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Abstract: Smart self-organising systems attract considerable attention in the scientific community. In
order to control and stabilise the liquid crystalline behaviour, and hence the self-organisation, the
polymerisation process can be effectively used. Mesogenic units incorporated into the backbones as
functional side chains of weakly cross-linked macromolecules can become orientationally ordered.
Several new calamitic reactive mesogens possessing the vinyl terminal group with varying flexible
chain lengths and with/without lateral substitution by the methyl (methoxy) groups have been
designed and studied. Depending on the molecular structure, namely, the type and position of the
lateral substituents, the resulting materials form the nematic, the orthogonal SmA and the tilted
SmC phases in a reasonably broad temperature range, and the structure of the mesophases was
confirmed by X-ray diffraction experiments. The main objective of this work is to contribute to better
understanding of the molecular structure–mesomorphic property relationship for new functional
reactive mesogens, aiming at further design of smart self-assembling macromolecular materials for
novel sensor systems.

Keywords: liquid crystal; vinyl group; reactive mesogen; smectic phases; self-assembling behaviour

1. Introduction

Functional self-assembling systems’ build-up from the organic molecules attract con-
siderable attention from the scientific community due to their extraordinary properties that
can be utilised for smart applications [1–3]. Some soft organic materials with definite molec-
ular structure can exhibit the liquid crystalline (LC), i.e., self-assembling, behaviour, that
can be changed, tuned and controlled by an external stimulus: applied electric/magnetic
field, mechanical stress and irradiation by UV or visible light [3–5]. A tremendous number
of materials, mixtures and composites possessing the LC behaviour have been designed
and investigated during the last decades, many of which already respond to the demands of
specific applications, such as various display and opto-electronic devices. Nevertheless, the
information gained so far is still insufficient for the effective applicability of LC materials
for further smart applications, the reason being that the control and prediction of the LC
properties requires further efforts to assure the stability of the target LC mesophases and
other specific properties.

In order to stabilise the liquid crystalline behaviour, and hence the self-organisation,
the polymerisation process can be effectively used [6–9]. Mesogenic units, also called
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reactive mesogens, incorporated into the polymeric backbones as side chains of weakly
cross-linked macromolecules, can form orientationally ordered nanostructures. The resul-
tant material may combine the anisotropy and large susceptibility of low molar-mass LCs
with mechanical elasticity and relatively simple processability of macromolecular materi-
als. During recent decades, an increased interest in advanced macromolecular materials
possessing certain properties [4,10–13], specifically in LC side-chain polymers and elas-
tomers possessing the self-assembling behaviour, has occurred due to their high potential
for various smart applications, such as artificial muscles, micro-valves, mechanical actua-
tors, smart surfaces and propulsion systems, etc. [5,14]. The self-organisation behaviour
build-up on the intermolecular interactions can be effectively tuned by the appropriate
molecular design, e.g., by constructing the macromolecular system from the mesogenic
units with the reactive terminal groups [15–17]. However, it is very difficult to theoretically
predict, describe and keep under control the macroscopic parameters of the self-assembling
materials [18–20]. Many experimental efforts in reactive mesogen design [4] have been
carried out while building-up new photosensitive and photo-controllable macromolecular
materials [10], incorporating a photo-responsive azo group into the molecular core. Its
presence allows the effective driving of the resulting optical, structural, mesomorphic
and dielectric properties by non-contact stimuli, i.e., irradiation by UV or even by visible
light [16,21–23].

Utilisation of the various types of polymeric backbones (polyacrylate [16], poly-
methacrylate [4,21,22,24], polysiloxane [23,25–28], polyurethane [29], etc.) for the design of
LC macromolecular materials requires a specific molecular structure of the reactive termi-
nal groups (acrylate [16,30–33], methacrylate [4,21,22,32], vinyl [12,23,27,34], thiols [35–37],
etc.) of the respective monomeric LC materials used as functional reactive mesogens.
However, each part of the reactive mesogen molecule, namely the molecular core, type and
position of the lateral substitution, linkage groups, length and type of the flexible chains,
etc., can significantly change the resulting self-assembling behaviour of the designed ma-
terial. The methyl [10,22,38,39] and methoxy [39–41] groups and halogen atoms [38,42],
namely fluorine [42–47], chlorine [38,41,42,46,48,49], bromine [38,43] and iodine [50], are
the most widely used and successful types of lateral substituents utilised for the effective
tuning of the self-assembling behaviour, especially for the non-chiral and chiral calamitic
LC materials. The type and position of the lateral substituents on the molecular core always
drastically change the liquid crystalline behaviour of the resulting LC material when com-
pared with its non-substituted analogue [38,39]. Specifically, it has been shown [38,39] that
the lateral substitution on the phenyl ring close to the terminal chain can induce the nematic
(or the cholesteric) phase, while for the non-substituted materials, the smectic phases are
more favourable [38,39]. The type and position of the lateral substitution considerably
affects the thermal properties of the materials, i.e., the existence and the temperature range
of the mesophases [38–40].

The main objective of our research is to contribute to better understanding of the
molecular architecture—self-assembling behaviour relationship for the functional reactive
mesogens, aiming at further design of smart self-organising macromolecular materials, such
as the LC side-chain polymers and single LC elastomers, targeted for novel sensor systems.

Specifically, we aim to check the effect of the lateral substitution by the methyl and
methoxy groups on the self-assembling behaviour for calamitic reactive mesogens with
vinyl terminal group. In order to realise the objective, several new calamitic reactive
mesogens (see Figure 1) with/without lateral substitution by the methyl/methoxy groups
possessing different lengths of flexible terminal chains have been designed and studied.



Polymers 2021, 13, 2156 3 of 16
Polymers 2021, 13, x  3 of 18 
 

 
Figure 1. General chemical structure of the designed laterally substituted reactive mesogens with 
vinyl terminal group. 

2. Materials and Methods 
This section contains a detailed description of the synthesis and confirmation of the 

molecular structures obtained for all of the designed reactive mesogens. Additionally, it 
provides the description of the experimental techniques used for the characterisation of 
the mesomorphic, thermal and structural properties. 

2.1. Design and Synthesis 
All starting materials and reagents were purchased from local ditributors of Sigma-

Aldrich (Merck), Acros Organics or Fluorochem. Solvents used for the syntheses were 
“p.a.” purity grade. 1H NMR spectra were recorded on Varian VNMRS 300; deuteriochlo-
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Figure 1. General chemical structure of the designed laterally substituted reactive mesogens with
vinyl terminal group.

2. Materials and Methods

This section contains a detailed description of the synthesis and confirmation of the
molecular structures obtained for all of the designed reactive mesogens. Additionally, it
provides the description of the experimental techniques used for the characterisation of the
mesomorphic, thermal and structural properties.

2.1. Design and Synthesis

All starting materials and reagents were purchased from local ditributors of Sigma-
Aldrich (Merck), Acros Organics or Fluorochem. Solvents used for the syntheses were “p.a.”
purity grade. 1H NMR spectra were recorded on Varian VNMRS 300; deuteriochloroform
(CDCl3) was used as solvent and the signal of solvent served as the internal standard.
Chemical shifts (δ) are given in ppm and spin-spin coupling constants (J) are given in Hz.
Column chromatography was carried out using Merck Kieselgel 60 (60−100 µm). The
purity of final compounds was checked by HPLC analysis (high-pressure pump ECOM
Alpha; column WATREX Biospher Si 100, 250 × 4 mm, 5 µm; detector WATREX UVD 250)
and were found to be >99.8%.

Newly designed reactive mesogens have been synthesised according to the synthetic
route described in Figure 2. First, benzoyl chloride 1 and hydroxy-esters 2a–d were synthe-
sised following the procedures from the literature [17]. The reaction of benzoyl chloride
1 with appropriate hydroxy-ester 2a–d and the subsequent deprotection of hydroxyl by
means of aqueous ammonia yielded hydroxy-esters 3a–d. In the next step, acids 4a and 4b,
which were synthesised as recently described [17], were reacted with hydroxy-esters 3a–c
in a DCC-mediated reaction, resulting in reactive mesogens denoted as UKHG, UKHM,
UVHG and UVHGET (see Figure 2).

Synthesis of UTHH8 reactive mesogen was started from hydroxyester 3d, which
was originally esterified with 4-formylbenzoic acid (5). Aldehyde 6 was then oxidized to
benzoic acid 7 using potassium permanganate in pyridine. In the final step, acid 7 was
esterified with 10-undecenol by means of DCC coupling.

4′-{[2-(Hexyloxy)-2-oxoethoxy]carbonyl}phenyl 4-hydroxybenzoate (3a)
Benzoyl chloride 1 (4.0 g, 18.64 mmol) dissolved in toluene (20 mL) was added drop-

wise to the stirred mixture of 2a (5.20 g, 18.55 mmol) and dry pyridine (8 mL) in toluene
(70 mL). The reaction mixture was stirred for 6 h and then refluxed for 30 min. The resulting
cooled mixture was filtered, and the filtrate was washed with diluted hydrochloric acid
(100 mL, 5%) and water (100 mL). The separated organic layer was dried with anhydrous
magnesium sulphate. After the evaporation of the solvent, the residue was dissolved in
tetrahydrofuran (50 mL) and cooled to −20 ◦C. To this precooled solution, concentrated
aqueous ammonia (10 mL, 25%, 64.19 mmol) was added, with constant stirring. The
reaction mixture was stirred and let warm to room temperature, and the progress of the
hydrolysis was monitored by TLC. After ca. 45 min, the resulting mixture was poured into
water (100 mL) and neutralised with hydrochloric acid. The organic layer was separated,
and the aqueous layer was extracted with diethylether (2 × 50 mL). Combined organic lay-
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ers were washed with water (50 mL) and dried over anhydrous sodium sulphate. Solvent
was removed under reduced pressure and the oily residue was purified by chromatography
on silica (dichloromethane:acetone (96:4)). Yield = 5.96 g (80%) of viscous liquid 3a.
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ing the lateral substitution on the molecular core by the methyl and methoxy groups.

1H NMR (CDCl3): 8.12 (2 H, d, J = 8.8, H-3′, H-5′), 8.02 (1 H, d, J = 8.7, H-2, H-6),
7.28 (2 H, d, J = 8.8, H-2′, H-6′), 6.90 (2 H, d, J = 8.7, H-3, H-5), 4.88 (2 H, s, CH2COO),
4.22 (2 H, t, J = 6.4, COOCH2), 1.77–1.94 (2 H, m, CH2CH2O), 1.60–1.73 (2 H, m, CH2CH2O),
1.21–1.35 (6 H, m, 3 × CH2), 0.88 (3 H, J = 6.7, CH2CH3).

4′-{[2-(Ethoxy)-2-oxoethoxy]carbonyl}phenyl 4-hydroxybenzoate (3b)
Using the procedure described for 3a, starting from benzoyl chloride 1 (1.0 g, 4.66 mmol)

and hydroxy-ester 2b (1.0 g, 4.46 mmol), and the subsequent hydrolysis of the carbonate
protective group, 1.35 g (88%) of hydroxy-ester 3b was obtained.

1H NMR (CDCl3) 8.12 (2 H, d, J = 8.8, H-3′, H-5′), 8.02 (1 H, d, J = 8.7, H-2, H-6),
7.28 (2 H, d, J = 8.8, H-2′, H-6′), 6.90 (2 H, d, J = 8.7, H-3, H-5), 4.88 (2 H, s, CH2COO), 4.28
(2 H, q, J = 7.2, COOCH2), 1.36 (3 H, J = 6.7, CH2CH3).

1-(Hexyloxy)-2-methyl-1-oxopropan-2-yl 4-[(4-hydroxybenzoyl)oxy]benzoate (3c)
Starting from benzoyl chloride 1 (2.0 g, 9.32 mmol) and hydroxy-ester 2c (2.87 g,

9.31 mmol), 3.10 g (78%) of hydroxy-ester 3c was obtained by the procedure described
for 3a.

1H NMR (CDCl3) 8.12 (2 H, d, J = 8.8, H-3′, H-5′), 8.02 (1 H, d, J = 8.7, H-2, H-6), 7.28
(2 H, d, J = 8.8, H-2′, H-6′), 6.90 (2 H, d, J = 8.7, H-3, H-5), 4.15 (2 H, t, J = 6.7, COOCH2),
1.68 (6 H, s, (CH3)2C), 1.62 (2 H, quin. J = 7.0, COOCH2CH2), 1.11–1.45 (6 H, m, 3 × CH2),
0.89 (3 H, J = 6.7, CH2CH3).

4′-[(Octyloxy)carbonyl]phenyl 4-hydroxybenzoate (3d)
In the same procedure as that of 3a, chloride 1 (1.0 g, 4.66 mmol) was reacted with

hydroxy-ester 2d (1.17 g, 4.67 mmol), and the subsequent hydrolysis of the carbonate
protective group yielded 1.55 g (90%) of ester 3d.
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1H NMR (CDCl3) 8.10–8.22 (4 H, m, H-2, H-6, H-3′, H-5′), 7.28 (2 H, d, J = 8.5, H-2′,
H-6′), 6.93 (2 H, d, J = 8.5, H-3, H-5), 4.32 (2 H, t, J = 6.7, COOCH2), 1.77 (2 H, quin. J = 7.0,
COOCH2CH2), 1.10–1.55 (10 H, m, 5 × CH2), 0.87 (3 H, J = 6.7, CH2CH3).

Octyl 4-({4′-[(4′ ′-formylbenzoyl)oxy]benzoyl}oxy)benzoate (6)
A mixture of 4-formylbenzoic acid (1.50 g, 9.89 mmol) and hydroxy-ester 3d (3.66 g,

9.88 mmol) was dissolved in tetrahydrofuran (50 mL) and cooled to 0 ◦C. Dicyclohexyl-
carbodiimide (DCC) (2.18 g, 10.35 mmol) and 4-(N,N-dimethylamino)pyridine (DMAP)
(0.30 g, 2.46 mmol) were added, and the mixture was stirred for 3 h at room temperature.
Precipitated N,N’-dicyclohexylurea was filtered off, and the resulting filtrate was washed
with HCl (20 mL, 1:15) and water. The organic layer was dried with anhydrous sodium
sulphate. Removal of the solvent under reduced pressure yielded benzoate 6 (4.72 g, 95%),
which was utilised in the further step without additional purification.

1H NMR (CDCl3): 10.11 (s, 1H, CHO), 8.10–8.37 (m, 8 H, H-2, H-6, H-3′, H-5′, H-2′ ′,
H-6′ ′, H-3′ ′, H-5′ ′), 7.44 (2 H, d, J = 8.8, H-2′, H-6′), 7.32 (2 H, d, J = 8.2, H-2, H-6), 4.33 (t,
2H, J = 6.7, OCH2), 1.74–1.88 (2 H, m, OCH2CH2), 1.16–1.60 (10 H, m, 5 × CH2), 0.88 (t, 3H,
J = 6.8, CH3).

4-{[4′-({4′ ′-[(Octyloxy)carbonyl]phenoxy}carbonyl)phenoxy]carbonyl}benzoic acid (7)
The solution of potassium permanganate (1.55 g, 9.81 mmol) in water (20 mL) at

ca. 50 ◦C was added in two portions with a 15 min interval to the agitated solution of
4-formylbenzoate 6 (4.70 g, 9.35 mmol) in pyridine (50 mL), cooled to−10 ◦C by the ice-salt
bath. After the last addition, the mixture was kept overnight at −20 ◦C and then it was
slowly added to the mixture of the concentrated HCl (50 mL) in the ice-cold water (100 mL).
The resulting suspension was neutralised by an additional amount of the concentrated HCl
(ca. 18 mL) and filtered through the suction with a pad of celite. Filtered solid was boiled
with acetone (100 mL) and filtered again. Macerate was dried with anhydrous sodium
sulphate. The evaporation of acetone yielded crude 7, which was crystallised from hexane.
Yield = 4.36 g (90%).

1H NMR (CDCl3): 8.10–8.35 (m, 8 H, H-2, H-6, H-3, H-5, H-3′, H-5′, H-3′ ′, H-5′ ′,),
7.44 (2 H, d, J = 8.8, H-2′, H-6′), 7.35 (2 H, d, J = 8.2, H-2′ ′, H-6′ ′), 4.36 (t, 2H, J = 6.7, OCH2),
1.70–1.84 (2 H, m, OCH2CH2), 1.19–1.65 (10 H, m, 5 × CH2), 0.88 (t, 3H, J = 6.8, CH3).

4′-[(4′ ′-{[2-(Hexyloxy)-2-oxoethoxy]carbonyl}phenoxy)carbonyl]phenyl 3-methyl-4-(undec-
10-en-1-yloxy)benzoate (UKHG)

Ester 3a (1.0 g, 3.28 mmol) and acid 4a (1.31 g, 3.27 mmol) were dissolved in dry
dichloromethane (50 mL) and cooled to 2–8 ◦C. Then, N,N′-dicyclohexylcarbodiimide
(DCC) (0.71 g, 3.40 mmol) and 4-(N,N-dimethylamino)pyridine (DMAP) (0.1 g, 0.82 mmol)
were added. The mixture was stirred for six hours and then filtered. The resulting filtrate
was evaporated, and the residue was purified by column chromatography (silica gel,
dichloromethane:acetone, 99.7:0.3) and recrystallised from hexane to obtain 2.04 g (91%)
of UKHG.

1H NMR (CDCl3) 8.29 (2 H, d, J = 8.8, H-3′, H-5′), 8.20 (2 H, d, J = 8.8, H-3′ ′, H-5′ ′),
8.05 (1 H, dd, J = 8.8, 1.8, H-6), 8.00 (1 H, d, J = 1.8, H-2), 7.37 (4 H, dd, J = 11.7, 8.8, H-2′,
H-6′, H-2′ ′, H-6′ ′), 6.90 (1 H, d, J = 8.8, H-5), 5.72–5.94 (2H, m, CH2=CH), 4.90–5.08 (1H,
m, CH=CH2), 4.88 (2 H, s, CH2COO), 4.21 (2 H, t, J = 6.5, COOCH2), 4.07 (2 H, t, J = 6.5,
OCH2), 2.30 (3 H, s, ArCH3), 1.97–2.15 (2 H, m, CH2CH=), 1.77–1.94 (2 H, m, CH2CH2O),
1.60–1.73 (2 H, m, CH2CH2O), 1.21–1.58 (18 H, m, 9 × CH2), 0.89 (3 H, J = 6.7, CH3CH2).
13C NMR (75 MHz, CDCl3): 167.83 (CH2COO), 165.19 (COOCH2), 164.54 (COOAr), 163.90
(C′OOAr), 162.01 (C-4), 155.68 (C-1′), 154.93 (C-1′ ′), 149.06 (C-3), 139.20 (CH=CH2), 132.56
(C-2), 131.88 (C-3′, C-5′), 131.62 (C-3′ ′, C-5′ ′), 130.27 (C-6), 127.19 (C-3), 126.87 (C-4′ ′), 126.25
(C-4′), 122.25 (C-2′, C-6′), 121.88 (C-2′ ′, C-6′ ′), 120.15 (C-1), 114.14 (CH=CH2), 110.18 (C-5),
68.27 (CH2OAr), 65.65 (COOCH2), 61.28 (CH2COO), 33.80 (CH2CH=), 31.33 (CH2CH2CH3),
29.02–29.57 (m, 5× CH2), 28.91 (CH2CH2O), 28.44 (CH2CH2O), 26.04 (CH2(CH2)2O), 25.43
(CH2(CH2)2O), 22.50 (CH2CH3), 16.24 (ArCH3), 13.98 (CH2CH3). Elemental Analysis for
C41H50O9 (686.83): calc. C 71.70, H 7.34; found C 71.54, H 7.20.
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4′-[(4′ ′-{[2-(Hexyloxy)-2-oxoethoxy]carbonyl}phenoxy)carbonyl]phenyl 3-methoxy-4-(undec-
10-en-1-yloxy)benzoate (UVHG)

Analogously to the case of UKHG (see above), acid 4b (1.0 g, 3.12 mmol) was reacted
with ester 3a (1.25 g, 3.12 mmol) in the presence of DCC (0.68 g, 3.28 mmol) and DMAP
(80.0 mg, 0.65 mmol) in dichloromethane. Yield = 1.91 g (87%).

1H NMR (CDCl3) 8.30 (2 H, d, J = 8.8, H-3′, H-5′), 8.21 (2 H, d, J = 8.8, H-3′ ′, H-5′ ′),
7.87 (1 H, dd, J = 8.5, 2.2, H-6), 7.68 (1 H, d, J = 2.2, H-2), 7.37 (4 H, dd, J = 12.7, 8.8, H-2′,
H-6′, H-2′ ′, H-6′ ′), 6.97 (1 H, d, J = 8.5, H-5), 5.73–5.95 (2H, m, CH2=CH), 4.90–5.06 (1H, m,
CH=CH2), 4.88 (2 H, s, CH2COO), 4.21 (2 H, t, J = 6.5, COOCH2), 4.13 (2 H, t, J = 6.5, OCH2),
3.97 (3 H, s, ArOCH3), 1.99–2.13 (2 H, m, CH2CH=), 1.84–1.98 (2 H, m, CH2CH2O), 1.61–1.75
(2 H, m, CH2CH2O), 1.21–1.58 (18 H, m, 9 × CH2), 0.89 (3 H, J = 6.7, CH3CH2). 13C NMR
(75 MHz, CDCl3): 167.83 (CH2COO), 165.17 (COOCH2), 163.87 (COOAr), 163.06 (C′OOAr),
155.57 (C-1′), 154.90 (C-1′ ′), 153.56 (C-4), 149.06 (C-3), 139.20 (CH=CH2), 131.91 (C-3′, C-5′),
131.62 (C-3′ ′, C-5′ ′), 126.88 (C-4′ ′), 126.39 (C-4′), 124.60 (C-6), 122.24 (C-2′, C-6′), 121.87
(C-2′ ′, C-6′ ′), 120.84 (C-1), 114.14 (CH=CH2), 112.64 (C-2), 111.43 (C-5), 69.12 (CH2OAr),
65.65 (COOCH2), 61.28 (CH2COO), 56.16 (OCH3), 33.79 (CH2CH=), 31.33 (CH2CH2CH3),
29.02–29.63 (m, 5 × CH2), 28.93 (CH2CH2O), 28.44 (CH2CH2O), 25.87 (CH2(CH2)2O),
25.43 (CH2(CH2)2O), 22.50 (CH2CH3), 13.98 (CH2CH3). Elemental Analysis for C41H50O10
(702.83): calc. C 70.07, H 7.17; found C 71.17, H 7.25.

4′-[(4′ ′-{[2-(Ethoxy)-2-oxoethoxy]carbonyl}phenoxy)carbonyl]phenyl 3-methoxy-4-(undec-
10-en-1-yloxy)benzoate (UVHGET)

Analogously to the case of UKHG, acid 4b (1.0 g, 3.12 mmol) was reacted with ester
3b (1.07 g, 3.11 mmol) in the presence of DCC (0.68 g, 3.28 mmol) and DMAP (80.0 mg,
0.65 mmol) in dichloromethane. Yield = 1.90 g (95%).

1H NMR (CDCl3) 8.30 (2 H, d, J = 8.8, H-3′, H-5′), 8.21 (2 H, d, J = 8.8, H-3′ ′, H-5′ ′),
7.86 (1 H, dd, J = 8.5, 2.1, H-6), 7.68 (1 H, d, J = 2.1, H-2), 7.37 (4 H, dd, J = 12.3, 8.8,
H-2′, H-6′, H-2′ ′, H-6′ ′), 6.97 (1 H, d, J = 8.5, H-5), 5.70–5.92 (2H, m, CH2=CH), 4.90–5.07
(1H, m, CH=CH2), 4.87 (2 H, s, CH2COO), 4.28 (2 H, q, J = 7.2, COOCH2), 4.12 (2 H, t,
J = 6.5, OCH2), 3.97 (3 H, s, ArOCH3), 1.99–2.11 (2 H, m, CH2CH=), 1.81–1.97 (2 H, m,
CH2CH2O), 1.21–1.55 (15 H, m, 6 × CH2, CH3CH2). 13C NMR (75 MHz, CDCl3): 167.73
(CH2COO), 165.17 (COOCH2), 164.39 (COOAr), 163.87 (C′OOAr), 155.57 (C-1′), 154.90
(C-1′ ′), 153.56 (C-4), 149.06 (C-3), 139.20 (CH=CH2), 131.91 (C-3′, C-5′), 131.64 (C-3′ ′, C-5′ ′),
126.87 (C-4′ ′), 126.39 (C-4′), 124.60 (C-6), 122.24 (C-2′, C-6′), 121.88 (C-2′ ′, C-6′ ′), 120.83
(C-1), 114.14 (CH=CH2), 112.64 (C-2), 111.41 (C-5), 69.10 (CH2OAr), 61.53 (CH2COO), 61.28
(COOCH2), 56.16 (OCH3), 33.79 (CH2CH=), 28.70–29.69 (m, 5 × CH2), 25.87 (CH2CH2O),
14.13 (CH2CH3). Elemental Analysis for C37H42O10 (646.72): calc. C 68.71, H 6.55; found C
68.59, H 6.66.

4′-{[4′ ′-({[1-(Hexyloxy)-2-methyl-1-oxopropan-2-yl]oxy}carbonyl)phenoxy]carbonyl}phenyl 3-
methyl-4-(undec-10-en-1-yloxy)benzoate (UKHM)

Analogously to the case of UKHG, acid 4b (1.0 g, 3.12 mmol) was reacted with ester
3c (1.33 g, 3.10 mmol) in the presence of DCC (0.68 g, 3.28 mmol) and DMAP (80.0 mg, 0.65
mmol) in dichloromethane. Yield = 1.84 g (83%).

1H NMR (CDCl3) 8.29 (2 H, d, J = 8.8, H-3′, H-5′), 8.13 (2 H, d, J = 8.8, H-3′ ′, H-5′ ′),
8.05 (1 H, dd, J = 8.5, 1.8, H-6), 8.00 (1 H, d, J = 1.8, H-2), 7.39 (2 H, d, J = 8.8, H-2′, H-6′),
7.32 (2 H, d, J = 8.8, H-2′ ′, H-6′ ′), 6.90 (1 H, d, J = 8.5, H-5), 5.70–5.95 (2H, m, CH2=CH),
4.88–5.08 (1H, m, CH=CH2), 4.16 (2 H, t, J = 6.7, COOCH2), 4.07 (2 H, t, J = 6.5, OCH2),
2.30 (3 H, s, ArCH3), 1.98–2.13 (2 H, m, CH2CH=), 1.79–1.92 (2 H, m, CH2CH2O), 1.71
(6 H, s, C(CH3)2), 1.12–1.66 (18 H, m, 9 × CH2), 0.86 (3 H, J = 6.7, CH3CH2). 13C NMR
(75 MHz, CDCl3): 172.61 (CCOO), 164.62 (COOAr), 163.92 (C′OOAr), 162.03 (C-4), 155.68
(C-1′), 154.93 (C-1′ ′), 149.06 (C-3), 139.20 (CH=CH2), 132.57 (C-2), 131.88 (C-3′, C-5′), 131.39
(C-3′ ′, C-5′ ′), 130.28 (C-6), 127.80 (C-3), 127.20 (C-4′ ′), 126.25 (C-4′), 122.25 (C-2′, C-6′),
121.73 (C-2′ ′, C-6′ ′), 120.16 (C-1), 114.15 (CH=CH2), 110.20 (C-5), 78.96 (CCOO), 68.27
(CH2OAr), 65.53 (COOCH2), 33.79 (s,CH2CH=CH2), 31.31 (CH2CH2CH3), 28.97–29.65 (m,
5 × CH2), 28.92 (CH2CH2O), 28.37 (CH2CH2O), 26.06 (CH2(CH2)2O), 25.47 (CH2(CH2)2O),
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24.74 (C(CH3)2), 22.47 (CH2CH3), 16.26 (ArCH3), 13.97 (CH2CH3). Elemental Analysis for
C43H54O9 (714.88): calc. C 72.24, H 7.61; found C 73.47, H 7.71.

4′-({4′ ′-[(Octyloxy)carbonyl]phenoxy}carbonyl)phenyl undec-10-en-1-yl terephthalate (UTHH8)
A mixture of benzoic acid 7 (4.0 g, 7.71 mmol) and undec-10-en-1-ol (1.33 g, 7.65 mmol)

was dissolved in dichloromethane (100 mL) and cooled to 2–8 ◦C. Dicyclohexylcarbodi-
imide (DCC) (1.97 g, 9.36 mmol) and 4-(N,N-dimethylamino)pyridine (DMAP) (0.19 g,
1.56 mmol) were added, and the mixture was stirred for two hours, during which it was
warmed to room temperature. Precipitated dicyclohexylurea was filtered off, and the
resulting filtrate was diluted with dichloromethane (100 mL), washed with HCl (20 mL,
1:15) and water. The organic layer was dried with anhydrous sodium sulphate. The
solvent was removed under the reduced pressure and the crude product was purified
by column chromatography on silica (eluent dichloromethane:acetone, 99.8:0.2) Further
re-crystallisation from hexane yielded 4.77 g (93%) of UTHH8 final product.

1H NMR (CDCl3) 8.25–8.37 (4 H, m, H-2, H-6, H-3′, H-5′), 8.10–8.25 (4 H, m, H-3,
H-5, H-3′ ′, H-5′ ′), 7.43 (2 H, d, J = 8.8, H-2′, H-6′), 7.32 (2 H, d, J = 8.2, H-2′ ′, H-6′ ′),
5.71–5.93 (2H, m, CH2=CH), 4.89–5.07 (1H, m, CH=CH2), 4.29–4.44 (4 H, m, COOCH2,
OCH2), 2.05 (2 H, q, J = 6.8 Hz), 1.79–1.92 (4 H, m, 2 × CH2CH2O), 1.22–1.54 (22 H, m,
11 × CH2), 0.90 (3 H, J = 6.5, CH3CH2). 13C NMR (75 MHz, CDCl3): 165.63 (2 × COOCH2),
163.82 (2 × COOAr), 155.07 (C-1′), 154.35 (C-1′ ′), 139.18 (CH=CH2), 135.22 (C-4),132.54
(C-1), 132.00 (C-3′, C-5′), 131.21 (C-3′ ′, C-5′ ′), 130.21 (C-2, C-6), 129.77 (C-3, C-5), 128.26
(C-4′ ′), 126.91 (C-4′), 122.04 (C-2′, C-6′), 121.68 (C-2′ ′, C-6′ ′), 114.14 (CH=CH2), 65.79
(COOCH2), 65.32 (COOCH2), 33.79 (CH2CH=CH2), 31.79 (CH2CH2CH3), 29.01–29.72
(m), 28.90 (7 × CH2), 28.71 (CH2CH2O), 28.62 (CH2CH2O), 26.03 (CH2(CH2)2O), 26.00
(CH2(CH2)2O), 22.64 (CH2CH3), 14.10 (CH2CH3). Elemental Analysis for C41H50O8
(670.83): calc. C 72.24, H 7.61; found C 73.22, H 7.67.

2.2. Experimental Methods and Techniques

The sequence of mesophases was determined by the observation of the characteris-
tic textures and their changes in a polarising optical microscope (POM), Nikon Eclipse
E600POL (Nikon, Tokyo, Japan). Planar cells (bookshelf geometry) of 12 µm thickness
(glasses with indium tin oxide transparent electrodes (5 × 5 mm2) were supplied by Mil-
itary University of Technology (Warsaw, Poland)). The cells were filled with the studied
material in the isotropic phase by means of capillary action. The texture observation on the
samples with homeotropic alignment, e.g., free-standing films (FSF), was also performed;
while preparing the FSF, the liquid crystalline material was mechanically spread over a
circular hole (diameter 3 mm) in a metal plate placed in the hot stage. The heating/cooling
stage Linkam LTS E350 (Linkam, Tadworth, UK) with a TMS 93 temperature programmer
was used for the temperature control, which allows temperature stabilisation within ±0.1 K.

The phase transition temperatures were determined by differential scanning calorime-
try (DSC) using a Perkin–Elmer DSC8000 calorimeter (PerkinElmer, Shelton, CT, USA). The
samples of about 4–8 mg, hermetically sealed in aluminium pans, were placed into the
calorimeter chamber filled with nitrogen. The calorimetric measurements were performed
on cooling/heating runs at a rate of 5 K min−1 for the precise evaluation of the phase
transition temperatures. The kinetics of the phase transition temperatures was studied
with heating/cooling rates of 1, 2, 3, 5, 10, 20, 30, 40 and 50 K min−1. The temperature
and enthalpy change values were calibrated on the extrapolated onset temperatures and
enthalpy changes of the melting points of water, indium and zinc.

X-ray diffraction (XRD) measurements were performed to determine the structural
properties of the smectic mesophases. Experiments in the small diffraction angle range
allowed the determination of the smectic layer spacing, d. A Bruker D8 Discover system
was used (parallel beam of CuKα radiation, λ = 1.54 Å, formed by Goebel mirror, Anton
Paar DCS 350 heating stage, scintillation detector), and the temperature stability was 0.1 K.
Samples were prepared in the form of thin films on a heated surface. The smectic layer
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thickness was determined using Bragg’s law: nλ = 2d sinθ, where n is a positive integer
and θ is the angular position of the diffraction peak.

3. Results and Discussion

This section contains the experimental results obtained on several reactive mesogens
with different molecular structure by POM, DSC and XRD techniques, together with the
related discussion of the obtained results in terms of the molecular structure–mesomorphic
property relationship.

3.1. Mesomorphic Behaviour

For the newly designed reactive mesogens, the sequences of mesophases were deter-
mined from the characteristic textures and their changes observed in a polarising optical
microscope. The representative textures obtained by POM on planar samples and free-
standing films are presented in Figure 3.
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Figure 3. Microphotographs of the reactive mesogens’ characteristic textures obtained by cooling in
POM: (a) FSF of the SmC phase for UTHH8 at 105 ◦C, (b) FSF of the SmC-Cr phase transition for
UTHH8 at 66 ◦C, (c) FSF of the SmA-SmC phase transition for UTHH8, (d) planar fan-shaped texture
of the Iso-SmA phase transition for UTHH8 at 138 ◦C, (e) planar texture (broken fans) of the SmC
phase for UTHH8 at 107 ◦C, (f) planar texture of the N-SmA phase transition for UVHG at 92 ◦C,
(g) well-aligned planar texture of the SmA phase for UVHG at 120 ◦C. Width of the photos is about
300 µm.
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The phase transition temperatures and transition enthalpies were evaluated from DSC
measurements, and the results are summarised in Table 1. The DSC plots of the second
heating/cooling runs for the selected reactive mesogens are shown in Figure 4.

Table 1. Sequence of phases (PH) determined by POM, melting points (m.p.) and clearing points (c.p.) (◦C) measured
upon heating, phase transition temperatures (◦C) measured upon cooling (10 K min−1) and respective enthalpy values ∆H
(J · g−1) determined by DSC for the reactive mesogens. Symbol “-” represents if the phase does not exist.

Mesogen m.p. c.p. pH T/∆H PH T/∆H PH T/∆H pH T/∆H pH

UKHG 101.3
(+72.2)

129.4
(+0.9) Cr 67.8

(−63.2) SmC 73.0
(−0.02) SmA 90.5

(–0.02) N 128.7
(−1.1) Iso

UKHM 37.7
(+1.8)

37.7
(+1.8) Cr 36.3

(−2.2) - - - Iso

UVHG 109.4
(+83.2)

109.4
(+83.2) Cr 70.5

(−61.9) - SmA 91.7
(–0.4) N 105.1

(−1.3) Iso

UVHGET 103.5
(+60.1)

125.1
(+0.9) Cr 31.5

(−17.5) - SmA 91.9
(–0.1) N 124.2

(−1.0) Iso

UTHH8 95.4
(+90.2)

141.5
(+8.0) Cr 65.1

(−75.2) SmC 113.7
(−0.1) SmA 138.4

(–8.4) - Iso
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corresponding to phase transitions, and the mesophases are indicated.
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For the UKHM mesogen with the methyl group as a lateral substituent and a branched
terminal chain which is sterically unfavourable to create mesophases, the liquid crystalline
behaviour was not detected. Nevertheless, it can potentially be utilised as a specific co-
monomer for the design of the complex macromolecular materials. All the other mesogens
clearly possess the liquid crystalline behaviour over a reasonably broad temperature range.
The richest mesomorphic behaviour was detected for the UKHG reactive mesogen with the
methyl lateral substituent in Y-position (see Figure 1). The nematic, the SmA and the SmC
phases were clearly found upon cooling from the isotropic (Iso) phase. The non-substituted
UTHH8 reactive mesogen exclusively possesses the smectic phases, namely the orthogonal
SmA and the tilted SmC phases. Figure 3a–c shows the homeotropic textures of the detected
smectic mesophases for the UTHH8 reactive mesogen obtained on the FSF.

It can be concluded that the lateral substitution placed at the Y-position on the specific
molecular core (see Figure 1), in combination with the appropriate length of the chain far
from the polymerisable vinyl group, makes the nematic phase favourable upon cooling
from the isotropic phase. This is fully confirmed by two UVHG and UVHGET reactive
mesogens which possess the nematic and the SmA phase upon cooling, while the tilted
SmC phase was not detected for those two materials. While comparing those two mesogens
with the lateral methoxy group, the shorter chain placed far from the polymerisable vinyl
group results in an extension of the SmA phase temperature range upon cooling, while the
melting point is found almost unaffected. The texture of the N-SmA phase transition for
UVHG mesogen obtained on the planar sample is presented in Figure 3f. It was easy to
obtain a very homogeneous alignment in the SmA phase for the UVHG reactive mesogen
(see Figure 3g). The textures observed on the planar samples are presented in Figure 3d,e
for the fan-shaped SmA phase and for the broken fan-shaped SmC phases. The tilted
SmC phase was found to be fully monotropic (i.e., overcooled as it appears upon cooling
only) for both UKHG and UTHH8 reactive mesogens. However, it can be expected that
under definite conditions, the tilted SmC phase can be stabilised and even extended for the
foreseen respective macromolecular materials after the polymerisation.

For the UKHG reactive mesogen, the kinetics of the phase transitions was checked
using DSC measurements under several cooling rates, as presented in Figure 5, where a
clear situation regarding the behaviour of the melting point is shown.
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transition temperatures slightly decreased, and the stability of the phases increased, upon 
heating, the situation was the opposite (see Figure 6). However, the transition to the solid 
crystal (Cr) phase shows a clear sign of super-cooling [34,51], being more pronounced 

Figure 5. Heating and cooling DSC runs for the UKHG reactive mesogen measured at different
heating/cooling rates (K ·min−1), as indicated.

For this study, only the data from the second cooling runs were used. It has been
found that the stability of all the mesophases slightly depends on the rate of cooling, which
is quite obvious. While increasing the cooling rate, the Iso-N and N-SmA phase transition
temperatures slightly decreased, and the stability of the phases increased, upon heating,
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the situation was the opposite (see Figure 6). However, the transition to the solid crystal
(Cr) phase shows a clear sign of super-cooling [34,51], being more pronounced especially
at cooling rates higher than 40 K. This effect is also related to the monotropic character of
the lower temperature range of the SmA phase.
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3.2. Structural Properties

For three reactive mesogens exhibiting the smectic phases, the small-angle X-ray scat-
tering measurements were performed in order to confirm the mesophase identification and
to determine the smectic layer spacing. The results, namely the temperature dependence
of the layer spacing, d, for UTHH8 (a), UVHG (b) and UKHG (c) reactive mesogens are
presented in Figure 7. All studied materials exhibit a slight increase of d values in the SmA
phase upon cooling, which results from the growing orientational order of the molecules
and increasing number of all-trans molecular conformers. At the SmA-SmC phase transi-
tion, a typical drop in d values appears, caused by the tilting of the molecules with respect
to the smectic layer normal in the SmC phase. Upon further cooling towards crystallisation,
the tilt angle saturates and the layer spacing starts to increase due to the same factors as
described above for the SmA phase (see Figure 7a for UTHH8 reactive mesogen).

For the calculation of the length of the reactive mesogen molecules in the energy-
optimised conformation, the MOPAC/AM1 model was used. The resulting molecular
structures with the principal axis of minimum moment of inertia, e.g., the long molecular
axis, are shown in Table 2. Taking into account the most extended conformer, the length of
the molecule, L, is found to be slightly higher than 42 Å for four of the studied materials;
naturally, molecules of the UVHGET reactive mesogen with the short terminal chain are
considerably shorter, L = 37.7 Å, than that for the other materials. For three reactive
mesogens exhibiting the orthogonal SmA phase, namely UTHH8, UVHG and UKHG,
the layer spacing was found to be slightly lower than the lengths of the respective most
extended conformers, which can be explained by the non-perfect orientational order of
the molecules in the smectic layers. We compared the non-substituted UTHH8 reactive
mesogen with its substituted analogues, UVHG and UKHG, having the bulky methoxy and
methyl lateral substituents, respectively. From the comparison, it can be concluded that the
lateral substitution on the molecular core close to the alkyl chain with polymerisable vinyl
group has only a minor impact on the resulting molecular shape. This might be because
the layer spacing in the orthogonal SmA phase remains almost the same for those three
reactive mesogens [40].
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The orientational order parameter, S2, can be estimated according to the relation
d ≈ L/3(S2 + 2) [40,52], where d is the layer spacing in the orthogonal SmA phase and L
is the length of the most extended conformer. With actual values for UTHH8 (L = 42.2 Å;
d = 39.8 Å), for UKHG (L = 42.6 Å; d = 39.7 Å) and for UVHG (L = 42.4 Å; d = 38.5 Å),
S2 = 0.83 (UTHH8), S2 = 0.80 (UKHG) and S2 = 0.72 (UVHG) can be obtained, which
are quite typical values of S2 orientational order parameter in fluid smectics. It can be
summarised that the orientational order parameter S2 is decreased with the increasing size
of the lateral substituent.

4. Summary of the Results and Conclusions

Several new calamitic reactive mesogens, with vinyl terminal group with different
length of flexible chains and with/without lateral substitution by the methyl and methoxy
groups placed on the molecular core, have been designed and synthesised. Depending on
the molecular structure, the reactive mesogens exhibit the nematic, orthogonal SmA and
tilted SmC phases in a reasonably broad temperature range. The structure of the smectic
mesophases has been confirmed by XRD measurements. The calculated length of the most
extended conformer correlates well with the smectic layer spacing obtained experimentally.
Lateral substitution by a bulky methoxy group on the molecule core deteriorated the ar-
rangement of the molecules (UVHG and UVHGET), and only nematic and orthogonal SmA
phases were detected. The lateral substitution by the methyl group on the molecular core
had a very positive effect on the self-assembling behaviour (UKHG), and rich mesomorphic
behaviour (N-SmA-SmC) was observed. While comparing the mesomorphic behaviour for
UKHG and UVHG reactive mesogens differing by the substituent type only (i.e., CH3 and
CH3O, respectively), it is possible to conclude that the presence of a bulky methoxy group
makes the tilted smectic phase unfavourable. However, a lateral methyl substitution in
combination with a branched terminal chain (UKHM) fully suppressed the self-assembling
behaviour of the resulting material with a given type of molecular core. The kinetics of
the phase transitions for UKHG reactive mesogen has been studied in dependence on the
heating/cooling rate of DSC runs. The resulting phase diagrams for the UKHG reactive
mesogen clearly demonstrated a noticeable difference in the phase transition temperatures



Polymers 2021, 13, 2156 14 of 16

on the heating/cooling DSC rate. The Iso-N and N-SmA phase transition temperatures
slightly decreased while increasing the cooling rate.

The reactive mesogens reported here with a functional vinyl terminal group can be
further used as reactive mesogens, i.e., both the monomers and co-monomers, for the
design of the smart self-assembling macromolecular materials, such as siloxane-based
polymers, co-polymers and elastomers, exhibiting self-assembling behaviour favourable
for various applications, including smart sensors [4,52–55] as well as tunable liquid crystal
micro-lens array [56], dynamic focusing micro-lens array [57] and spatial modulators for
working in THz aimed for photonics and telecommunications systems [58].
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45. Milewska, K.; Drzewiński, W.; Czerwiński, M.; Dabrowski, R. Design, synthesis and mesomorphic properties of chiral benzoates
and fluorobenzoates with direct SmCA*-Iso phase transition. Liq. Cryst. 2015, 42, 1601–1611. [CrossRef]
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