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Abstract

Lycium barbarum, commonly known as goji, is important in Chinese herbal medicine and

its fruit is a very important agricultural and biological product. However, the molecular

mechanism of formation of its fruit and associated medicinal and nutritional components is

unexplored. Moreover, this species lacks SSR markers due to lack of genomic and tran-

scriptomic information. In this study, a total of 139,333 unigenes with average length of

1049 bp and N50 of 1579 bp are obtained by trinity assembly from Illumina sequencing

reads. A total of 92,498 (66.38%) unigenes showed similarities in at least one database

including Nr (46.15%), Nt (56.56%), KO (15.56%), Swiss-prot (33.34%), Pfam (33.43%),

GO (33.62%) and KOG/COG (17.55%). Genes in flavonoid and taurine biosynthesis path-

ways were found and validated by RT-qPCR. A total of 50,093 EST-SSRs were identified

from 38,922 unigenes, and 22,537 EST-SSR primer pairs were designed. Four hundred

pairs of SSR markers were randomly selected to validate assembly quality, of which 352

(88%) were successful in PCR amplification of genomic DNA from 11 Lycium accessions

and 210 produced polymorphisms. The polymorphic loci showed that the genetic similarity

of the 11 Lycium accessions ranged from 0.50 to 0.99 and the accessions could be divided

into 4 groups. These results will facilitate investigations of the molecular mechanism of for-

mation of L. barbarum fruit and associated medicinal and nutritional components, and will

be of value to novel gene discovery and functional genomic studies. The EST-SSR mark-

ers will be useful for genetic diversity evaluation, genetic mapping and marker-assisted

breeding.

Introduction

Lycium barbarum belongs to the Lycium genus, which is widely distributed in northwest

China and has been used as a traditional herbal medicine for thousands of years. The fruit of

Lycium barbarum have a variety of pharmacologic and hygienic functions [1–11]. Since the
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beginning of this century, the fruits and juice of L. barbarum have been sold as health food

products and praised in advertisements and in the media for well-being and as an anti-aging

remedy [12]. Recently, L. barbarum has become a leading commercial crop in some areas of

China.

In the last few years, many breeding scientists have invested much effort to breed L. bar-
barum cutivars with high fruit yield and quality, but it is hard and usually takes many years to

develop a new cultivar with stably inherited target characters because the species is perennial.

New technologies can accelerate breeding through improving genotyping and phenotyping

methods and increasing the available genetic diversity in breeding germplasm [13]. However,

there are few genomic resources in L. barbarum. With the development of massively-parallel

(‘next generation’) sequencing, we can rapidly sequence the transcriptome of an organism by

the ‘RNA-seq’ approach, which is essential for interpreting functional elements of the genome

and revealing the molecular constituents of cells and tissues [14], and RNA-seq is also a very

good way to develop EST-SSR markers. Recently, transcriptome studies and functional gene

mining by RNA-seq were reported in many species which have no genome sequencing, such

as Piper nigrum [15], Litchi chinensis Sonn [16], Arceuthobium sichuanense [17], Idesia poly-
carpa [18], Cinnamomum camphora L [19], and Lycium chinense Mill, a relative of L. barbarum
[20].

Marker-assisted selection offers great potential to improve the efficiency of breeding peren-

nials. SSR markers are particularly useful for a variety of applications in plant genetics and

breeding because of their reproducibility, multiple alleles, codominant inheritance, relative

abundance and good genome coverage [21]. SSR markers can be developed directly from ran-

dom genomic DNA libraries or from libraries enriched for specific microsatellites. For those

species lacking sequenced genomes and/or rich expressed sequence tag (EST) resources, tran-

scriptome scans from RNA-seq offer a means to develop SSR markers. Recently the develop-

ment of EST-SSR markers from RNA-seq based transcriptomes has been reported in Juglans
mandshurica [22], Lindera glauca [23], Caragana korshinskii Kom [24], Camellia sinensis [25],

radish [26], and others.

There are only a few reports of the use of molecular markers in L. barbarum. Zhang et al.

distinguished L. barbarum from other closely related species by RAPD techniques [27]. Kwon

et al. isolated and characterized 21 polymorphic microsatellite markers in L. chinense, a relative

of L. barbarum [28]. Subsequently, Zhang et al. assessed the genetic diversity and population

structure of 139 L. chinense accessions with 18 of the 21 polymorphic L. chinense SSR markers

[29]. However, there is no report of the development and use of SSR markers in L. barbarum.

The fruit of L. barbarum is a very important agricultural and biological product with medic-

inal and nutritional properties. In this study, by transcriptome sequencing of L. barbarum
fruit, we aimed to provide a resource for functional gene mining, and develop EST-SSR mark-

ers which can be used for genetic diversity evaluation, construction of linkage maps, fine map-

ping of crucial genes and marker-assisted breeding. This study will provide useful information

to better understand the molecular mechanism of L. barbarum fruit development.

Material and methods

Sample collection, RNA and DNA extraction

For transcriptomic sequencing, fruit of 5 days, 15 days and 30 days after flowering and differ-

ent tissues (root, stem, leaf) were collected from a 5-year-old L. barbarum (Ningqi1) tree grow-

ing in the germplasm nursery of the Ningxia Forestry Institution in China in July, 2016. To

verify polymorphism of EST-SSR markers for subsequent population genetic studies, leaf sam-

ples were collected from 8 L. barbarum accessions, a Korea wolfberry accession, a black fruit
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wolfberry (L. ruthenicum) accession, and a Big leaf wolfberry (L. chinense) accession (Table 1)

in the same germplasm nursery in 2016. All samples were frozen immediately in liquid nitro-

gen and stored at −80 C.

The fruit and tissue samples of Ningqi1 were ground to a powder in liquid nitrogen and

total RNA was extracted using TaKaRa MiniBEST Universal RNA Extraction Kit. RNA degra-

dation and contamination was monitored on 1% agarose gels. RNA purity was checked using

the NanoPhotometer1 spectrophotometer (IMPLEN, CA, USA). RNA concentration was

measured using the Qubit1 RNA Assay Kit in Qubit1 2.0 Fluorometer (Life Technologies,

CA, USA). RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Agilent

Bioanalyzer 2100 system (Agilent Technologies, CA, USA). Genomic DNA was extracted from

young leaves of the 11 Lycium accessions using a modified CTAB method [30]. DNA was

resuspended in 50 μL of water and dilutions were performed to obtain a final concentration of

10 ng/μL and stored at −20˚C until use.

Library preparation for transcriptome sequencing

A total of 1.5 μg RNA per sample was used as input material for RNA sample preparations.

Sequencing libraries were generated using NEBNext1 Ultra™ RNA Library Prep Kit for Illu-

mina1 (NEB, USA) following the manufacturer’s recommendations and index codes were

added to attribute sequences to each sample. Briefly, mRNA was purified from total RNA

using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cat-

ions under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5×). First

strand cDNA was synthesized using random hexamer primers and M-MuLV Reverse Tran-

scriptase (RNase H). Second strand cDNA synthesis was subsequently performed using DNA

Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via exonu-

clease/polymerase activities. After adenylation of 3’ ends of DNA fragments, NEBNext Adap-

tors with hairpin loop structure were ligated to prepare for hybridization. In order to select

cDNA fragments of 150~200 bp in length, the library fragments were purified with the

AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 μl USER Enzyme (NEB, USA)

was used with size-selected, adaptor-ligated cDNA at 37˚C for 15 min followed by 5 min at

95˚C before PCR. PCR was performed with Phusion High-Fidelity DNA polymerase, Univer-

sal PCR primers and Index (X) Primer. PCR products were purified (AMPure XP system) and

library quality was assessed on the Agilent Bioanalyzer 2100 system.

Table 1. Lycium accessions used for EST-SSR verification.

Number Accessions or cultivars name Species Source (GPS)

1 Ningqi 1 Lycium barbarum L. Ningxia, China (38˚47’N, E106˚27’)

2 Ningqi 3 Lycium barbarum L. Ningxia, China (38˚47’N, E106˚27’)

3 Ningqi 4 Lycium barbarum L. Ningxia, China (38˚47’N, E106˚27’)

4 Ningqi 5 Lycium barbarum L. Ningxia, China (38˚47’N, E106˚27’)

5 Ningqi 6 Lycium barbarum L. Ningxia, China (38˚47’N, E106˚27’)

6 Ningqi 7 Lycium barbarum L. Ningxia, China (38˚47’N, E106˚27’)

7 Ningqi 8 Lycium barbarum L. Ningxia, China (38˚47’N, E106˚27’)

8 Ningqi 9 Lycium barbarum L. Ningxia, China (38˚47’N, E106˚27’)

9 Korea wolfberry — Korea (37˚33’N, 126˚58’E)

10 Black fruitwolfberry Lycium ruthenicum Murr Gansu, China (38˚93’N, 100˚46’E)

11 Big leaf wolfberry Lycium chinense Mill Guangdong, China (23˚12’N, 113˚28 ’E)

https://doi.org/10.1371/journal.pone.0187738.t001
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Sequencing and transcriptome assembly

Clustering of the index-coded samples was performed on a cBot Cluster Generation System

using TruSeq PE Cluster Kit v3-cBot-HS (Illumina) according to the manufacturer’s instruc-

tions. After cluster generation, the libraries were sequenced on an Illumina HiSeq 4000 plat-

form and paired-end reads were generated. De novo transcriptome assembly was accomplished

using trinity (r20140413p1) with default settings [31].

Gene function annotation

Unigenes of the transcriptome were annotated based on data from the Nr (NCBI non-redun-

dant protein sequences), Nt (NCBI non-redundant nucleotide sequences), Pfam (Protein

family), KOG/COG (Clusters of Orthologous Groups of proteins), Swiss-Prot (manually anno-

tated and reviewed protein sequence), KO (KEGG Ortholog), and GO (Gene Ontology) data-

bases. To further analyze the transcriptome of L. barbarum, all unigenes were submitted to

the KEGG pathway database. All BLAST searches were performed with an e-value of 1E-5.

Analysis of unigenes related to flavonoid biosynthesis and taurine

biosynthesis

L. barbarum cDNA was generated using TaKaRa Prime Script TM RT reagent Kit with gDNA

Eraser(Perfect Real Time) from the extracted RNA of fruits collected 5 days, 15 days and 30

days after flowering and different tissues (root, stem and leaf) of L. barbarum. Then qRT-PCR

was performed to analyze the relative expression for the genes LbCHI, LbC4H, LbDFR, LbANR,

LbANS, LbFLS, LbLAR, LbF3H and LbCDO-like by SYBR Premix Ex Taq II (Tli RNaseH Plus)

in qTOWER2.2 REAL-TIME PCR Thermal Cycler (analytikjena biometra). Specific primers

were listed in S1 Table.

Development and detection of EST-SSR markers

SSRs in the transcriptome were identified using the microsatellite identification tool MISA

(http://pgrc.ipkgatersleben.de/misa/misa.html), and primers for each SSR designed using

Primer 3 (http://primer3.sourceforge.net/releases.php) according to the following parameters:

length range from 18 to 23 nucleotides with 20 bp as optimum, PCR product size range from

100 to 300 bp, optimum annealing temperature from 55˚C~60˚C, and GC content 40–60%

with 50% as optimum. In total, 400 primer pairs (S2 Table) were randomly selected to evaluate

amplification and polymorphism in L. barbarum. PCR amplification was performed on a Ver-

iti1 96-Well Thermal Cycler using the following thermal profile: 94˚C for 5 min; 35 cycles of

94˚C for 30 s, 55˚C for 30 s and 72˚C for 2 min; then extension of products at 72˚C for 10 min.

The PCR products were separated by electrophoresis on 8.0% non-denaturing polyacrylamide

gels, silver-stained, and band sizes assessed by comparison to a DNA ladder.

Results

Illumina sequencing and de novo assembly

cDNA was prepared from 5 days, 15 days, and 30 days fruits after flowering and sequenced

with Illumina HiSeq 4000 platform. A total of 46,486,152, 49,649,472, 56,409,052 raw reads

were generated, after stringent quality assessment and data filtering, a total of 44,190,154,

47,458,054, 53,607,998 clean reads were generated for 5 days, 15 days, and 30 days fruits. All

high-quality reads were assembled using trinity software [31], yielding a total of 219,831 tran-

scripts with average length of 771 bp and N50 of 1302 bp (Table 2). The length distribution of
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transcripts is showing in S1 Fig. The de novo assembled transcriptomes were clustered by ‘cor-

set’, which is a method and software for obtaining gene-level counts from any de novo tran-

scriptome assembly [32]. After clustering by corset, a total of 139,863 clusters were obtained,

in which the clusters with longest sequences were defined as unigenes. Finally a total of

139,333 unigenes with average length of 1049 bp and N50 of 1579 bp (Table 2) were obtained

from the transcripts. The length distribution of unigenes is showing in S2 Fig. The length dis-

tribution comparison of transcripts and unigenes is showing in S3 Fig.

Functional annotation of unigenes

To validate the assembly quality and annotation of the assembled unigenes, all unigenes were

used to seek matches in public databases including Nr, Nt, Ko, Swiss-prot, Pfam, GO and

KOG/COG using the BLASTx program with an E-value threshold of 1E-5. Among 139,333

unigenes, a total of 12,246 (8.78%) unigenes were annotated in all databases, and 92,498

(66.38%) matched genes and/or proteins in at least one database. The detailed results are

shown in Fig 1 and S3 Table.

Based on the Nr database, of the assembled sequences, 66.76% showed significant homology

(<1E-50), and 70.09% showed more than 80% similarity to Nr database entries (Fig 2A and

2B). The L. barbarum unigenes were homologous to sequences in other species, among which

Solanum tuberosum accounted for 30.2% (19,388), Nicotiana sylvestris accounted for 20.4%

(13138), Nicotiana tomentosiformis accounted for 19.9% (12,793), Solanum lycopersicum
accounted for 14.2% (9112), Vitis vinifera accounted for 0.8% (542), and others 14.4% (9276)

(Fig 2C).

Based on the Nr annotation, then we used GO analysis to classify functions and understand

the general distribution of the unigenes of L. barbarum. In the present study, 46,856 unigenes

matching known protein databases were assigned to 55 GO functional groups with 245,532

functional terms. As shown in Fig 3 and S4 Table, assignments to biological process are the

majority (117,337, 47.79%), followed by cellular component (73,101, 29.77%) and molecular

function (55,094, 22.44%). Under the biological process category, “cellular process” (26,093,

22.24%) and “metabolic process” (24,355, 20.76%) were represented prominently. In the

cellular component, “cell”, “cell part”and “organelle” accounted for 96.64%, however, there

are a few unigenes in the “extracellular region part”, “virion” and “virion part”. Under the

Table 2. Characteristics of assembled transcripts and unigenes.

Nucleotide length (bp) Transcripts Unigenes

200–500 125,433 47,372

501–1,000 46,113 43,757

1,001–1,500 18,290 18,213

1,501–2,000 11,326 11,322

2,001–2,500 7,184 7,195

2,501–3,000 4,576 4,565

>3,000 6,909 6,909

Total 219,831 139,333

N50 (bp) 1,302 1,579

Average length (bp) 771 1,049

Min length (bp) 201 201

Median length (bp) 426 687

Max length (bp) 15,884 15,884

Total nucleotide length (bp) 169,512,437 146,170,451

https://doi.org/10.1371/journal.pone.0187738.t002
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classification of molecular function, “binding”(26,067, 47.31%) is the largest category and 8370

unigenes in “antioxidant”, “structural molecule”, “transporter molecule”, “transducer activity”,

and “molecular function regulator” only accounted for 15.19%.

Among the 64,315 unigenes with similarity to Nr proteins, 24,462 were assigned to 26 COG

classifications (Fig 4, S5 Table). Out of the 26 COG categories, the largest group is the cluster

for “general function prediction”(4647, 16.95%), followed by “post-translational modifica-

tion”, protein turnover and chaperones (3101, 11.31%); translation, ribosomal structure and

biogenesis (1657, 6.04%); transcription (1518, 5.54%); Other categories including cell wall/

membrane/envelope biogenesis, coenzyme transport and metabolism, cell motility defense

mechanisms, extracellular structures, unamed proteins, and nuclear structure accounted for

only less than 1% (Fig 4), was in the smallest group.

To further investigate the functions of L. barbarum fruit unigenes, the KEGG pathway data-

base was used. Among the 21,684 unigenes, 16,850 (77.71%) were classified into 5 main cate-

gories (Fig 5, S6 Table) including 123 KEGG pathways. “Metabolism” was the biggest category

(9419, 55.90%), followed by “genetic information processing” (4,620, 27.42%), “cellular pro-

cesses” (1092, 6.48%), “organismal systems” (860, 5.10%) and “environmental information

processing” (859, 5.10%). A total of 11 categories are contained in the KEGG metabolism, such

as “carbohydrate metabolism”, “nucleotide metabolism”, “amino acid metabolism”, “lipid

metabolism”, “energy metabolism”, and the “biosynthesis of other secondary metabolism”.

Fig 1. Functional annotation of the Lycium barbarum L. transcriptome.

https://doi.org/10.1371/journal.pone.0187738.g001
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Fig 2. Characterization of assembled Lycium barbarum unigenes using the Nr databases. (A) Similarity

distribution of the top BLAST hits for the assembled unigenes with a cutoff of 1E-5. (B) E-value distribution of

BLAST hits for the assembled unigenes with a cutoff of 1E-5. (C) Species distribution of the top BLAST hits for

the assembled unigenes.

https://doi.org/10.1371/journal.pone.0187738.g002

Fig 3. Gene Ontology classifications of assembled unigenes.

https://doi.org/10.1371/journal.pone.0187738.g003
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L. barbarum fruit have high pharmacological and hygienic function components, which

usually come from secondary metabolites. We found 269 unigenes related to other secondary

metabolites in the transcriptome of L. barbarum fruit (S6 Table) encoding genes involved in

anthocyanin biosynthesis (13), betalain biosynthesis (5), flavone and flavonol biosynthesis

(23), and flavonoid biosynthesis (59).

Fruit of L. barbarum are rich in amino acids, which are an important element of their nutri-

tional value. There are 2155 unigenes encoding amino acid metabolism and biosynthesis in

the L. barbarum fruit transcriptome (Table 3), encoding arginine biosynthesis (92); lysine bio-

synthesis (19); phenylalanine, tyrosine and tryptophan biosynthesis (111); valine, leucine. and

isoleucine biosynthesis (65); taurine and hypotaurine metabolism(15).

Fig 4. COG classification of Lycium barbarum fruit unigenes.

https://doi.org/10.1371/journal.pone.0187738.g004

Fig 5. KEGG classification of Lycium barbarum fruit unigenes.

https://doi.org/10.1371/journal.pone.0187738.g005
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Analyzing unigenes related to flavonoid biosynthesis

To confirm the accuracy of the sequencing, assembly and annotation results, 8 important

genes in the pathway of flavonoid biosynthesis including chalcone isomerase (CHI), cinna-

mate 4-hydroxylase (C4H), dihydro flavonol 4-reductase (DFR), anthocyanidin reductase

(ANR), anthocyanidin synthase (ANS), flavonol synthase (FLS), leucoanthocyanidin reductase

(LAR), flavanone 3-hydroxylase (F3H) were selected to determine their relative expression

level in different stages of fruit development by RT-qPCR. The RT-qPCR and FPKM results

were compared and the results are presented in Fig 6, The expression levels of the 8 genes

obtained by RT-qPCR and the FPKM calculation showed the same trend of expression in

different stages of fruit development, indicating the accuracy of transcriptome sequencing,

assembly and functional annotation of unigenes of the L. barbarum fruit.

Analyzing unigenes related to taurine biosynthesis

Among all the amino acids in the fruit of L. barbarum, taurine is a special pharmacologically

and hygienic functional component. From the functional classification by KEGG (Table 3), 15

genes encoding taurine and hypotaurine metabolism were found from the transcriptome of L.

barbarum fruit. Among the 15 genes, one was expressed highly in different stages of fruit

development and annotated as cysteamine dioxygenase (CDO), which is the crucial enzyme

of taurine biosynthesis. To validate that the CDO-like gene isexpressed in the fruit of L. bar-
barum, the relative expression level of the CDO-like gene in different tissues (fruit, root, stem

and leaf) was detected by RT-qPCR. We can see the result from Fig 7 the LbCDO-like gene was

expressed at a high level in the ripening fruit compared to the root, stem, and leaf, indicating

that it may play an important role in fruit ripening, which may contribute to taurine biosyn-

thesis and accumulation in the fruit of Lycium barbarum.

Table 3. Correspondence of Lycium barbarum fruit unigenes to pathways involved in amino acid

metabolism.

KEGG Pathway Pathway ID Gene Number

Alanine, aspartate and glutamate metabolism ko00250 136

Arginine and proline metabolism ko00330 137

Arginine biosynthesis ko00220 92

Cysteine and methionine metabolism ko00270 219

Glycine, serine and threonine metabolism ko00260 187

Histidine metabolism ko00340 50

Lysine biosynthesis ko00300 19

Lysine degradation ko00310 93

Phenylalanine metabolism ko00360 88

Phenylalanine, tyrosine and tryptophan biosynthesis ko00400 111

Tryptophan metabolism ko00380 77

Tyrosine metabolism ko00350 131

Valine, leucine and isoleucine biosynthesis ko00290 65

Valine, leucine and isoleucine degradation ko00280 178

Cyanoamino acid metabolism ko00460 131

Glutathione metabolism ko00480 214

Selenocompound metabolism ko00450 68

Taurine and hypotaurine metabolism ko00430 15

beta-Alanine metabolism ko00410 144

https://doi.org/10.1371/journal.pone.0187738.t003
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Fig 6. RT-qPCR validation of selected unigenes involved in triterpene flavonoid biosynthesis.

https://doi.org/10.1371/journal.pone.0187738.g006
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Development and characterization of EST-SSR markers

To develop new molecular markers, the 139,333 unigenes generated in this study were used to

mine potential microsatellites using MISA soft (MISA, http://pgrc.ipk-gatersleben.de/misa/

misa.html). A total of 50,093 EST-SSRs were identified from 38,922 unigenes, and 8,763 con-

tained more than one SSR (Table 4). The EST-SSR frequency in the transcriptome was 35.95%,

and the distribution density was 342.70 per Mb. Of the 50,093 SSRs, 33,013 are only one nucle-

otide with at least 10 repeats and 10, SSRs are more than one repeat motif, mostly di-nucleotide

(51.82%), followed by tri-nucleotide (45.55%), tetra-nucleotide (2.23%), hexa-nucleotide

(0.23%), and penta-nucleotide (0.16%) repeat units (Table 5). SSRs with six tandem repeats

Fig 7. Relative expression of an LbCDO-like gene in different tissues of Lycium barbarum.

https://doi.org/10.1371/journal.pone.0187738.g007

Table 4. Summary of EST-SSRs identified in the Lycium barbarum L.transcriptome.

Searching item Numbers

Total number of sequences examined 139,333

Total size of examined sequences (bp) 146,170,451

Total number of identified EST-SSRs 50,093

number of EST-SSRs containing more than one repeat motifs 10382

Number of EST-SSRs containing sequences 38922

Number of sequences containing more than one EST-SSRs 8763

https://doi.org/10.1371/journal.pone.0187738.t004

Table 5. Frequency of EST-SSR repeat numbers in Lycium barbarum L.

Motif length Repeat numbers Total %

5 6 7 8 9 10 >10

Dimer — 1688 1072 843 836 694 247 5380 51.82

Trimer 2743 1316 613 47 2 — 8 4729 45.55

Tetramer 202 25 2 — — — 3 232 2.23

Pentamer 14 2 1 — — — — 17 0.16

Hexamer 13 7 2 1 — — 1 24 0.23

Total 2972 3038 1690 891 838 694 259 10382

% 28.63 29.26 16.28 8.58 8.07 6.68 2.49

https://doi.org/10.1371/journal.pone.0187738.t005
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(29.26%) were the most common, followed by five (28.63%), seven (16.28%), eight (8.58%),

nine (8.07%), ten (6.68%), and> 10 tandem repeats (2.49%). The dominant repeat motif in

EST-SSRs was AG/CT (28.28%), followed by AT/AT (23.72%), AC/GT (11.36%), AAC/GTT

(10.90%), and AAG/CTT (9.47%), AAT/ATT (5.43%) (Table 6), CG/CG (0.09%) was fewest.

A total of 22,537 primer pairs were developed from the EST-SSR sites (S7 Table), and 400

(S2 Table) were randomly selected to evaluate their application and polymorphism in L. bar-
barum and other Lycium accessions (Table 1). Among the 400 primer pairs, 352 (88%) were

successful in PCR amplification of genomic DNA from the 11 Lycium accessions, with 271

(76.99%) generating PCR products of the expected sizes, 81 (23.01%) generating larger than

expected PCR products, and 205 with more than one band. A total of 210 pairs showed poly-

morphism and 451 polymorphic loci were detected in the 11 Lycium accessions. The number

of loci per primer pair ranged from 1 to 9, with an average of 2.15.

All polymorphic loci were used to evaluate the genetic diversity and relationship among the

11 Lycium accessions. Genetic similarity of the 11 Lycium accessions (calculated by the NTSYS

software) ranged from 0.50 to 0.99. Taking a genetic similarity score of 0.63 as the threshold,

the 11 Lycium accessions could be divided into four groups (Fig 8). The first group includes

black fruit wolfberry (L. ruthenicum), the second group includes big leaf wolfberry (L. chi-
nense) and Korea wolfberry. The third group includes Ningqi6 and Ningqi8, and they have

the highest genetic similarity (0.99). The fourth group includes Ningqi1, Ningqi3, Ningqi4,

Ningqi5, Ningqi7 and Ningqi9.

Discussion

Characterization of the L. barbarum transcriptome

The high throughput and sensitivity of next-generation sequencing (NGS) has brought

unprecedented opportunities for transcriptomic study. In contrast to microarray methods and

Sanger sequencing of EST libraries, RNA sequencing (RNA-Seq) using NGS has many advan-

tages in the characterization and quantification of transcriptomes. However, transcriptome

assembly from billions of short reads poses a significant informatics challenge, which is also

Table 6. Frequency of di- and trinucleotide EST-SSR repeat motifs in Lycium barbarum L.

Repeat motif Repeat numbers Total %

5 6 7 8 9 10 >10

AC/GT — 168 119 99 55 37 16 494 11.36

AG/CT — 369 264 182 194 151 70 1230 28.28

AT/AT — 271 207 175 212 123 44 1032 23.72

CG/CG — 3 1 — — — — 4 0.09

AAG/CTT 206 190 71 — 1 — 6 474 10.90

AAC/GTT 209 131 68 4 — — — 412 9.47

AAT/ATT 98 80 53 5 — — — 236 5.43

ACC/GGT 73 22 6 — — — — 101 2.32

ACG/CTG 15 12 1 — — — — 28 0.64

ACT/ATG 63 20 10 5 — — — 98 2.25

AGC/CGT 21 7 2 4 — — — 34 0.78

AGG/CCT 45 12 7 2 — — — 66 1.52

AGT/ATC 68 24 16 2 — — — 110 2.53

CCG/CGG 22 8 1 — — — 31 0.71

Total 820 1317 826 478 462 311 136 4350

% 18.85 30.28 18.99 10.99 10.62 7.15 3.13

https://doi.org/10.1371/journal.pone.0187738.t006
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the bottleneck for the accuracy of the final result. There are many strategies and softwares for

transcriptome assembly—for taxa lacking a reference genome, de novo assembly is usually the

best choice. There are two methods of de novo assembly, based on overlap [33] such as CAP3

[34]; or on De-Bruijn graphs [35] which include velvet [36] ABySS [37], SOAP denovo [38],

and Trinity [31]. Previous study indicated that overlap-layout-consensus (OLC) assemblers

are well suited for very short reads and longer reads of small genomes respectively. For large

datasets of more than hundreds of millions of short reads, De Bruijn graph-based assemblers

would be more appropriate [39]. The use of an appropriate assembly tool for different species

is very critical for the quality of the assembly, which is in turn critical to future analysis. In L.

barbarum, a woody plant with a large genome, after Illumina HiSeq sequencing and removing

reads containing adapter, poly-N or low quality sequence, clean reads with average length of

150 bp were used to assemble the transcriptome by Trinity software. A total of 139,333 uni-

genes were generated with an average length of 1049 bp and N50 of 1579 bp. The mean and

N50 sizes of unigenes generated in the present study were obviously longer than those in the

nearest relative with a transcriptome, L. chinense [20]. Indeed, the unigenes generated in this

study (mean = 1049 bp) are longer than those assembled in other recent studies, for example,

Lonicera japonica (882 bp) [40], Arceuthobium sichuanense (533 bp) [17], Idesia polycarpa (652

bp) [18], and Cinnamomum camphora (680 bp) [19]. These results suggest that the transcrip-

tome sequencing data from L. barbarum fruit were effectively assembled.

Functional annotation of unigenes

The L. barbarum fruit unigenes provide insight into the functions of genes active in fruit devel-

opment, and which contribute to its medicinal and nutritional properties. Among 139,333 L.

barbarum unigenes, 92,498 (66.38%) unigenes annotated in at least one database (among Nr,

Nt, Ko, Swiss-prot, Pfam, GO and KOG/COG), the proportion of unigenes annotated is higher

than that in Arceuthobium sichuanense (44.58%) [17], and Idesia polycarpa (48.2%) [18], which

suggests that sequencing and assembly yielded unigenes with substantial functions. However,

33.62% of unigenes could not be matched to known proteins. Some of the unannotated uni-

genes are too short to have a characterized protein domain, whereas others with a known pro-

tein domain are highly diverged from other genes in the databases. Additionally, unannotated

Fig 8. Dendrogram of 11 Lycium varieties based on EST-SSR markers.

https://doi.org/10.1371/journal.pone.0187738.g008
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unigenes could derive from genes unique to L. barbarum, which contribute to its singular

characteristics. The lack of a high quality Lycium genome limits the annotation resources avail-

able to further investigate unannotated unigene sequences.

The assembled unigenes represented a wide diversity of transcripts from L. barbarum,

among which the KEGG pathways of biosynthesis of other secondary metabolism and amino

acid metabolism were particularly important. The fruit of L. barbarum are rich in pharmaco-

logically and hygienically active compounds such as anthocyanin, betalain, flavone, flavonoid,

isoquinoline, tropane and others related to biosynthesis of secondary metabolites. The fruit

also contains 17 amino acids [41]and taurine [42–44], which are the major bioactive constitu-

ents in the fruit. We found 269 unigenes encoding biosynthesis of secondary metabolites and

2155 unigenes encoding amino acid metabolism in the L. barbarum fruit transcriptome. This

result provides a valuable resource for investigating specific processes, functions and pathways

in the fruit of L. barbarum.

Unigenes related to flavonoid and taurine biosynthesis

To confirm the accuracy of the sequencing, assembly and annotation results, 8 important

genes in the pathway of flavonoid biosynthesis were selected to determine their relative expres-

sion level in different stages of fruit development by RT-qPCR and compared with the FPKM

calculation. The results indicate the accuracy of transcriptome sequencing, assembly and func-

tional annotation of unigenes of the L. barbarum fruit. This approach is widely used to valid

the accuracy of transcriptome characterization[45–47] and is also a good way to mine the

genes that we are interested in. Flavonoid in L. barbarum is a special pharmacologically and

hygienic function component, which has the function of anti-cancer, anti-inflammation and

anti-atherosclerosis [48,49]. Moreever, flavonoid biosynthesis is a metabolic pathway revealed

early in different plants such as Arabidopsis [50], crop plants [51] and Camellia sinensis [52].

The study of flavonoid biosynthesis reflects well on the accuracy of gene mining in L. bar-
barum. In L. barbarum, there is no report about genes of flavonoid biosynthesis, and the genes

found in this research will be conducive to promoting the study of flavonoid biosynthesis and

metabolic mechanisms in L. barbarum.

Taurine is a free amino acid which is mainly present in animals, and has pharmacological

and hygienic functions including effects on retinal development [53], antioxidation and neu-

roinhibition [54], treat of taurine deficiency retinopathy, kidney disease and congestive heart

failure [55], and others. There are very few reports about taurine in plants except some sea-

weeds [56]. It is reported that taurine is abundant in the fruit of L. barbarum [42–44]. In this

study, we found the taurine metabolic pathway from the transcriptome of L. barbarum fruit

and one gene was annotated as cysteamine dioxygenase (CDO), which is the crucial enzyme of

taurine biosynthesis [57]. This gene can express in different stages of fruit development and

different tissues of L. barbarum, and is expressed at a high level in the ripening fruit compared

to the root, stem, and leaf, indicating that it may contribute to taurine biosynthesis and accu-

mulation in the fruit of L. barbarum. This is the first study about the genes for taurine metabo-

lism in L. barbarum, The gene we found will provide a basis to support further molecular

research on taurine biosynthesis in L. barbarum.

EST-SSR marker characterization and validation

EST-SSR markers are of high value for research such as genetic diversity evaluation, construc-

tion of linkage maps, fine mapping of crucial genes and marker-assisted breeding. Because of

the lack of a L. barbarum genome sequence, development of SSRs has been limited. In this

study, numerous potential EST-SSR were identified from the L. barbarum transcriptome
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sequence. A total of 50,093 EST-SSRs were identified from 38,922 unigenes, and 22,537 primer

pairs were designed from flanking sites. The EST-SSR frequency in the transcriptome was

35.95%, and the distribution density was 342.70 per Mb. This result indicates that there is a

high frequency and distribution density of SSRs in the transcriptome of L. barbarum, higher

than the reported in Allium fistulosum [58], and Juglans mandshurica [22]. Excluding mono-

nucleotide repeats, the frequency of di-nucleotide was highest, followed by tri-nucleotide

(45.55%), the same as in Juglans mandshurica [22] and Caragana korshinskii Kom [24]. The

most abundant di-nucleotide motif was AG/CT, consistent with Allium fistulosum L.[58] and

Caragana korshinskii Kom [24]. The most abundant tri-nucleotide motifs were AAG/CTT,

consistent with Camellia sinensis [25] and radish [26].

Four hundred pairs of primers were randomly selected from the 22,537 EST-SSR markers

to evaluate their application and the polymorphism rate in L. barbarum and other Lycium
accessions. Among the 400 primer pairs, 352 (88%) were successful in PCR amplification with

genomic DNA from 11 Lycium accessions, the remaining 12% either failing or producing only

weak amplification, perhaps due to flanking a splice site resulting in large introns in the geno-

mic sequence. Of the 352 primer pairs, 271 (76.99%) generated PCR products of expected size,

while 81 (23.01%) were larger than expected, suggesting that the amplicons likely contained

introns. A total of 205 pairs of primers generated PCR products with more than one band, that

may result from the high heterozygosity and polyploidy of L. barbarum germplasm.

The 352 primers were used to analyze genetic relationships and diversity among 11 Lycium
accessions. The 11 accessions were divided into 4 groups, with the L. barbarum accessions in

two groups derived from different breeding programs. Ningqi6 and Ningqi8 are bred by Ning-

xia Forestry Institute, and the other six L. barbarum accessions are bred by Ningxia Academy

of Agriculture and Forestry sciences. Lycium barbarum, black fruit wolfberry (L. ruthenicum
Murr), and big leaf wolfberry (L. chinense Mill), were divided into 3 different groups, reflecting

their species differentiation. Korea wolfberry and big leaf wolfberry (L. chinense Mill) are in

the same group, however, suggesting recent common ancestry. Further research with more

accessions is needed to understand the genetic relationship among these two species. In gen-

eral, the result supported the hypothesis that the EST-SSR markers described here are of good

quality and can be used to evaluate genetic diversity efficiently. Therefore, the 22,537 deveoped

EST-SSR markers provide a rich source of molecular markers that will facilitate genetic diver-

sity analysis, genetic mapping and marker-assisted breeding in L. barbarum.

Conclusion

The characterization of the Lycium barbarum transcriptome and the substantial body of tran-

scripts obtained will facilitate investigations of its fruit development and its medicinal and

nutritional components; and will also be of value to gene discovery and functional genomics

studies. The SSR markers developed here provide a foundation for genetic diversity analysis,

genetic mapping and marker-assisted breeding in L. barbarum.
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