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Abstract: Commercial myoelectric prostheses are costly to purchase and maintain, making their
provision challenging for developing countries. Recent research indicates that embroidered EMG
electrodes may provide a more affordable alternative to the sensors used in current prostheses.
This pilot study investigates the usability of such electrodes for myoelectric control by comparing
online and offline performance against conventional gel electrodes. Offline performance is evaluated
through the classification of nine different hand and wrist gestures. Online performance is assessed
with a crossover two-degree-of-freedom real-time experiment using Fitts’ Law. Two performance
metrics (Throughput and Completion Rate) are used to quantify usability. The mean classification
accuracy of the nine gestures is approximately 98% for subject-specific models trained on both gel
and embroidered electrode offline data from individual subjects, and 97% and 96% for general
models trained on gel and embroidered offline data, respectively, from all subjects. Throughput
(0.3 bits/s) and completion rate (95–97%) are similar in the online test. Results indicate that em-
broidered electrodes can achieve similar performance to gel electrodes paving the way for low-cost
myoelectric prostheses.

Keywords: myoelectric prostheses; embroidered EMG electrodes; pilot study; online and offline
performance; conventional gel electrodes

1. Introduction

Upper extremity loss is a highly disabling family of injuries that ranges from partial
hand loss to loss of an entire arm. It can dramatically reduce a person’s quality of life by
impairing their ability to interact with their environment creating an economic and social
burden. The total number of people with upper-limb loss is often difficult to quantify
because many countries do not keep track of the incidence of amputation. However, it is
estimated that over half a million people were living with some degree of upper limb loss
in the United States in 2005. This figure is projected to double by 2050 [1]. Upper limb loss
is estimated to be even more prevalent in the developing world, with most of the world’s
amputees and disabled living in low- and middle-income countries [2].

Prostheses, or artificial limbs, can replace lost functionality and improve the quality
of life in people who have suffered upper limb loss. Historically, artificial upper limbs
have been either cosmetic devices that restore the natural appearance of the lost limb or
body-powered prosthetics that offer a limited restoration of functionality. Over the last
century, however, various active artificial upper limbs have entered the literature and,
increasingly, the commercial market. Most commercial functional prostheses, such as
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the Michelangelo hand (Otto Bock, Duderstadt, Germany) and the LUKE arm (Mobius
Bionics, New Hampshire USA), are expensive devices for wealthy individuals in developed
countries. However, a growing number of projects across the world aimed at harnessing
the emerging technologies of the 4th industrial revolution, such as 3D printing, to produce
affordable active prostheses. The Hero Arm (Open Bionics, Bristol, UK) and the Touch hand
(Touch Prosthetics, Cape Town, South Africa) are examples of affordable active prostheses
aimed at high-income and low- to middle-income nations, respectively.

An active prosthetic may be further classified as either an electric or myoelectric
device. The former is controlled using external buttons and joysticks, while the latter is
controlled using electromyographic (EMG) signals [3]. In myoelectric control, time and
frequency domain features are extracted from the user via surface electrodes and are then
fed into a control algorithm. The algorithm, in turn, converts them into motor commands
fed into the prosthesis, thereby allowing the user to control the prosthetic and replace some
of their lost functionality [4].

The development of a more affordable surface EMG electrode is one way that the cost
of producing and maintaining myoelectric-controlled artificial limbs can be reduced and is
an area that has received less attention than other prosthetic components. The two most
common electrode types used in surface EMG are solid metal dry electrodes, which are
widely used in prosthetics [5], and Ag-AgCl gel’ wet’ electrodes, which are the standard in
clinical measurements [6].

Gel electrodes have lower impedance than other surface electrodes due to the large
contact area provided by the electrolyte gel, resulting in minimal impedance and noise.
The adhesive coating on the electrodes also produces a stable skin–electrode contact, which
minimises motion artefacts [6]. Despite their high signal quality, gel electrodes are ill-suited
for the heavy use required in powered prosthetics. The electrolyte gel dries out over time,
causing the signal to decay and eventually fail, after which the electrodes or gel must be
disposed of and replaced. Furthermore, the adhesive coating used in the electrodes can
irritate the skin during use.

The solid metal dry electrodes used in current prostheses are typically made from
stainless steel or titanium with a flat or domed shape. They are usually active with a
preamplifier and other circuitry built directly into the electrode. These electrodes solve
some of the problems posed by gel electrodes: they can be used for prolonged periods
without signal failure, are reusable, and do not require adhesive coatings. However, they
have shortcomings of their own. The metal plates can cause skin irritation through friction,
and they are more susceptible to motion artefacts than gel-based designs. They are also
more expensive to manufacture than gel and other electrode designs.

E-textiles may provide an alternative to the commercial electrode designs currently
on the market. Textile electrodes can be constructed by embedding conductive fibres
into a textile substrate using traditional fabrication techniques, such as embroidery and
weaving [7]. Several textile electrodes for EMG have been presented in the literature [8–10],
and their potential performance in myoelectric control has been demonstrated in wrist and
hand gesture EMG classification experiments [11,12]. Because they are soft and breathable
and do not use any abrasive chemicals, these textile electrodes do not irritate the user’s skin.
Their flexibility enables the electrode to conform to the shape of the arm and ensures that
solid skin contact is maintained throughout the measurement, thereby minimising motion
artefacts. Embroidered electrodes can be easily integrated into commercial prosthesis
sockets [13] or fixed locations on smart garments or sleeves, making the process of placing
the electrodes simple and appropriate for use by amputees. Like other dry electrodes, the
textile designs are also reusable and can be worn for long periods without signal failure.
The use of silver-coated thread has also been shown to have an antibacterial effect that
helps to keep electrodes hygienic [14].

This paper evaluates the usability of affordable embroidered textile electrodes in
real-time myoelectric control against a gel electrode standard. The significant advantage
of this textile electrode design is its simple construction, which could potentially enable
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it to be handmade [15]. The ability to produce the electrodes by hand, coupled with the
advantages inherent to textile electrodes, such as reusability, could make the design as
much as 40% cheaper than gel alternatives [16] and ultimately facilitate the construction of
more affordable myoelectric prostheses.

2. Materials and Methods
2.1. Embroidered Electrode Design

The electrodes were developed in the Centre for Robotics Research (CORE) at King’s
College London in a series of investigations [15–19] and consist of silver-coated thread
(Electro-Fashion Conductive Thread, Kitronik, 40 Ωm−1) embroidered into linen fabric
with a Vilene cut away stabiliser. The embroidered pattern used is a 20 mm diameter
circle with a cross-hatched fill pattern. The hatching has a 2 mm separation, and two
iterations of embroidery are performed. An example of an electrode pair can be seen in
Figure 1. The design parameters are selected to minimise resistance through the electrode
in accordance with [18]. The electrodes are implemented in bipolar pairs with an inter-
electrode distance (IED) of 25 mm. A standard snap fastener (Hemline, 13 mm, brass
rust-proof fastener) is sewn onto each electrode and used to connect the electrode to
an external amplifier. The electrodes are manufactured using a Pfaff Creative 3.0 (Pfaff,
Kaiserslautern Germany) programmable sewing machine designed in the companion 6D
Embroidery Software application.
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Figure 1. Example of embroidered electrodes used in this study. The outer side shows snap connectors
(top), and the inner side shows conductive thread (bottom).

2.2. Subjects

Three subjects volunteered for the experiments reported here, two female and one
male. The participants were healthy, normally limbed, and ranged in age from 21 to 24.
Due to the pandemic, we are not allowed to recruit more subjects, and thus this is a pilot
study. We are planning to run a follow-up study soon with proper statistical analysis. All
provided written informed consent before testing, and all tests had King’s College Research
Ethics Committee approval (Approval number: LRS-16/17-4213).

2.3. Experimental Setup

Two sets of surface electrodes are used for the experiments, one set of gel electrodes
and one set of embroidered textile electrodes. When applying each set, subjects are seated,
and four bipolar electrode pairs are placed on the forearm. Two pairs are placed over
the extensor muscle group—the extensor carpi ulnaris and extensor digitorum—and two
over the flexor group—the flexor carpi ulnaris and flexor carpi radialis. For experimental
convenience, the textile electrodes are secured using kinesiology tape and covered using a
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tubular bandage. Alcohol wipes are used to clean the target areas before the application of
the electrodes to ensure a clean connection following SENIAM recommendations [6]. For
both sets, an additional reference gel electrode is attached at the elbow. The arrangement
can be seen in Figure 2.
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Figure 2. Experimental setup. (a) The electrodes are first placed with kinesiology tape and then
secured with a bandage. (b) Usability test with the blue cursor and red target. (c) Positions of
electrodes on the anterior and posterior sides of the right forearm. (d) Subject arrangement.

Each electrode is connected via snap connectors to a Quattracento amplifier (OT
Bioelettronica, Torino, Italy), and the EMG signals are amplified with a gain of 1500,
band-pass filtered (bandwidth 10–500 Hz), sampled at 2048 Hz, and A/D converted on
16 bits.

2.4. Experimental Protocol

The protocol consists of an offline test and an online usability test, both of which are
conducted using a custom application implemented in Matlab 2019b (Mathworks, Natick,
MA, USA).

For the offline test, the patients are taken through a series of nine gestures: closed
hand, open hand, wrist extension, wrist flexion, chuck grip, index pointing, supination,
pronation, and rest. These can be seen in Figure 3. Each gesture is performed four times,
each time for six seconds following a three-second count down, which allows the subject to
prepare. There is a six-second rest period between each gesture to prevent muscle fatigue.
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For the usability test, only the first four gestures, and rest, are used. The subjects are
again asked to perform each motion for six seconds following a three-second countdown
with six seconds’ rest between gestures, but now each gesture is performed three times.
The recorded measurements are used to train an artificial neural network (ANN) for
gestures classification (see Section 2.5). The subjects are then asked to complete a game in
which they move a cursor to a series of square target areas on a two-dimensional grid (see
Figure 2b). Both grid axes range from −110 to +110 units, and each combination of axis and
direction is associated with one of four gestures, while rest causes the cursor to remain in
its previous position on the grid. For each target, the cursor begins at the origin. The subject
can move the cursor a fixed step size in one of the four orthogonal directions by performing
the associated gesture. The subject was asked to hold the position within the target for one
second (dwell time) for the trial to be considered successful. If the subject was unable to
reach the target within a 20 s time limit, the online trial was considered unsuccessful, and
the participant moved on to the next target with the cursor back at the origin.

There are 24 targets in a complete game, and six configurations for the width and
distance from the origin of the targets, each of which is used four times during a game
and has a particular index of difficulty. Each configuration is associated with four target
numbers between 1 and 24, and, before the start of the game, MatLab’s randperm() function
is used to randomise an integer array from 1 to 24 using pseudo uniform random number
generation, which then determines the order in which targets will appear. Table 1 shows
the width and distance combinations for each configuration.

Table 1. Target configurations with associated difficulties and targets numbers.

Target Configuration Distance from Origin Target Width Index of Difficulty Associated Target Number

1 50 5 3.46 1, 7, 13, 19
2 50 10 2.59 2, 8, 14, 20
3 50 20 1.81 3, 9, 15, 21
4 100 5 4.39 4, 10, 16, 22
5 100 10 3.46 5, 11, 17, 23
6 100 20 2.59 6, 12, 18, 24
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The step size for each gesture classification is 110/28. The numerator is the total length
of the axis in each direction, so each step is a fixed fraction of the length. At the same
time, the denominator was chosen through trial and error. Subjects complete the game
three times.

The order of the electrode type (gel first or textile first) was controlled through coun-
terbalancing. The first subject was randomly assigned to one order using a coin flip, and
the order was reversed with each subsequent subject. In practice, because there are only
three subjects, two subjects started in one condition, and one in the other.

2.5. Signal Processing

All offline data are processed using the same procedure. The first and last second of
each EMG recording in a dataset is removed to account for subjects beginning and ending
each gesture, leaving a four-second sample of each gesture. The sample for each gesture is
pre-processed by subtracting the mean value in each channel was s. The sample is then
segmented with a 200 ms window, which is passed over the sample such that each segment
has a 50 ms overlap with the preceding segment. Six features are extracted from each
segment: zero crossings, root mean square, mean absolute value, waveform length, slope
sign change, and Willison amplitude. The feature matrix dimensionality reduction using
principal component analysis (PCA) with a 0.95 variance threshold typically reduced the
number of features to four.

The offline classification performance is evaluated using 10-fold cross-validation. For
each subject, the raw EMG data for each electrode type is pooled, and pre-processing,
feature extraction, and dimensionality reduction is performed. The prepared data are
then divided into training (80%), validation (10%), and testing sets (10%), with the test set
being the kth fold of the cross-validation. Individual subject models are trained using a
feedforward ANN with a single 18-node hidden layer with tansig transfer function and
nine-node softmax output layer. Levenberg–Marquardt error backpropagation is used
for training with validation-based early stopping for regularisation. This is repeated for
each fold, and the mean and standard deviation of the test fold accuracies is taken. The
individual subject data is then pooled together into all gel and all fabric datasets, and
the above cross-validation procedure is repeated to evaluate a general model for each
electrode type.

For the usability test, a similar processing procedure is used as in the offline test to
train an ANN for each subject. Online pattern recognition is achieved by recording 200 ms
samples and feeding each sample to the trained algorithm for real-time classification. A
Fitts’ Law approach is used to assess real-time performance in each round of the online
game, and the completion rate and throughput are calculated as performance metrics. The
completion rate is defined as the percentage of targets successfully reached out of the total
number of targets. Throughput (TP) is the amount of information transmitted by the user
via the EMG electrodes. This can be expressed mathematically as the average ratio of the
index of difficulty (I) of each target and the completion time (C), which is the time required
to reach each target:

T =
I
C

. (1)

The I for the usability test is defined according to the distance of the target centres
from the origin (D) and the width of the target area (W) and is derived from Shannon’s
extension of Fitts’ law in accordance with [20]:

I = log2

(
D
W

+ 1
)

(2)

The values of I for the targets used in the experiment can be found in Table 1.
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3. Results

Offline models were trained and evaluated using the individual subject datasets for
each electrode type and on a pooled dataset containing all electrode types. Table 2 shows the
offline classification accuracy of models trained on individual subject data and their means
and standard deviations. The mean accuracy across the three subject-specific models is 98.4%
for the gel electrodes and 97.9% for the embroidered electrodes overall nine gestures. The
classification accuracy for the general model trained on all gel electrode data is 97.3 ± 1.2%,
and the accuracy for the model trained on all embroidered electrode data is 95.9 ± 1.2%.
These can be seen in the respective confusion matrices (Figures 4 and 5). The percentages in
the main (red and green) square are total classifications made across all classes, so they sum
to 100. Therefore, the numbers on the diagonal are the number of correct classifications
for each class as a percentage of total classifications made. There are nine classes, so they
would each be ~11.1% if the model classified each class perfectly. The accuracy in practice
is close to this for both models, reflecting good accuracy.

Table 2. Percentage classification accuracies of models trained on individual subject data for the
recognition of nine gestures. Results are mean ± standard deviation over ten folds.

Subject
Electrode Type

Gel Fabric

1 99.55 ± 0.29 99.23 ± 0.36
2 99.51 ± 0.58 95.63 ± 1.61
3 96.05 ± 1.06 98.74 ± 0.58

Mean 98.37 ± 2.01 97.87 ± 1.95

Sensors 2021, 21, x FOR PEER REVIEW 7 of 12 
 

 

classes, so they sum to 100. Therefore, the numbers on the diagonal are the number of 
correct classifications for each class as a percentage of total classifications made. There are 
nine classes, so they would each be ~11.1% if the model classified each class perfectly. The 
accuracy in practice is close to this for both models, reflecting good accuracy. 

Table 2. Percentage classification accuracies of models trained on individual subject data for the 
recognition of nine gestures. Results are mean ± standard deviation over ten folds. 

Subject 
Electrode Type 

Gel Fabric 
1 99.55 ± 0.29 99.23 ± 0.36 
2 99.51 ± 0.58 95.63 ± 1.61 
3 96.05 ± 1.06 98.74 ± 0.58 

Mean 98.37 ± 2.01 97.87 ± 1.95 

 
Figure 4. Confusion matrix for 10-fold cross-validation of a model trained on combined gel data 
from all subjects. The bottom row is the recall, the right column is the precision, and the bottom 
right is the overall accuracy. 

Figure 4. Confusion matrix for 10-fold cross-validation of a model trained on combined gel data
from all subjects. The bottom row is the recall, the right column is the precision, and the bottom right
is the overall accuracy.

The results from the usability test, found in Table 3, show similar performance between
electrode types, with a throughput of 0.30 bit/s for both gel and embroidered electrodes.
There is a slight variation in throughput across individual subjects for both electrode types.
Completion rates are slightly higher for the textile electrodes across the three subjects,
with an average of 97.2 ± 3.0% for the embroidered electrodes and 95.4 ± 5.7% for the
gel electrodes. Examples of high-pass filtered EMG recordings and power spectra from
both types of electrodes are shown in Figure 6. The spectra reveal similar frequency
characteristics in both the textile and gel electrodes. Both have peak frequencies around
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100 Hz and trail to zero above 500 Hz (note that no 50 Hz power line noise filtering is
applied to the signals).
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Figure 6. Example of recorded high-pass filtered signals from 4th gel and embroidered offline
sessions of subject 1. EMG from gel electrodes (A) and embroidered electrodes (B). Power spectra
of gel (C) and embroidered (D) signals. Samples of each gesture are four seconds in length, and
gestures used, in order, are open hand, closed hand, relax, wrist extension, and wrist flexion. Y-axis
are of arbitrary units.
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4. Discussion

This study compares the performance of embroidered textile EMG electrodes with
disposable gel EMG electrodes in gesture recognition and real-time usability tasks with
a view towards use in affordable upper limb prostheses. The results demonstrate that
embroidered electrodes can achieve comparable performance to gel electrodes both online
and offline. The general classification models of nine hand and wrist gestures trained on
data from all three subjects achieved an average accuracy of approximately 96% for the
embroidered and 97% for the gel electrodes. In contrast, the individual subject-specific
models achieved an average of 98% accuracy for both electrode types, although the accuracy
for the embroidered electrodes is slightly lower in both cases. The lower accuracy for the
models trained on all data was expected as they are more generalised than the individual
models. The accuracy would be expected to improve with a larger sample of subjects, as
the models would become less dependent on subject variation and noise. The individual
models trained using embroidered electrodes also showed slightly higher variability than
the gel electrodes (Table 2), which may be due to a lower signal-to-noise ratio (SNR) in the
embroidered type. The usability of the embroidered and gel electrodes was also shown to
be similar as measured by throughput and completion rate in the Fitts’ law-based reaching
task. The difference in completion rate between electrode types may be a consequence of
the limited number of participants.

Although the results of this investigation are promising, future work is required to
determine the suitability of embroidered electrodes to myoelectric control as there were
several limitations to this pilot study. Examples of limitations include the small number
of subjects, the use of subjects with intact limbs only, and lack of gender balance (two
female subjects and one male), making it difficult to generalise the findings to real-world
situations. Each subject was also only tested in a single session, so the study does not
account for the variation of EMG signal over time due to natural biological fluctuations
and the potential degradation of the fabric electrodes.

Another limiting factor was that the electrodes had to be secured in place using tape
and tubing to ensure good skin contact and prevent motion artefacts, which made the
applied pressure on the electrodes difficult to control and may have produced differences in
signal quality between electrodes and subjects. This method of securing the electrodes also
differs significantly from how the electrodes would be implemented in an actual prosthesis,
making it difficult to generalise the results to practical myoelectric control. Pressure sensors
combined with adjustable bands could have been used to ensure consistent pressure on the
electrodes while maintaining good contact. Using such a setup, the sensitivity of the fabric
electrodes to motion artefacts could be investigated, allowing an optimal level of pressure
to be found that balances signal quality with user comfort.

The experiment is also limited by the electrode design because the 20 mm diameter
of the electrodes restricted the number that could be applied to the forearm and made it
difficult to secure them in place comfortably. Two-dimensional high-density EMG electrode
arrays have shown promise for myoelectric control in recent years, including superior
positional shift robustness and classification accuracy [21]. Such an arrangement has been
proven viable with textile electrodes [11]. Implementing the embroidered electrodes in a
high-density array form may therefore have improved performance.

Future work could also be conducted to analyse the potential for practical use in com-
mercial myoelectric control. Although the classification algorithm used in the experiment is
typical of those used in current sequential commercial prosthetics, testing with a simultane-
ous and proportional control algorithm would have better-assessed serviceability in future
prosthetics. The assessment of applicability in myoelectric control could also have been
improved by testing on amputee subjects rather than able-bodied subjects and by using an
active prosthetic in an actual real-time reaching test rather than using a reaching simulation.
It could also be improved by testing with the electrodes embedded into a fabric socket,
garment, or sleeve, similar to how it would need to be implemented in a commercial device.
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This would allow many of the limiting factors to be investigated simultaneously, including
the ease of placement for users, the susceptibility to motion artefacts, and user comfort.

Another necessary area of investigation would be analysis of the durability of the fabric
electrodes during long-term use, such as would be expected of electrodes in prosthetics,
and should include measuring the evolution of skin-electrode impedance and SNR over
time. The effects of environmental factors, such as temperature and moisture, on signal
quality also require investigation.

Despite these limitations, the results are in line with previous studies showing that
using embroidered electrodes can achieve similar performance with gel sensors in upper
limb movement classification for control of myoelectric prostheses [11,16,21,22]. Besides
EMG, the embroidered electrodes also show promise for use in electroencephalography
(EEG) [23] and electrocardiography (ECG) [24,25]. For instance, a recent study using the
same type of embroidered electrodes for ECG measurement [26] showed that embroi-
dered electrodes can capture high quality ECG signals, albeit with less stability than gel
electrodes due to issues with skin contact. Some studies, such as [27], have investigated
the possibility of using textile EMG electrodes in elasticated fabric bands to ensure skin
contact and improve wearability in prosthetics, which is another potential development for
embroidered electrodes.

Author Contributions: Conceptualization: All; data collection: X.B., M.B., E.N.K., S.P.; Data analysis:
M.B., E.N.K.; critical review of the manuscript: All. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of
King’s College London (LRS-16/17-4213 approved 27 March 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data sharing is available per request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the Prevalence of Limb Loss in the

United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [CrossRef] [PubMed]
2. Phillips, B.; Zingalis, G.; Ritter, S.; Mehta, K. A Review of Current Upper-Limb Prostheses for Resource Constrained Set-

tings. In Proceedings of the 5th Annual IEEE Global Humanitarian Technology Conference (GHTC 2015), Seattle, WA, USA,
8–11 October 2015; pp. 52–58.

3. Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature review on needs of upper
limb prosthesis users. Front. Neurosci. 2016, 10, 209. [CrossRef] [PubMed]

4. Roche, A.D.; Rehbaum, H.; Farina, D.; Aszmann, O.C. Prosthetic Myoelectric Control Strategies: A Clinical Perspective. Curr.
Surg. Rep. 2014, 2, 3. [CrossRef]

5. Chadwell, A.; Kenney, L.; Thies, S.; Galpin, A.; Head, J. The Reality of Myoelectric Prostheses: Understanding What Makes These
Devices Difficult for Some Users to Control. Front. Neurorobot. 2016, 10, 7. [CrossRef] [PubMed]

6. Day, B.S. Important Factors in Surface EMG Measurement; Bortec. Biomed. Ltd.: Calgary, AB, Canada, 2002; pp. 1–17.
7. Gonçalves, C.; Ferreira da Silva, A.; Gomes, J.; Simoes, R. Wearable E-Textile Technologies: A Review on Sensors, Actuators and

Control Elements. Inventions 2018, 3, 14. [CrossRef]
8. Lintu, N.; Holopainen, J.; Hänninen, O. Usability of Textile-Integrated Electrodes for EMG Measurements; University of Kuopio,

Department of Physiology, Laboratory of Clothing Physiology: Kuopio, Finland, 2005; pp. 64–69.
9. Finni, T.; Hu, M.; Kettunen, P.; Vilavno, T.; Cheng, S. Measurement of EMG activity with textile electrodes embedded into clothing.

Physiol. Meas. 2007, 28, 1405–1419. [CrossRef] [PubMed]
10. Oliveira, C.C.; Machado da Silva, J.; Trindade, I.G.; Martins, F. Characterization of the electrode-skin impedance of textile

electrodes. In Proceedings of the 29th Conference on Design of Circuits and Integrated Systems (DCIS 2014), Madrid, Spain,
26–28 November 2014; pp. 1–6.

11. Farina, D.; Lorrain, T.; Negro, F.; Jiang, N. High-density EMG E-textile systems for the control of active prostheses. In Proceedings
of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010), Buenos
Aires, Argentina, 31 August–4 September 2010; pp. 3591–3593.

http://doi.org/10.1016/j.apmr.2007.11.005
http://www.ncbi.nlm.nih.gov/pubmed/18295618
http://doi.org/10.3389/fnins.2016.00209
http://www.ncbi.nlm.nih.gov/pubmed/27242413
http://doi.org/10.1007/s40137-013-0044-8
http://doi.org/10.3389/fnbot.2016.00007
http://www.ncbi.nlm.nih.gov/pubmed/27597823
http://doi.org/10.3390/inventions3010014
http://doi.org/10.1088/0967-3334/28/11/007
http://www.ncbi.nlm.nih.gov/pubmed/17978424


Sensors 2021, 21, 5245 11 of 11

12. Zhang, H.; Tian, L.; Zhang, L.; Li, G. Using textile electrode EMG for prosthetic movement identification in transradial amputees. In
Proceedings of the 2013 IEEE International Conference on Body Sensor Networks (BSN 2013), Boston, MA, USA, 6–9 May 2013; pp. 1–5.

13. Lee, S.; Jamil, B.; Kim, S.; Choi, Y. Fabric Vest Socket with Embroidered Electrodes for Control of Myoelectric Prosthesis. Sensors
2020, 20, 1196. [CrossRef] [PubMed]

14. Spadaro, J.A.; Berger, T.J.; Barranco, S.D.; Chapin, S.E.; Becker, R.O. Antibacterial Effects of Silver Electrodes with Weak Direct
Current. Antimicrob. Agents Chemother. 1974, 6, 637–642. [CrossRef] [PubMed]

15. Pitou, S.; Michael, B.; Thompson, K.; Howard, M. Hand-made embroidered electromyography: Towards a solution for low-income
countries. Sensors 2020, 20, 3347. [CrossRef] [PubMed]

16. Pitou, S.; Michael, B.; Howard, M.; Wu, F.; Shafti, A.; Stopforth, R. Embroidered Electrodes for Control of Affordable My-
oelectric Prostheses. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA 2018),
Brisbane, QLD, Australia, 21–25 May 2018; pp. 1812–1817.

17. Manero, R.B.R.; Shafti, A.; Michael, B.; Grewal, J.; Fernández, J.; Althoefer, K.; Howard, M. Wearable embroidered muscle activity
sensing device for the human upper leg. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC 2016), Orlando, FL, USA, 16–20 October; pp. 6062–6065.

18. Shafti, A.; Manero, R.B.R.; Borg, A.M.; Althoefer, K.; Howard, M. Designing embroidered electrodes for wearable surface
electromyography. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA 2016),
Qingdao, China, 3–7 December 2016; pp. 172–177.

19. Mangezi, A.; Rosendo, A.; Howard, M.; Stopforth, R. Embroidered archimedean spiral electrodes for contactless prosthetic
control. In Proceedings of the 15th Annual International Conference on Rehabilitation Robotics (ICORR 2017), London, UK,
17–20 July 2017; pp. 1343–1348.

20. Williams, M.R.; Kirsch, R.F. Evaluation of head orientation and neck muscle EMG signals as command inputs to a human–
computer interface for individuals with high tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 485–496. [CrossRef]
[PubMed]

21. Hakonen, M.; Piitulainen, H.; Visala, A. Current state of digital signal processing in myoelectric interfaces and related applications.
Biomed. Signal Process. Control 2015, 18, 334–359. [CrossRef]

22. Li, G.; Geng, Y.; Tao, D.; Zhou, P. Performance of Electromyography Recorded Using Textile Electrodes in Classifying Arm
Movements. In Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBS 2011), Boston, MA, USA, 30 August–3 September 2011; pp. 4243–4246.

23. Löfhede, J.; Seoane, F.; Thordstein, M. Textile Electrodes for EEG Recording—A Pilot Study. Sensors 2012, 12, 16907–16919.
[CrossRef]

24. Pola, T.; Vanhala, J. Textile electrodes in ECG measurement. In Proceedings of the 3rd International Conference on Intelligent
Sensors, Sensor Networks and Information (ISSNIP 2007), Melbourne, VIC, Australia, 3–6 December 2007; pp. 635–639.

25. Park, S.; Noh, Y.; Park, S.; Yoon, H. An improved algorithm for respiration signal extraction from electrocardiogram measured by
conductive textile electrodes using instantaneous frequency estimation. Med. Biol. Eng. Comput. 2008, 46, 147–158. [CrossRef]
[PubMed]

26. Bao, X.; Howard, M.; Niazi, I.K.; Kamavuako, E.N. Comparison between Embroidered and Gel Electrodes on ECG-Derived
Respiration Rate. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBS 2020), Montreal, QC, Canada, 20–24 July 2020; pp. 2622–2625.

27. Lee, S.; Kim, M.O.; Kang, T.; Park, J.; Choi, Y. Knit band sensor for myoelectric control of surface EMG-based prosthetic hand.
IEEE Sens. J. 2018, 18, 8578–8586. [CrossRef]

http://doi.org/10.3390/s20041196
http://www.ncbi.nlm.nih.gov/pubmed/32098252
http://doi.org/10.1128/AAC.6.5.637
http://www.ncbi.nlm.nih.gov/pubmed/15825319
http://doi.org/10.3390/s20123347
http://www.ncbi.nlm.nih.gov/pubmed/32545636
http://doi.org/10.1109/TNSRE.2008.2006216
http://www.ncbi.nlm.nih.gov/pubmed/18990652
http://doi.org/10.1016/j.bspc.2015.02.009
http://doi.org/10.3390/s121216907
http://doi.org/10.1007/s11517-007-0302-y
http://www.ncbi.nlm.nih.gov/pubmed/18210178
http://doi.org/10.1109/JSEN.2018.2865623

	Introduction 
	Materials and Methods 
	Embroidered Electrode Design 
	Subjects 
	Experimental Setup 
	Experimental Protocol 
	Signal Processing 

	Results 
	Discussion 
	References

