslC5 Ma04_t38760 chr04 36,164.056 36,168.517 2106 + 702 7.8 79,537.2
MaCslC6 Ma05_t01870 chr05 1142.347 1146.294 2112 − 704 8.5 79,580.2
MaCslC7 Ma06_t03600 chr06 2622.347 2625.771 2067 + 689 8.8 79,142.5
MaCslC8 Ma06_t29550 chr06 30,901.418 30,906.541 2091 + 697 9.1 78,791.9
MaCslC9 Ma06_t31890 chr06 32,901.867 32,906.161 2115 + 705 8.1 79,750.6
MaCslC10 Ma07_t00740 chr07 619,565 624,194 2121 − 707 8.0 79,935.6
MaCslC11 Ma07_t20970 chr07 28,958.080 28,961.838 2106 − 702 8.8 80,597.2
MaCslC12 Ma10_t09350 chr10 23,545.265 23,549.303 2124 − 708 7.5 79,820.2
MaCslD1 Ma01_t18500 chr01 13,756.260 13,761.905 3450 + 1150 6.9 128,482.2
MaCslD2 Ma02_t07580 chr02 18,211.558 18,215.380 3447 − 1149 6.4 128,432.9
MaCslD3 Ma02_t17080 chr02 24,143.640 24,146.984 2709 − 903 8.9 100,568.6
MaCslD4 Ma03_t14070 chr03 11,229.456 11,235.431 3453 + 1151 7.5 128,361.1
MaCslD5 Ma03_t25420 chr03 29,461.721 29,465.754 3657 − 1219 8.1 134,887.3
MaCslD6 Ma04_t04560 chr04 3486.824 3489.813 2757 + 919 8.8 103,194.6
MaCslD7 Ma04_t33100 chr04 32,908.316 32,909.842 1245 − 415 9.5 46,143.7
MaCslD8 Ma10_t26210 chr10 34,009.560 34,013.193 2721 − 907 8.9 100,850.9
MaCslD9 Ma11_t21750 chr11 25,761.358 25,765.90 3480 + 1160 6.8 128,916.7
MaCslE1 Ma04_t13090 chr04 9902.007 9907.918 2187 − 729 8.3 83,277.4
MaCslE2 Ma09_t20060 chr09 27,488.282 27,493.065 2241 + 747 8.2 84,590.1
MaCslE3 Ma09_t28670 chr09 39,320.301 39,325.310 2193 + 731 8.5 82,679.5
MaCslG1 Ma08_t05160 chr08 3537.407 3540.538 2193 − 731 8.2 81,197.7
MaCslG2 Ma08_t05170 chr08 3544.521 3548.562 2169 − 723 6.9 80,645.9
MaCslG3 Ma08_t05180 chr08 3548.894 3551.285 1638 − 546 6.7 60,810.7
MaCslG4 Ma08_t05190 chr08 3561.425 3563.941 1602 − 534 6.5 59,472.2
MaCslH1 Ma09_t08420 chr09 5566.954 5569.888 2223 + 741 7.2 83,277.7

aa: amino acids; bp: base pair; kD: kilodaltons; MW: molecular weight; pI: isoelectric point.

2.2.3. Phylogenetic Evolutionary Tree, Gene Structure, and Conserved Motifs

As shown in Figure 4A, the MaCsl proteins could be divided into four subgroups
according to the phylogenetic distribution. MaCslA proteins are grouped into subgroup I,
while subgroup II consists of MaCslC proteins. The MaCslD proteins belong to subgroup
III, while the MaCslE, MaCslG and MaCslH proteins are present in subgroup IV.

The analysis of the exon–intron structure of the gene family can help to better un-
derstand its evolutionary trajectory. The intron/exon arrangement of 42 MaCsls was
constructed based on the phylogenetic tree. The results showed that the exon–intron struc-
tures of the MaCsl genes are similar within subgroups I and II. The genes of subgroup I
(MaCslAs) possess 7–9 introns and 8–10 exons, while only 4 introns and 5 exons are present
in the genes of subgroup II (MaCslCs). In addition, most MaCslA and MaCslC genes possess
both an upstream 5′ untranslated region (5′UTR) and a downstream 3′UTR. These results
suggest a conserved evolutionary pattern of MaCsl genes in these two subgroups. However,
a different pattern was observed in subgroups III and IV, which have a higher variation in
the gene structure. For example, there are five introns in MaCslD2, but only two to three are
found in other MaCslDs. Moreover, MaCslD5 has no 5′UTR, while the other four MaCslD
genes (MaCslD2/3/6/7) have neither 5′UTR nor 3′UTR (Figure 4B).
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Figure 4. Phylogenetic relationships, gene structure, and motif distribution of MaCsls. (A) Unrooted
phylogenetic tree of 42 MaCsls, generated with the MEGA7.0 software by the neighbor-joining
method with 1000 bootstrap replicates after alignment of the full-length protein sequence by Clustal
W. (B) Exon/intron structures of MaCsl genes. (C) Conserved motifs of the MaCsl gene family,
analyzed by Multiple Em for Motif Elucidation (MEME). Different motifs are represented by different
colored boxes with numbers 1–10 (color figure online).

Next, the Multiple Em for Motif Elucidation (MEME) web-based application was
utilized to further analyze the putative motifs of MaCsl proteins. A total of 10 conserved
motifs were identified, and the relative positions of these motifs in the amino acid sequences
are shown in Figure 4C. The MaCslA and MaCslC members are more closely related and
contain motifs 1–7 and motif 10, while the rest, with the exception of MaCslH, contain motifs
8 and 9. Members with similar motif compositions can be clustered together, indicating
functional similarity among the MaCsl proteins of the same subfamily.

2.3. Differences in the Responses of MaCsls to LT Stress between CS and CT Cultivars

In order to know the response of MaCsls to LT and find the MaCsls potentially deter-
mining banana LT stress tolerance, their expressions in CT and CS banana cultivars under
different LTs were investigated using RNA-Seq techniques. The number of differentially
expressed genes (DEGs) in each comparison group is shown in Table S1. Cold responsive
genes are listed in Table S2. The different responses of the MaCsls to LT between the CT and
CS banana cultivars are shown in Table 2. Most MaCsls were downregulated by LT (s). Nine
MaCsls (MaCslA2/6, MaCslC1/4, MaCslD3/6/7/8, MaCslG4) did not respond to LTs in both
cultivars. Four (MaCslC3 and MaCslD1/5/9) were upregulated in both cultivars. Some other
MaCsls were only regulated in the CT (MaCslA4/12, MaCslD4) or CS (MaCslA8, MaCslC5,
MaCslD2) cultivar. When compared to the CS cultivar, MaCslE2 showed a significantly
higher expression level in the CT cultivar at all four tested temperature points, MaCslC7
showed higher expression at 25 ◦C, 10 ◦C and 7 ◦C while MaCslG1 at 16 ◦C, 10 ◦C, and 7 ◦C.
Relative to the CS cultivar, the expression levels of MaCslA10/11, MaCslC11 and MaCslD4
in the CT cultivar were significantly higher at two temperature points, and the expression
levels of MaCslA13 and MaCslG2 were higher only at 7 ◦C. Table S3 lists the p-values of
differentially expressed MaCsls, while the fragments per kilobase of exon per million reads
mapped values of 42 MaCsls in the two cultivars before and after LT treatments are shown
in Table S4.
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Table 2. Analysis of differentially expressed MaCsl genes in banana (Musa spp.) leaves under low temperatures.

Gene
Name

log2 Fold Change

CKDJ vs.
CKBX

LT16DJ vs.
LT16BX

LT10DJ vs.
LT10BX

LT7DJ vs.
LT7BX

LT16BX vs.
CKBX

LT10BX vs.
CKBX

LT7BX vs.
CKBX.

LT16DJ vs.
CKDJ

LT10DJ vs.
CKDJ

LT7DJ vs.
CKDJ

MaCslA1 −2.52
MaCslA2
MaCslA3 −1.73 −2.44
MaCslA4 −2.10 1.51 2.00 2.31
MaCslA5 −1.70 −1.99 −2.20 −2.46 −2.88 −2.81
MaCslA6
MaCslA7 −2.63 −1.18 −2.20
MaCslA8 2.31 −1.82 3.98
MaCslA9 −1.35 −1.42 −1.41 −1.44
MaCslA10 3.11 3.94 −3.60 −4.16 −3.94
MaCslA11 1.96 2.12 −1.76 −2.17 −2.20
MaCslA12 −1.59 −1.73 1.14
MaCslA13 1.85 −3.81 −1.71
MaCslC1
MaCslC2 −3.54 −6.28 −4.44 −5.34 −5.66
MaCslC3 4.90 3.93
MaCslC4
MaCslC5 2.96 −3.23 3.17 3.75 −2.28 −3.07 −1.95
MaCslC6 −1.90 −1.65
MaCslC7 3.86 2.59 3.37 −2.97 −3.22 −3.20
MaCslC8 −1.05 −1.22 −1.10
MaCslC9 −1.61

MaCslC10 −3.45 −3.96 −4.22 −3.94 −3.53
MaCslC11 1.68 1.94 −3.00 −3.78 −2.85 −3.27 −4.51
MaCslC12 −1.26
MaCslD1 1.58 1.34
MaCslD2 4.04
MaCslD3
MaCslD4 1.27 1.34 1.52 2.16
MaCslD5 2.46 2.70
MaCslD6
MaCslD7
MaCslD8
MaCslD9 −1.28 3.71 1.89 4.41
MaCslE1 −1.27
MaCslE2 1.50 1.98 1.37 2.58 −1.55 −1.70 −2.11 −1.16 −1.89
MaCslE3 −1.01 −1.97 −1.16
MaCslG1 1.33 1.30 2.74 −2.31
MaCslG2 −1.17 1.79 −1.03 −4.03
MaCslG3 −1.54 −1.41 −3.18
MaCslG4
MaCslH1 −3.09 −1.38 −2.41 −4.62 −3.46

BX: ‘Baxijiao’, chilling-sensitive; DJ: ‘Dongguandajiao’, chilling-tolerant; CK: 25 ◦C control; LT16: low temperature of 16 ◦C; LT10: low
temperature of 10 ◦C; LT7: low temperature of 7 ◦C.

To validate the results of the RNA-Seq analysis, the expressions of genes with higher
expression levels under LT(s) in the CT cultivar when compared with the CS one (MaC-
slA10/11/13, MaCslC7/11, MaCslD4, MaCslE2, MaCslG1/2), and the ones induced by LTs
only in the CT cultivar (MaCslA4/12, and overlapped MaCslD4), were analyzed by qPCR.
As shown in Figure 5, MaCslA4 was induced by all tested LT points in the CT cultivar,
while it was upregulated only at 10 ◦C in the CS one. As a result, the CT cultivar showed
significantly higher expression levels at 10 ◦C and 7 ◦C, though the result was opposite at
25 ◦C. The relative expression level of MaCslA10 in the control CT cultivar was 151 times
higher than in the CS one, and decreased dramatically under LTs. Though there was a
small peak in MaCslA10 expression in the CS cultivar at 16 ◦C, it was still lower than in
the CT one at 10 ◦C and 7 ◦C. Similar trends were observed for MaCslC7 and MaCslC11.
The LT treatment resulted in an increase in MaCslA11 expression in the CS banana, while
the opposite was found in the CT cultivar, but the latter still showed a significantly higher
expression level at all tested temperatures except 7 ◦C. MaCslA12 was upregulated by LTs of
10 ◦C and 7 ◦C in the CT cultivar, but only 10 ◦C in the CS one. Furthermore, the CT banana
showed higher MaCslA12 expression at all tested LTs. MaCslA13 was upregulated by LTs of
16 ◦C and 10 ◦C in both cultivars. MaCslD4 was induced by LTs of 10 ◦C and 7 ◦C in both
cultivars, and showed significantly higher expression levels in the CT cultivar under LTs.
A decrease in expression of MaCslE2 and MaCslG2 was observed in LT-treated CS banana,
but this was not the case for the CT one. Opposite to MaCslC7, the expression level of
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MaCslG1 in the CS cultivar was much higher than in the CT one, and it was downregulated
by LTs. Though the expression level in the CT cultivar increased at 10 ◦C, it was lower than
that in the CS cultivar at 25 ◦C and 16 ◦C. In most cases, the qPCR confirmed the results
from the RNA-Seq analysis, and contradictory results were observed only for MaCslA13
and MaCslG1. In conclusion, our results suggest MaCslD4, MaCslA4/12 and MaCslE4 as
genes with highest potential for the determination of banana chilling tolerance.

Figure 5. Quantitative real-time PCR (qPCR) analysis of 11 MaCsl gene expressions in banana (Musa
spp.) leaves under low temperature stress. The data represent an average of three replicates ± SE.
Values followed by the same letter are not significantly different using Duncan’s multiple range test
at p < 0.05 after the angular transformation of the data for each cultivar (comparison among different
low-temperature points). Values marked with a star were considered significant at p < 0.05, while
values marked with two stars were considered significant at p < 0.01 when evaluated using Student’s
t-test (comparison between the two cultivars at the same low-temperature point). BX ‘Baxijiao’,
chilling-sensitive; DJ ‘Dongguandajiao’, chilling-tolerant.

3. Discussion
3.1. The Features of MaCsls

Hemicelluloses encompass heteromannans, xyloglucan, heteroxylans, and MLG, and
constitute roughly one-third of the cell wall biomass [62], and their backbones are con-
sidered to be synthesized by Csl proteins. The first report on the function of Csl-encoded
proteins demonstrated their mannan-synthase activity in soybean (Glycine max) [16]. Later
on, numerous evidences were reported on their capability to synthesize hemicellulose
backbones [5,17–19,21–23,27,29–31,33,63]. However, little is known about their function in
plant growth, development and stress tolerance.

A genome-wide analysis of gene family is an efficient approach for understanding
gene structure, function, and evolution. To date, detailed genome-wide explorations of Csls
have been limited to less than 20 plant species, such as Arabidopsis, poplar, rice, sorghum
(Sorghum bicolor), maize, and various grasses [50,53,56,57,59,64,65]. In this study, we
conducted a comprehensive analysis of the MaCsl gene family, including the identification
of members, phylogenetic relationships, chromosomal distribution, and expression profiles
in two LT-treated banana cultivars with different tolerances to LT. A total of 42 putative
Csl genes were identified in the Musa acuminata genome. The number of Csl genes varies
among the plant species, ranging from 21 in Dendrobium catenatum [66] to 108 in bread
wheat [58]. Further, the number of Csl genes in these species is not proportional with the
genome size, likely because the genomes of some species have undergone significant gene
losses [53].

Plant Csl gene family could be classified into ten subfamilies (CslA–CslH, CslJ and
CslM) [11,13–15]. Among them, CslA, CslC, and CslD are conserved in all land plants. The
CslB and CslG families have been known to be specific for dicots [24], whereas CslF and
CslH are restricted to grasses [14,67]. We have found that the genome of banana does not
have the CslF family, but it contains CslGs. Similarly, CslJ was originally believed to be
specific to grasses, but it was recently identified in some dicots [14]. On the other hand, a
recent report established the presence of the CslB subfamily in monocots as well [68]. These
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results suggest that the knowledge about plant Csl gene family needs further examination.
Banana contains only one CslH gene, and lacks CslF and CslJ genes, suggesting that the
abundance/level of MLG in banana is much lower than in the other monocotyledonous
crops, such as rice, wheat and maize, because they possess much more CslF/H/J genes
responsible for the biosynthesis of MLG [13,53,58,69].

In bread wheat, more than half the TaCsl genes are concentrated on two chromosomes
(chr2 and chr3 of each sub-genome) [58]. However, in banana, most chromosomes contain
4–5 Csl genes. This suggests a relatively even distribution of the MaCsl genes on these
chromosomes.

3.2. The Involvement of MaCsls in Tolerance to LT Stress

Banana production is seriously threated by various biotic and abiotic stresses, such
as Fusarium wilt and chilling stress. In the present study, the changes in hemicellulose
content and the expressions of genes related to the biosynthesis of hemicellulose backbone
were compared between CS and CT cultivars.

It was proposed that increased amounts of hemicelluloses were connected to enhanced
cell wall stiffening, and prevented cell collapse caused by dehydration, thus contributing to
plant tolerance to LTs [70,71]. In agreement, increase of hemicellulose content was observed
only in the LT-treated CT cultivar in the present study, though the hemicellulose content
in the CS cultivar was always higher than in the CT one, except at 16 ◦C. This suggests
that the amount of specific types of hemicellulose, and not the total hemicellulose content,
that was affecting the chilling tolerance of banana. Similarly, XXXG-rich xyloglucan, arabi-
noxylan and acetylated galactomannan were reported to be involved in plant desiccation
tolerance [72]. The CT cultivar showed a striking increase in hemicellulose content when
the temperature dropped from 25 ◦C to 16 ◦C, indicating that this increase is very important
for the acclimation of banana to LT stress.

In the present study, RNA-Seq techniques were employed to compare the changes
in the expression of 42 MaCsls between the CT and CS banana cultivars subjected to LT
conditions. The results revealed that these genes were differentially regulated by LT stress.
For example, some genes (e.g., MaCslC3 and MaCslD1) were upregulated by LTs in both
cultivars, while others (e.g., MaCslA5 and MaCslC10) were downregulated. Some genes
showed different expression patterns under LT stress in the CS and CT cultivars. For
example, MaCslC5 in the CT cultivar showed lower expression levels under LT stress
in comparison to 25 ◦C, but it showed opposite trend in the CS cultivar. On the other
hand, all LTs induced the expression of MaCslD4 in the CT cultivar, but this was not the
case for the CS one. Similarly, the CslD1 and CslD4 levels of chilling-tolerant indica rice
were upregulated by LTs, while the result was the opposite for CslA1 and CslF6 [46]. The
phenomenon that genes from the same family differently respond to the same stress is
frequently observed in the plant kingdom, such as MaFLAs (fasciclin-like AGP) in banana
under LT stress [10] and barley HvCslFs upon the infection of cereal cyst nematodes [40].
These results suggested that members from certain gene families play diverse roles in plant
tolerance/resistance to biotic and abiotic stresses.

In the present study, most MaCsls were suppressed by LTs in both CS and CT banana
cultivars. Similarly, boron deficiency resulted in the downregulation of CslB5 and several
xyloglucan endotransglucosylase/hydrolase proteins (XTHs) in Arabidopsis roots [37,38].
In spinach (Spinacia oleracea L.), CslE1 was found to be inhibited by salinity stress and a
combination of salinity and cadmium stress [36]. Some Csl and CesA genes in Arabidopsis
were also found to negatively modulate salt tolerance [73]. Besides abiotic stress, plant
Csl genes were also reported to be suppressed by pathogens. For instance, the expression
of several CesA genes (homologs of Csl genes) in rice was downregulated by rice tungro
spherical virus at the early stage of infection [74], while the expression level of HvCslF6 in
barley decreased immediately after pathogen infection [40].

On the other hand, MaCslD4 was induced by LT in the CT cultivar, and showed
significantly higher expression levels in the CT cultivar under LTs when compared to the
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CS one, suggesting this gene plays an important role in the chilling tolerance of banana.
Besides MaCslD4, MaCslA4/12 and MaCslE2 are also likely related to banana chilling
tolerance, because they showed higher expression levels in the CT cultivar when compared
to the CS, and were induced by LT or remained stable under LT stress in the CT cultivar.
Similarly, the AtCslG3 in Arabidopsis showed a higher expression level in the Cd-tolerant
ecotype after exposure to Cd stress, likely being involved in enhanced Cd retention in the
cell wall and reduction of Cd toxicity [39]. Another Arabidopsis Csl gene, AtCslD5, was
suggested to play a critical role in osmotic stress, and is required for osmotic tolerance,
because hypersensitive sos6-1 (encodes AtCslD5) mutant plants accumulate high levels of
reactive oxygen species under osmotic stress [35]. The silencing of HvCslD2 resulted in the
increased susceptibility of barley to powdery mildew, suggesting that HvCslD2-mediated
cell wall changes represented an important defense reaction [41,75]. Thus, Csl genes
are involved in plant tolerance/resistance to biotic and abiotic stresses [76]. The MaCsl
genes found by this study could help the banana cell wall withstand the LT conditions.
As proposed earlier, they might affect the cell turgor pressure [76], or increase cell wall
flexibility/extensibility and reconstruction under LT-induced dehydration [72,75–78].

4. Materials and Methods
4.1. Plant Materials and Natural LT Conditions

The plant material for this study included two banana genotypes, Musa spp. AAA cv.
Baxijiao and Musa spp. ABB cv. Dongguandajiao, which are CS and CT, respectively [9,79].
Three biological replicates of each genotype were subjected to low temperature treatments,
following the method described by Yan et al. [9]. The leaves of plants growing for 3 days at
25 ◦C, 16 ◦C, 10 ◦C and 7 ◦C were used for analyses.

4.2. Measurement of Hemicellulose Content of Banana Leaves

The leaf samples were treated according to the analytical procedure recommended by
the national renewable energy laboratory (NREL) [80] to obtain the filtrate. The content of
hemicellulose in the filtrate was determined by the orcinol colorimetric method [81].

4.3. RNA-Seq Analysis

The RNA preparation, and the library preparation for RNA-Seq and data analysis,
were carried out as described by Klepikova et al. [82]. False discovery rate was used to
determine the threshold of the p-value in multiple tests and analyses. In the present study,
|log2 (fold change)| > 1 and a threshold of false discovery rate values <0.05 were used as
the threshold to evaluate the significance of differentially expressed genes.

4.4. Identification of Csls in Banana

To study the Csl gene family in banana, all Musa acuminata protein sequences were ob-
tained from Banana-Genome-Hub (https://banana-genome-hub.southgreen.fr/download)
Musa acuminata DH Pahang v2 (updated in January 2016). The Csl amino acid sequences of
Arabidopsis and Oryza sativa were downloaded from the Arabidopsis Information Resource
(TAIR) (http://www.Arabidopsis.org/download) and the Rice Genome Annotation Project
(http://rice.plantbiology.msu.edu/downloads_gad.shtml).

Double-directional BLAST was employed to obtain potential Csl members; the BLAST
function of TBTools [83] was used to retrieve potential MaCsl sequences referring to the
amino acid sequence of Csl proteins of Arabidopsis. The obtained potential MaCsl sequences
were thereafter compared with Csls in the Swissprot database, and those without typical
characteristics of Csl proteins were removed. Candidate genes were obtained by analyzing
the obtained genes using the Search pfam (http://pfam.xfam.org/search) online tool and
eliminating sequences that lack the typical functional domain of Csls. All candidate MaCsls
should contain one of the two PFAM domain models, namely PF00535 or PF03552.

https://banana-genome-hub.southgreen.fr/download
http://www.Arabidopsis.org/download
http://rice.plantbiology.msu.edu/downloads_gad.shtml
http://pfam.xfam.org/search
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4.5. Physicochemical Properties and Phylogenetic Analysis

Expert protein analysis system (ExPASy, http://web.expasy.org/compute_pi/) were
employed to predict the pI and MW of MaCsl amino acid sequences.

Amino acid sequence alignments of all Csl members from the Arabidopsis, rice, or
banana were performed using Clustal W2 [84] under default settings, while Molecular
Evolutionary Genetics Analysis (MEGA) 7.0 [85] software was used to construct the phy-
logenetic trees, followed by visualization with FigTree v1.4.2 (http://tree.bio.ed.ac.uk/
software/figtree/). The default parameters were manually adjusted using the neighbor-
joining method (the JTT+I+G substitution model and 1000 bootstrap replicates).

4.6. Conserved Motif and Gene Structure Analysis

The online software MEME (http://meme-suite.org/tools/meme) was used to iden-
tify the conserved motifs of MaCsl from the deduced protein sequence. The number of
conserved motifs selected was 10, while the other default parameters were set automati-
cally by the software. The results were visualized with TBtools. The structural analysis
of the introns, exons and non-coding regions of all MaCsls was performed by Gene Struc-
ture Display Server 2.0 (GSDS, https://gsds.cbi.pku.edu.cn/) [86] using corresponding
CDS sequences and genomic sequences of MaCsls retrieved from Banana-Genome-Hub
(https://banana-genome-hub.southgreen.fr/download).

4.7. Quantification of the Expression Level of MaCsls Using qPCR

The experiment was carried out according to the method described by Meng et al. [10]
and the primers used are listed in Table S5.

4.8. Statistical Analysis

One-way analysis of variance (one-way ANOVA) was done using IBM SPSS Statistics
software for Windows, Version 26.0 (IBM Corporation, Armonk, NY, USA). The results
of hemicellulose content and qPCR were expressed as mean ± SE. Statistical differences
between the two species at each temperature point were determined using the Student’s
t-test.

5. Conclusions

This study provides a comprehensive analysis of the MaCsl gene family in banana.
In total, 42 members of the MaCsl gene family were identified in the Musa acuminata
genome, and were classified into six subfamilies: CslA, CslC, CslD, CslE, CslG, and CslH.
This information provides an important basis for studying the physiological role played
by the MaCsl genes in response to biotic and abiotic stresses. In addition, the different
expression patterns of MaCsl genes in CT and CS banana cultivars under LT stress indicate
their involvement in plant chilling tolerance, suggesting their potential utilization in the
breeding of CT banana. Further research should focus on the function of specific MaCsl
genes in chilling tolerance and the underlying mechanisms.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-774
7/10/1/122/s1, Table S1: The number of DEGs in banana (Musa spp.) under low temperature stress,
Table S2: Cold response genes present in banana (Musa spp.) under low temperature stress, Table S3:
The p-value of differentially expressed MsCsl genes in banana (Musa spp.) under low temperature
stress, Table S4: The fragments per kilobase of exon per million reads mapped values of MaCsl genes
in banana (Musa spp.) under low temperature stress, Table S5: Primer sequences used for qPCR.
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Abbreviations

bp Base pair
BX Baxijiao
CK The control
CS Chilling-sensitive
Csl Cellulose synthase-like gene
CT Chilling-tolerant
DEG Differentially expressed gene
DJ Dongguandajiao
kD Kilodalton
LT Low temperature
LT16 LT of 16 ◦C
LT10 LT of 10 ◦C
LT7 LT of 7 ◦C
MEME Multiple Em for Motif Elucidation
MLG Mixed-linkage glucan
MW Molecular weight
pI Isoelectric point
qPCR Quantitative real-time PCR
RNA-Seq RNA sequencing
UTR Untranslated region
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