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Abstract

Successful antibiotic treatment of infections relies on accurate and rapid identification of the

infectious agents. Pseudomonas aeruginosa is implicated in a wide range of human infec-

tions that mostly become complicated and life threating, especially in immunocompromised

and critically ill patients. Conventional microbiological methods take more than three days to

obtain accurate results. Pyocyanin is a distinctive electroactive biomarker for Pseudomonas

aeruginosa. Here, we have prepared polyaniline/gold nanoparticles decorated ITO elec-

trode and tested it to establish a rapid, diagnostic and highly sensitive pyocyanin sensor in a

culture of Pseudomonas aeruginosa clinical isolates with high selectivity for traces of pyo-

cyanin when measured in the existence of different interferences like vitamin C, uric acid,

and glucose. The scanning electron microscopy and cyclic voltammetry techniques were

used to characterize the morphology and electrical conductivity of the constructed electrode.

The determined linear range for pyocyanin detection was from 238 μM to 1.9 μM with a

detection limit of 500 nM. Compared to the screen-printed electrode used before, the con-

structed electrode showed a 4-fold enhanced performance. Furthermore, PANI/Au NPs/ITO

modified electrodes have demonstrated the ability to detect pyocyanin directly in Pseudo-

monas aeruginosa culture without any potential interference with other species.

1. Introduction

Pseudomonas aeruginosa (P. aeruginosa) is a prevalent and opportunistic pathogen that is con-

sidered one of the most annoying bacteria causing deadly infections in critically ill patients [1–

4]. It commonly produces infections in patients with surgical wounds, burn wound or cystic

fibrosis. Infections caused by P. aeruginosa have high morbidity and mortality rates, particu-

larly among immunocompromised patients such as cancer patients and premature infants [5–

7]. P. aeruginosa may acquire multidrug resistance, making its eradication with antibiotics
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challenging [8]. The increasing resistance of bacteria is partially due to the late diagnosis and

the misuse of antibiotics [9]. Hence, the early and fast detection of this serious pathogen is

essential for a more targeted antibiotic prescription that will hasten recovery and reduce the

emergence of antibiotic resistance [10, 11].

Infections caused by P. aeruginosa are typically recognized in laboratories by using selective

culturing techniques, which needs at least 24 h to obtain the results. Furthermore, the poly-

merase chain reaction (PCR) is utilized for the diagnosis of P. aeruginosa. However, PCR

needs expensive chemicals, require complicated sample preparations, and is a time-consuming

technique [12]. Therefore, developing a sensitive, specific, and rapid identification methods

for pathogen detection in cost and time competent manners have found broad attention in the

last few years [13]. Pyocyanin is one of the virulence factors exclusively secreted by P. aerugi-
nosa. It is a unique, quorum-sensing molecule that is linked to biofilm formation, induces

inflammation, and causes apoptosis of neutrophils [14–16].

Until lately, pyocyanin was measured by chromatography or spectrophotometric tech-

niques that are time-consuming and needs purification from bacterial cultures [15]. Electro-

chemical sensors are recommended efficient tools for the identification of different important

biological, chemical, and environmental targets [13]. They are easy to use with low detection

limits, excellent sensitivity, good stability, together with cost and time effectiveness [17, 18].

The redox-active nature of pyocyanin molecules permits its rapid detection by electrochemical

sensors in two minutes [19]. It is still a challenge to find new and more sensitive methods to

provide timely and accurate information about P. aeruginosa that can aid prompt treatment

decisions when bacteria are stil responding to antibiotics treatment.

Gold (Au) nanostructures are currently used to modify electrodes of biosensors because of

its excellent optical and electrical properties and affinity to bind with biomolecules [20–27].

Moreover, the Au nanostructures decorated indium tin oxide (ITO) substrate was successfully

used to detect several multidrug-resistant bacteria [28].

Conducting polymers [29] have gained much interest in recent researches because of

their excellent conductivity, stability and ease of preparation. In general, the electronic and

electrochemical properties of [30–33] conducting polymers made them have many applica-

tions in photovoltaic cells, organic light emitting diode, and biosensors. Polyaniline (PANI)

has received much attention in the research work. This is mainly because PANI and its deriv-

atives or composites with other materials are easy to synthesize chemically or electrochemi-

cally [34].

Therefore, conducting polymers/metal or metal oxides hybrid materials possess the

unique combination of the conducting polymers properties (biocompatibility, direct electro-

chemical synthesis) and the unique features of nanomaterials including large active surface

area, flexibility for the immobilization of biomolecules and the quantum effect that could

enhance the rate of the electron transfer of the developed sensor [35]. Recently, we have

manufactured poly(4–aminothiophenol) nanostructures coated Au nanodots ITO electrode

for highly sensitive and selective electrochemical detection of a mixture of adenine and gua-

nine DNA bases [24].

Hybrid organic and inorganic nanocomposites not only possess the sum of their individual

components, but also the role of the inner interfaces could be predominant; thus hybrid

organic/inorganic nanocomposites have been broadly used in a variety of applications includ-

ing biosensors [22, 36–40] and sensors [41].

The present work aims to assess the efficacy of using PANI/Au nanostructures modified

ITO sensor for early detection and quantification of pyocyanin in P. aeruginosa cultures of

clinical isolates based on cyclic voltammetry (CV) technique.

Pyocyanin biomarker sensor
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2. Methods

2.1. Materials

Pyocyanin (P0046-5MG), ITO substrates and gold (III) chloride hydrate (HAuCl4) were pur-

chased from Sigma Aldrich. Deionized water (DIW) with a resistivity of 18.2 MO.cm was used

for all preparations. Phosphate buffer saline (PBS) (0.01 mol/L, pH 7.4) was prepared by dis-

solving PBS powder in 1 L of DIW. Luria-Bertani (LB) broth (Oxoid, UK) was utilized in this

study.

2.2. Instruments

The Autolab potentiostat instrument (Netherlands) connected with the three-electrode cell

was used for all electrochemical measurements; Metrohm Model 663VA stand was controlled

using Nova software at room temperature. The three-electrode system comprised of a counter

electrode of a platinum wire, a reference electrode of Ag/AgCl and a working electrode of

PANI/Au modified ITO electrode.

2.3. Pseudomonas aeruginosa clinical isolates

P. aeruginosa cultures were made from clinical isolates obtained from the Department of Med-

ical Microbiology, and Immunology that were isolated from clinical cases of P. aeruginosa
infections admitted to Assiut University hospital as pneumonia, corneal ulcers, urinary tract

infections, and wound infections. The clinical isolates of P. aeruginosa were proved by using

the VITEK 2 automated microbiology system. The study protocol was approved by the local

Ethical Committee of the Faculty of Medicine, Assiut University, (IRB no: 17300293) and

informed written consent was taken from all the study participants.

2.4. Methods

2.4.1. Synthesis of gold nanostructures decorated ITO electrode. The ITO electrode

with a size of 2.5 cm X 1.25 cm was first cleaned by sonication in 1X Triton, DIW and then in

ethyl alcohol for 15 min each. The substrates were immersed in a basic piranha solution,

which consists of a mixture of H2O2:NH3: H2O (1:1:5 v/v) for 30 minutes at 80˚C. Finally, the

electrodes were rinsed with DIW and ethanol and dried under nitrogen gas. The Au NPs mod-

ified ITO electrodes were prepared by following our previously described method [21]. An

aqueous solution of 0.001 M of gold chloride was added into the electrochemical cell and we

have issued the deposition process of Au NPs on the ITO substrates by using CV technique

within potential window from 1.5 V to -1 V for 5 cycles at scan rate of 50 mV/sec against Ag/

AgCl reference electrode. The morphology of the modified electrode was investigated by SEM

(JOEL-JSM-5400LV).

2.4.2. Preparation of gold modified ITO electrode. Polyaniline hydrochloride (PANI)

salt was prepared according to the previously published work [42]. Typically, 0.5 g of aniline

hydrochloride was dissolved in 20 mL of DIW and stirred in an ice bath for 1h (first solution).

In another conical flask, a solution of 0.5 g of ammonium persulphate in 20 mL DIW was stir-

red in an ice bath for 1h and then added to the first solution with stirring for 4 hours. The dark

green precipitates were filtrated and dried in an oven at 80˚C [43]. To fabricate a layer of

PANI on the surface of Au nanostructures decorated ITO electrode, the modified electrode

was immersed in a solution of PANI in NMP (0.001 gm/mL) for 8 hrs and then rinsed with

DIW to remove the PANI from the non-conductive side and dried under N2 gas [42, 44].

2.4.3. Electrochemical measurements of pyocyanin. The electrochemical cell was

charged with different concentrations of pyocyanin within a range from 1.9 to 238 μM in
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PBS (10 mmol/L, pH 7.4) as an electrolyte. Then, working electrode together with the refer-

ence and counter electrodes were immersed in the pyocyanin for the electrochemical

measurements.

2.4.4. The selectivity of the developed pyocyanin sensor. The electrochemical responses

of several mixtures of pyocyanin with different interferences including glucose, vitamin C, and

urea as common interferences present in clinical samples has been investigated to validate the

selectivity of the developed biosensor towards the pyocyanin biomarker.

2.4.5. Electrochemical detection of pyocyanin in Pseudomonas aeruginosa cultures.

Under complete sterile conditions, a colony (or more) of P. aeruginosa were added in 10 ml of

LB broth in 14 ml tube and placed on a shaker (200 rpm) at 37˚C overnight. 1ml of this sus-

pension was removed and added to 9 ml fresh LB broth in 14 ml tube and placed again in a

shaker at 37˚C for one day. Three samples were collected at different time-points (after 2, 10

and 24 hours) during the 24 hours. The concentration of pyocyanin was estimated using the

PANI/Au NPs modified ITO electrode. The OD at 600 nm (OD600) was measured to quantify

the density of the bacteria and confirm the increasing bacterial number in each culture sample.

2.4.6. Electrochemical testing of bacterial cultures. Each strain of S. epidermidis, S.

aureus, S. pneumonia, P. aeruginosa, and K. pneumoniae was cultivated in LB broth at 37˚C

overnight. The cyclic voltammetry of each strain culture was measured using the PANI/Au

NPs modified ITO electrode.

2.4.7. Electrochemical detection of P. aeruginosa isolated from clinical samples. Differ-

ent P. aeruginosa clinical isolates were collected for electrochemical testing. Samples were cul-

tivated in LB broth and incubated at 37˚C overnight. The CV of each sample was measured

using the PANI/Au NPs modified ITO electrode.

3. Results and discussion

3.1 Synthesis and morphological features of the Au nanostructures/ITO

and PANI/Au NPs/ITO electrodes

In the present work, the preparation of Au NPs decorated ITO electrode was performed via
electrochemical deposition of Au nanostructures onto the ITO substrate based on CV tech-

nique. The electrochemical deposition process was performed within a potential window from

1.5 V to -1.0 V for 5 cycles to allow a complete reduction of Au3+ ions into Au0 [20]. Fig 1

demonstrated a reduction peak at -0.5, -0.13 and 0.1 V, anodic peak at -0.1 and 0.84 V during

the first cycle of Au nanoparticles deposition, which is shifted to -0.35 & 0.41 V; in addition to

oxidation peaks at 0.061 & 0.84 V during the deposition process in the remaining 4 cycles. The

shifting in the reduction peaks is related to the reduction process of Au3+ to form metallic Au

nanostructures on the ITO electrode surface [20].

The morphology of the Au nanostructured coated ITO electrode was explored by SEM as it

could have a significant effect on the electrochemical detection sensitivity. The SEM image of

the Au nanostructured decorated ITO electrode (Fig 2A) illustrated the formation of Au NPs

with circle morphology and the diameter size was ranging from 76.9 nm to about 192.3 nm

and thus we have obtained polydispersed particles. Furthermore the SEM image showed the

distribution of Au NPs which indicated the excellent coverage of Au nanostructures over the

ITO electrode surface. The average particle size was analyzed by using ImageJ (version IJ152)

program (Fig 2B), which analyzed the data of 59 particles and the results demonstrated that

the mean particle size was found to be about 75.26 nm in diameter with a standard deviation

of about 42.737 nm. Fig 2C showed the distribution of particle diameter size for the analyzed

59 particles, which indicated that most of the analyzed particles have small diameter with few

particles with large diameter.

Pyocyanin biomarker sensor
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3.2. The electrochemical response of pyocyanin biomarker by using cyclic

voltammetry

Fig 3A represented the CV behavior of 50 μM of pyocyanin in PBS at the bare ITO electrode,

which demonstrated very weak redox peaks. So, the CV responses of higher concentrations

were investigated (Fig 3B) that exhibited an oxidation peak at -0.203 V and a reduction peak

at -0.305 V. Thus, the bare ITO electrode is unsuitable for detecting low concentrations of pyo-

cyanin. To develop an electrode that could sense the pyocyanin; the ITO electrode was modi-

fied with Au nanostructures and was used to study the electrochemical behavior of pyocyanin

based on CV method. Fig 3C presented the cyclic voltammograms of three different concen-

trations of pyocyanin at Au NPs modified ITO electrode, which illustrated a quasirevisable

response with one oxidation peak at -0.21 V and a reduction peak at about -0.3 V. These results

showed the ability of the Au NPs coated ITO electrode fo pyocyanin detection; this capability

is attributed to the signal strengthening of Au nanostructures that improved the rate of the

electron transfer [21, 45]. However, the Au NPs modified ITO electrode didn’t show any

Fig 1. Electrochemical deposition of Au NPs onto ITO substrate based on CV technique within a potential window from 1.5 V to -0.1 V, scan

rate was 50 mV/sec.

https://doi.org/10.1371/journal.pone.0216438.g001
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response to pyocyanin solution with concentrations lower than 36 μM. To enhance the sensi-

tivity of the developed electrode, we have modified the Au nanostructured/ITO electrode with

a layer of PANI and then used it to detect the pyocyanin marker. Fig 2D showed the SEM

micrograph of the PANI/Au NPs/ITO, which showed the formation of a thin layer of PANI

with a large diameter in addition to the presence of uncovered Au NPs. This results confirmed

the fabrication of PANI layer over the Au NPs and the formation of PANI/Au NPs core/shell.

The cyclic voltammogram of 50 μM pyocyanin at PANI/Au NPs/ITO electrode was exhibited

in Fig 3D that showed an increase in the anodic peak at -0.23 V and cathodic peak at -0.3 V.

Furthermore, it is interesting to note that the redox current peak is higher than that in either

case of using ITO or Au NPs/ITO electrodes. In addition, the revisability of the redox behavior

was increased with electrode modification. This indicates that PANI/Au NPs/ ITO electrode is

more sensitive to pyocyanin than either bare ITO electrode or Au NPs/ITO electrode.

To study the role of the PANI layer, we have fabricated PANI/ITO electrode based on elec-

trochemical polymerization method and then using this electrode for monitoring the pyocya-

nin biomarker. Fig 3E represented the CV response of 50 μM pyocyanin at PANI/ITO

Fig 2. (a) SEM image of Au NPs modified ITO electrode prepared after 5 cycles, (b) ImageJ (IJ 152) analysis of the SEM image of the Au NPs modified ITO electrode

prepared after 5 cycles, (c) the distribution of particle diameter size for the analyzed 59 particles and (d) SEM image of PANI/ Au NPs/ITO electrode.

https://doi.org/10.1371/journal.pone.0216438.g002
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electrode, which showed a broad background with an anodic current peak at about -0.14 V but

no cathodic peak could be observed. These results indicated that although the PANI/ITO elec-

trode could show the anodic peak but the rate of electron transfer was not enough to show the

cathodic peakand hene we need to develop more senstive electrode.

Fig 4A showed the scan rate effects within a range from 10 mV/s to 120 mV/s on the maxi-

mum current peak of pyocyanin, which illustrated an increase in the redox peaks with the rise

of the scan rate. Fig 4B illustrated the relationship between the value of the scan rate versus the

maximum peak current of pyocyanin at Au NPs/ITO electrode, which demonstrated a linear

relationship over a wide range of scan rate from 0.01 V/s to 0.12 V/s.

3.3. The reproducibility and the sensitivity of the developed sensor towards

pyocyanin marker

Before using the modified electrode for detecting different concentrations of pyocyanin, we

have studied the reproducibility of our data based on fabricated five electrodes under the same

conditions and used them to measure the same pyocyanin concentration. Fig 4C showed the

cyclic voltammograms of 30 μM of pyocyanin at five PANI/Au NPs/ITO electrodes, which

showed almost the same anodic current peaks (25.58, 25.84, 26.01, 26.633 and 27.41 μA). The

maximum variation in the current peak was about ±0.5 μA between the different five elec-

trodes. These results indicated the high reproducibility of these electrodes.

Fig 3. Cyclic voltammetry behavior of (a) 50 μM pyocyanin in PBS buffer at bare ITO, (b) three different concentrations of pyocyanin in PBS buffer at bare ITO, (c)

three different concentrations opyocyanin in PBS buffer at Au NPs modified ITO, (d) 50 μM pyocyanin in PBS buffer at PANI/Au NPs modified ITO and (e) 50 μM

pyocyanin in PBS buffer at PANI/ modified ITO. The scan rate was 50 mV/sec.

https://doi.org/10.1371/journal.pone.0216438.g003
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To assess the sensitivity of the PANI/Au NPs decorated ITO electrode towards pyocyanin,

the CVs responses of a wide range of pyocyanin concentrations (from 1.9 μM to 238 μM) in

PBS were investigated at PANI/Au NPs modified ITO electrode. Fig 5A showed the CVs per-

formance of the pyocyanin different concentrations at PANI/Au NPs modified ITO electrode,

which showed an increase in the redox current peaks with the increase in the pyocyanin con-

centration. Fig 5B and 5C represented the oxidation current peak vs the pyocyanin concentra-

tion at PANI/Au NPs decorated ITO electrode, which illustrated a linear response between the

anodic current peaks and the concentration of pyocyanin. The LOD of the PANI/Au nano-

structured modified ITO electrode was calculated by following the equation LOD = 3.3�

(STEYX/Slope of calibration curve), and it was 500 nM. This result is better than the results

obtained by Alatraktchi et al., who detected pyocyanin by a disposable screen-printed elec-

trode [46]. The results in Fig 5 showed the high sensitivity for detection of pyocyanin using

the Au modified ITO, which was attributed to the use of PANI/Au nanostructured decorated

Fig 4. a) CV of pyocyanin 50 μM at different scan rate from 0.01 V/s to 0.12 V/s, b) scan rate versus the oxidation peak current of pyocyanin, and c) CV response of

30 μM of pyocyanin at five different PANI/Au NPs/ITO electrodes at scan rate of 50 mV/sec.

https://doi.org/10.1371/journal.pone.0216438.g004
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ITO as a working electrode that achieved the precise, rapid and sensitive measurement of pyo-

cyanin with a low cost. Table 1 showed the LOD of our modified electrode in comparison

with the LOD of some previously reported electrodes for the electrochemical pyocyanin deter-

mination. The results in the table showed that the present electrode possessed a lower LOD in

contrast with most of the previously reported electrodes [46–52], although they have used

more sensitive electrochemical techniques including the square wave voltammetry (SWV) and

differential plus voltammetry (DPV).

3.4. The selectivity of the sensor towards pyocyanin in the presence of

different interferences

One of the concerns raised about the utility of the PANI/Au nanostructured coated ITO elec-

trode for investigating the existence of P. aeruginosa in human samples is that there may be

Fig 5. (a) Cyclic voltammograms of different concentrations of pyocyanin from 238 μM to 1.9 μM at scan rate 50 mV/sec, (b) the relationship between the anodic

current peaks and the pyocyanin concentration, and (c) linear relation between current peak and pyocyanin concentrations from 25.62 μM to 1.9 μM.

https://doi.org/10.1371/journal.pone.0216438.g005
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other molecules, which may interfere with electrode performance. It is crucial to achieve high

selective and sensitive sensing efficiency against pyocyanin in the presence of different inter-

ferences in clinical samples. This study focused on the selective detection of pyocyanin in the

existence of vitamin C, glucose, and urea, which may be present in clinical samples. Fig 6 dis-

played the CV of pyocyanin and interferences; there are no peaks of interferences in the poten-

tial window of pyocyanin. The obtained results revealed that the selective detection of

pyocyanin is applicable, with high sensitivity. The results reported in Fig 6 showed a clear elec-

trochemical fingerprint of pyocyanin, which was observed when pyocyanin was measured

among other redox-active compounds such as vitamin C, urea, and glucose.

3.5. Electrochemical pyocyanin detection in Pseudomonas aeruginosa

culture

In this study, different samples from the P. aeruginosa cultures were gathered during log and

stationary phases. The pyocyanin was released from P. aeruginosa culture and detected

Table 1. Comparison between the sensitivity of our sensor with the previous work.

Sensor Electrochemical technique LOD References

Screen-printed electrode (gold

working electrode)

CV 2 μM (44)

Screen-printed electrode (gold working

electrode)

Amperometry 0.125 μM (45)

Screen printed sensing glove (carbon ink) SWV 0.003 μM (46)

Three electrode configurations consisting of a

Carbon Fibre tow laminate working electrode

SWV 0.030 μM (47)

Paper-based sensor (carbon electrode) SWV 0.095 μM (48)

Boron-doped diamond (BDD) thin-film electrode DPV 0.05 μM (49)

-T-Macro SWV 0.51 μM (50)

-1.54T-CUA SWV 1.0 μM (50)

-CS/GNP 1.54T-CUA SWV 1.6 μM (50)

PANI/Au NPs/ITO CV 0.5 μM The present work

https://doi.org/10.1371/journal.pone.0216438.t001

Fig 6. (a) CV of pyocyanin, vitamin C, glucose and urea, and (b) CV of pyocyanin and various mixtures of pyocyanin, vitamin C, glucose and urea.

https://doi.org/10.1371/journal.pone.0216438.g006
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electrochemically by PANI/Au NPs modified ITO after 2, 10, and 24 hours. The results in Fig

7 showed that pyocyanin was not released in the culture after 2 hours of incubation (OD at

600 nm was 0.1, so the culture was in the log phase). Pyocyanin could be detected after 10

hours as the culture reached the stationary phase. This result is consistent with that obtained

by Cabeen 2014 who reported that the release of pyocyanin is controlled by the quorum detec-

tion system that doesn’t exist in the early stage of the culture [53].

3.6. Electrochemical testing of bacterial cultures

In this application, the major concern was the possible interference of other bacteria produc-

ing redox-active molecules with the response of the sensor in the potential window of pyocya-

nin. Therefore, a variety of clinically-relevant bacteria (Fig 8) were electrochemically

measured by the PANI/Au NPs modified ITO after 24 hours of growth. The above results indi-

cated that this sensor demonstrated high selectivity to pyocyanin. A remarkable oxidation peak

at -0.23 V was originated from the P. aeruginosa strain, and no additional redox-active peaks

were detected for the other tested bacteria within this potential window. The possibility of a

false positive identification of P. aeruginosa using this method is doubtful because the other

Fig 7. Electrochemical detection of pyocyanin in P. aeruginosa culture at 37˚C after 2, 10 and 24 hours of incubation.

https://doi.org/10.1371/journal.pone.0216438.g007
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pathogens didn’t show a detectable peak in the potential window of pyocyanin. This endorses

that only P. aeruginosa was generating redox-active particles between the tested bacteria.

3.7. Electrochemical sensing of P. aeruginosa strain in clinical samples

Clinical P. aeruginosa isolates were cultured and incubated at 37˚C for 24 hours; then the

direct electrochemical sensing was performed. All P. aeruginosa isolates were having a positive

test result of electrochemical detection by PANI/Au NPs modified ITO electrode. The observa-

tion of an electrochemical peak at -0.20 V was shown in Fig 9, which is a characteristic oxida-

tion peak of the pyocyanin indicating that the examined sample was containing P. aeruginosa.

The negative control was uninoculated LB broth, which didn’t show the pyocyanin redox-

active oxidation peak.

4. Conclusions

In summary, PANI/Au NPs decorated ITO electrode was fabricated by the electrodeposition

of Au NPs onto the surface of the ITO substrate based on CV technique, followed by covering

Fig 8. Cyclic voltammetry of different bacterial cultures after one day of growth at 37 ˚C.

https://doi.org/10.1371/journal.pone.0216438.g008
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the surface with a layer of PANI. The prepared electrode showed 100% sensitivity, selectivity,

and a low detection limit for pyocyanin. The capability of the PANI/Au NPs modified ITO

sensor to detect pyocyanin released in P. aeruginosa culture will aid in the fast, precise detec-

tion of pyocyanin biomarker and diagnosis of P. aeruginosa infections especially in critically ill

patients. Consequently, this will achieve a rapid appropriate treatment and reduce the emer-

gence of resistance made by the empirical treatment.
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