
Frontiers in Immunology | www.frontiersin.

Edited by:
Xuyao Zhang,

Fudan University, China

Reviewed by:
Filippo Rossignoli,

Brigham and Women’s Hospital and
Harvard Medical School, United States

Shuai Ping,
Huazhong University of Science and

Technology, China

*Correspondence:
Naihan Xu

xu.naihan@sz.tsinghua.edu.cn
Yaou Zhang

zhangyo@sz.tsinghua.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 31 March 2022
Accepted: 16 May 2022
Published: 13 June 2022

Citation:
Luo C, Wang S, Shan W, Liao W,

Zhang S, Wang Y, Xin Q, Yang T, Hu S,
Xie W, Xu N and Zhang Y (2022) A

Whole Exon Screening-Based Score
Model Predicts Prognosis and

Immune Checkpoint Inhibitor Therapy
Effects in Low-Grade Glioma.
Front. Immunol. 13:909189.

doi: 10.3389/fimmu.2022.909189

ORIGINAL RESEARCH
published: 13 June 2022

doi: 10.3389/fimmu.2022.909189
A Whole Exon Screening-Based
Score Model Predicts Prognosis and
Immune Checkpoint Inhibitor
Therapy Effects in Low-Grade Glioma
Cheng Luo1,2,3†, Songmao Wang1,3,4†, Wenjie Shan1,3,5, Weijie Liao1,3, Shikuan Zhang1,3,4,
Yanzhi Wang1,3,4, Qilei Xin1,3,6, Tingpeng Yang1,3,6, Shaoliang Hu7, Weidong Xie1,3,5,
Naihan Xu1,3,5* and Yaou Zhang1,3,5*

1 China State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, China,
2 Department of Biomedical Engineering, Tsinghua University, Beijing, China, 3 Key Lab in Healthy Science and Technology of
Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen, China, 4 School of Life Sciences, Tsinghua University,
Beijing, China, 5 Open Faculty for Innovation, Education, Science, Technology and Art, Tsinghua Shenzhen International
Graduate School, Shenzhen, China, 6 Department of Chemical Engineering, Tsinghua University, Beijing, China, 7 Research and
Development Department, Shenzhen Combined Biotech Co., Ltd, Shenzhen, China

Objective: This study aims to identify prognostic factors for low-grade glioma (LGG) via
different machine learning methods in the whole genome and to predict patient prognoses
based on these factors. We verified the results through in vitro experiments to further
screen new potential therapeutic targets.

Method: A total of 940 glioma patients from The Cancer Genome Atlas (TCGA) and The
Chinese Glioma Genome Atlas (CGGA) were included in this study. Two different feature
extraction algorithms – LASSO and Random Forest (RF) – were used to jointly screen
genes significantly related to the prognosis of patients. The risk signature was
constructed based on these screening genes, and the K-M curve and ROC curve
evaluated it. Furthermore, we discussed the differences between the high- and low-risk
groups distinguished by the signature in detail, including differential gene expression
(DEG), single-nucleotide polymorphism (SNP), copy number variation (CNV), immune
infiltration, and immune checkpoint. Finally, we identified the function of a novel
molecule, METTL7B, which was highly correlated with PD-L1 expression on tumor
cell, as verified by in vitro experiments.

Results:We constructed an accurate prediction model based on seven genes (AUC at 1,
3, 5 years= 0.91, 0.85, 0.74). Further analysis showed that extracellular matrix remodeling
and cytokine and chemokine release were activated in the high-risk group. The proportion
of multiple immune cell infiltration was upregulated, especially macrophages,
accompanied by the high expression of most immune checkpoints. According to the in
vitro experiment, we preliminarily speculate that METTL7B affects the stability of PD-L1
mRNA by participating in the modification of m6A.
org June 2022 | Volume 13 | Article 9091891
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Conclusion: The seven gene signatures we constructed can predict the prognosis of
patients and identify the potential benefits of immune checkpoint inhibitors (ICI) therapy for
LGG. More importantly, METTL7B, one of the risk genes, is a crucial molecule that
regulates PD-L1 and could be used as a new potential therapeutic target.
Keywords: METTL7B, PD-L1, prognosis prediction, glioma, m6A (N6-methyladenose), RNA stability
INTRODUCTION

Central nervous system (CNS) malignant tumors have one of the
worst prognoses among all cancers, and glioma is the
most common primary tumor of the CNS, accounting for
approximately 80% of malignant brain tumors (1, 2). At
present, the clinical classification of gliomas still follows the
histological diagnostic criteria proposed by the WHO in 2007
(3). This classification method has significant limitations (4).
One reason is that subjective preference easily differentiates
judgments based on tumor histology between observers (5). As
a result, the survival time of a group of patients with glioma may
vary from weeks to years. It is difficult to explain this difference
based only on histological grade. Although diffuse low- and
intermediate-grade gliomas collectively constitute low-grade
gliomas (LGGs, WHO grades II and III), which are rarer than
grade IV gliomas (GBM, glioblastoma) due to their highly
invasive nature, complete neurosurgical resection is impossible,
leading to recurrence and malignant progression, eventually
progressing to glioblastoma (3, 6–8). Therefore, it is necessary
to propose new detailed diagnostic criteria that integrate the
molecular changes in glioma.

For the treatment of glioma, traditional surgical resection is
difficult and the residual tumor cells will further deteriorate.
Radiotherapy has also been associated with epilepsy and mild
dementia (9). Given these limitations, immune checkpoint
inhibitor (ICI) drugs have proven to be promising treatments
(10). In a phase III clinical trial of glioblastoma, the overall
response rate of patients to nivolumab (PD-1 monoclonal
antibody) was only 8%, but the overall survival time doubled
(11). Considering the good therapeutic effect and high medical
cost of glioma, there is an urgent need for a valuable biomarker to
predict the benefits of immunotherapy in patients with glioma.

In this study, we focused on all genes in the LGG transcriptome
data. We tried to develop a prognostic marker of LGG that can
predict the routine prognosis of patients and the potential benefits
of immunotherapy. We found that the immune response,
extracellular matrix remodeling, and cytokine release were
accelerated in the high-risk groups. In addition, high-risk patients
are accompanied by the upregulation ofmost immune checkpoints
representedbyPD-1/L1 and the increase in tumormutationburden
(TMB)andCNV, suggesting thatpatientsmay respondbetter to the
ICI of PD-L1 (12–15).We proved this through the TIDE score (16).
In short, the model can predict the prognosis of patients and
determine the possible benefits of ICI treatment. Finally, we also
found a new molecule, METTL7B, in glioma, which reduces the
expression of PD-L1 in cells by inhibiting the stability of PD-L1
mRNA and lead to the apoptosis of co-cultured T cells.
org 2
METHODS

Publicly Available mRNA Data and Immune
Gene Sets
Data from two publicly available datasets were incorporated into
our study. TCGA RNA-seq data (FPKM) of samples from patients
with LGG (Illumina HiSeq 2000) were acquired from the Genomic
Data Commons (GDC) (http://portal.gdc.cancer.gov). According
to the whole survival time, age, radiotherapy status, and glioma
grades, 420 patients were collected and randomly (in a 7:3 ratio)
categorized as training set and internal validation set. 529 glioma
data was downloaded with complete clinical data and molecular
subtyping data (IDH1 mutation, 1p19q codeletion, and MGMT
methylation) fromChineseGliomaGenomeAtlas (CGGA) (http://
www.cgga.org.cn) to serve as external validation sets.

Construction and Verification of
Multivariate Cox Signature
According to the mRNA expression of risk genes, a stepwise Cox
proportional hazards regression model was used. RF realized by
the R package “randomforestsrc”, the number of feature trees was
100, and the number of random splits was 1. LASSO realized by
R package “glmnet”, and 100 times cross-validation was carried
out. Signature genes were obtained by taking the intersection of
these two gene lists. Risk score formula was calculated by taking
into account the expression of signature genes and correlation
estimated Cox regression coefficients: Risk score = (exp Gene1 *
coef Gene1) + (exp Gene2 * coef Gene2) +… +(exp Gene7 * coef
Gene7). Patients with LGG were classified into a high-risk or
low-risk group by ranking the given risk score. The thresholds of
high- and low-risk groups were selected through the “survminer”
package. The R package “timeROC” was used to test the time-
dependent receiver operating characteristic curve (ROC) (17).
The difference of overall survival (OS) between two groups in the
three cohorts was assessed using Kaplan–Meier method and the
two-tailed log-rank test. A Cox proportional hazards regression
model was used to identify independent prognostic factors.

Construction and Validation of Multigene
Containing Nomogram
Nomogram was used to predict the survival probability by
specific clinical parameters (18). We constructed the
nomogram containing the multigene signature and other
independent prognostic factors. The nomogram was calibrated
at 1-year, 3-years, and 5-years using the R package “rms”.
Decision curve analysis (DCA) analysis was used to assess the
clinical application benefits of the multigene panel in the TCGA
set (19).
June 2022 | Volume 13 | Article 909189

http://portal.gdc.cancer.gov
http://www.cgga.org.cn
http://www.cgga.org.cn
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Luo et al. Prognosis Prediction of LGG
Biological Process and Pathway
Enrichment Analysis
Using the R package “DESeq2” (20), DEGs between high- and
low-risk groups were identified. Then, using Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis, different pathways and items were
identified between the two risk groups. In addition, we used
GSEA (21) to dynamically score different enrichment items in
the high- and low-risk groups.

Weighted Gene Co-Expression
Network Analysis
The R package “WGCNA” (22) was used to perform weighted
gene co-expression network analysis (WGCNA) using the TCGA
LGG expression matrix (FPKM). To build a scale-free network
and calculate the network topology matrix, the gene expression
matrix is weighted by a soft threshold. We use a dimension
reduction algorithm to visualize the network module composed
of co-expressed genes in glioma samples after clustering with the
dynamic cut tree algorithm and merging similar modules.

Evaluation of Immune Microenvironment
With CIBERSORT and ssGSEA
The LM22 signature matrix, which is included in CIBERSORT,
was used to estimate the distribution of 22 immune cell types
(23). We ran 1000 iterations in R studio using the script provided
in this paper to assess the difference in 22 immune cell
infiltrations between the high and low risk groups and
displayed the results in heatmap. ssGSEA was realized through
the R package “GSVA” according to the analysis process and
method provided by the official instruction (24).

Analysis of Gene Mutation and Copy
Number Variation
The copy number variation data in the TCGA database was
downloaded through the ‘TCGAbiolinks’ R package (25), and the
risk score and CNV were integrated. snp6 grch38 annotation file
was downloaded in TCGA and analyzed with GISTIC2.0 (26).
Gene mutation data was also obtained from the TCGA database.
The occurrence of mutation events was calculated and matched
with the risk score. Finally, the ‘maftools’ R package was used for
visualization (27).

Cell Culture and Construction of Stable
Cell Lines
U251 cells, A172 cells, and Jurkat cells were purchased from the
National Collection of Authenticated Cell Cultures. U251 and
A172 were grown in DMEM medium with 10% fetal bovine
serum (Gibco, California, USA). Jurkat cells were cultured in
RPMI 1640 Medium with 10% fetal bovine serum. All medium
was supplemented with 10 U/ml of penicillin-streptomycin, and
all cells were cultured in a 5% CO2 humidified incubator at 37°C.
The control shRNA and Lentivirus-based LINC00472-targeting
shRNA vectors were purchased from GENECHEM (Shanghai,
China). U251 cells were transiently transfected with these vectors
and screened by puromycin at a 2 mg/ml concentration to
generate stable monoclonal cell lines.
Frontiers in Immunology | www.frontiersin.org 3
PCR and Real-Time Quantitative
PCR Analysis
According to the manufacture’s protocol, the total RNA was
isolated using AG RNAex Pro Reagent AG21101. Real-time
quantitative PCR was performed using the TransScript All-in-
One First-Strand cDNA Synthesis SuperMix for qPCR (One-
Step gDNA Removal) (TRANS, AT341-01) and the PerfectStart
SYBR Green qPCR SuperMix (TRANS, AT601-01). The primers
used are listed in Supplemental Table S1, and all the levels of
mRNAs were measured and normalized to b-actin.

Western Blotting
Western blotting was performed as previously described (28). The
antibodies used for western blotting include METTL7B (Abclonal,
A7200), CD274 (Abcam, 243877), and b-actin (CST, 8480S).

Coculture Study and Assessment
of Apoptosis
To examine the effect of tumor cells on lymphocyte apoptosis, a
total of 5×106 U251 cells were cocultured with 5×105 Jurkat
leukemia T cells in 6-cm plates for 24 h. Jurkat cells were
collected and washed three times with PBS diluted in annexin
binding buffer. For each sample, 5 ml (2.5 mg/ml) annexin V–
FITC and 5 ml (50 mg/ml) propidium iodide were added to the
cell suspension and incubated for 15 min at room temperature
(25°C) in the dark. The extent of apoptosis in Jurkat cells was
determined by flow cytometry using FITC–annexin V.

Total m6A Modification Level and RNA
Stability of Cells
The total amount of m6A in total RNA was measured using the
m6A RNA Methylation Assay Kit (Fluorometric) (Abcam,
ab233491), following the manufacturer manual. For each
sample, 200 ng of total RNA from U251 cells were used. For
RNA stability detection, cells were cultured overnight and then
treated with actinomycin D 10 mg/mL at 0, 2, 4 and 6 h before
trypsinization collection. The total RNA was extracted by TRIzol.
Quantitative RT-PCR was conducted to determine the relative
level of indicated mRNA.

Statistical Analysis
The R software (version 4.1.2) was used for the statistical
analysis. Statistical analysis of cell and molecular biology
experiments was performed using GraphPad Prism 8.0 version.
“ggplot2”, “ggpubr”, “vioplot” were applied to visualize the
results of data analysis. Wilcoxon Signed Rank test and
Student’s t test were used for statistical analysis between two
groups, while the Kruskal-Wallis test was applied for statistical
tests of more than two groups. When p less than 0.05, we
considered the difference to be statistically significant.
RESULTS

Identification of Prognosis-Related
Genes in Low-Grade Glioma
In this study, 529 LGG samples were acquired from the TCGA
database, and a total of 530 patients were obtained from the
June 2022 | Volume 13 | Article 909189
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CGGA database. The glioma data from TCGA were randomly
divided into a training set and a validation set at a ratio of 7:3.
The process is shown in Figure 1; 32622 genes were selected
because the gene expression level in half of the samples was more
than zero. The expression of these genes in LGG samples was
used for univariate Cox regression analysis. A total of 3432 genes
were significantly (p < 0.001) associated with the overall survival
of patients in the TCGA training set.

We included these significant genes in LASSO and RF
regression (Figures 2A, B), two algorithms screened 31
and 146 genes related to the clinical outcome of glioma
patients, respectively. Then, we obtain the intersection of these
two algorithms. Figure 2C shows that 10 genes existed
simultaneously in the two regression analysis results.
Multivariate Cox regression analysis was performed on these
ten genes, and seven genes with P values < 0.05 were
selected (Table 1).

The 7-Gene Signature Can Accurately
Predict the Prognosis of Patients With
Low-Grade Glioma
According to the above feature selection algorithm, CTC-
548K16.2, EFHB, METTL7B, MLLT3, SEL1L3, SOX13, and
Frontiers in Immunology | www.frontiersin.org 4
FAM66C were used to build a multigene signature for
predicting the survival of LGG patients. The risk score of each
patient was estimated based on the expression of these genes and
their corresponding coefficients, which were obtained by
multivariate Cox regression analysis. Patients were categorized
into a significant risk group based on the optimized risk value
based on the results of ROC analysis.

First, we investigated the performance of the multigene
signature in predicting the OS of LGG patients. The K–M
curve suggested that the clinical outcome was significantly
worse in the high-risk group than in the low-risk group
(p < 0.0001) (Figure 2D). Furthermore, the time-dependent
ROC curve shown in Figure 2E shows that the multigene
signature has excellent performance in predicting survival
events (the areas under the curves (AUC) at one year, three
years, and five years were 0.91, 0.85, and 0.74, respectively).
Figure 2F illustrates the risk score distribution of patients, the
survival time, and the heatmap of the seven gene expression
profiles in each patient. In short, the risk score proved to be
highly significant for patients with glioma in the training set.

We identified clinically independent prognostic factors. As
shown in Figure 2G, young age (HR = 0.45, 95% CI: 0.28~0.71,
p < 0.001) and low-risk score (HR = 0.28, 95% CI: 0.17~0.44,
FIGURE 1 | Schematic diagram of a gene screening strategy for prognosis prediction in this study.
June 2022 | Volume 13 | Article 909189
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p < 0.001) were protective factors, and glioma grade (HR = 1.61,
95% CI: 0.96~2.70, p = 0.071) and radiotherapy (HR = 2.18, 95%
CI: 1.16~4.10, p = 0.016) seemed to be risk.

The 7-Gene Signature Still Has Good
Performance in the Internal and External
Validation Sets
To validate the performance forecast of the multigene signature,
we used glioma patient data from TCGA and CGGA as the
internal verification and external verification cohort,
respectively. With the same coefficients, patients were divided
into a high-risk group (N=26 in TCGA, N=221 in CGGA) and a
A B C

D E F

G

FIGURE 2 | Identification of prognostic genes and survival prediction of patients with low-grade gliomas in the TCGA training cohort. (A) 100-fold cross-validation
for tuning parameter selection in the LASSO model. (B) The distribution of regression coefficients of significantly related genes in the model. (C) Gene selection
through two algorithms based on the Venn plot. (D) Kaplan–Meier curves of overall survival (OS) in low-grade glioma are based on the risk score. (E) Time-
dependent ROC curve of the risk gene signature at 1, 3, and 5 years in the TCGA training cohort. (F) Distribution of risk score, survival time, and gene expression
panel. (G) Subgroup analysis shows the effect of different clinical features in TCGA for OS patients with low-grade glioma. Hazard ratios with 95% confidence
intervals are shown in each different group. *p < 0.05, ***p < 0.001.
TABLE 1 | Multivariate Cox analysis was used to further screen prognostic
factors and corresponding coefficients of the linear model.

Characteristics Hazard Ratio CI95 p.value Coef.

ARL3 0.67 0.4-1.14 0.143
CTC-548.K16.2 31.58 1.39-715.54 0.030 3.818
EFHB 0.60 0.37-0.98 0.040 -0.539
HILS1 1.12 0.56-2.23 0.741
METTL7B 1.23 1.02-1.47 0.027 0.194
MLLT3 0.49 0.29-0.82 0.007 -0.813
RP11.893F2.14 2.33 0.84-6.47 0.106
SEL1L3 1.41 1.16-1.72 0.001 0.466
SOX13 1.57 1.26-1.98 0.000 0.498
FAM66C 1.32 1.06-1.63 0.032 -0.216
June 2022 | Volume 13 | Article 909189
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low-risk group (N=110 in TCGA, N=192 in CGGA) based on the
expression of 7 signature genes (Figures 3A, D). In the internal
verification cohort of TCGA, K–M survival analyses showed that
patients in the low-risk group had significantly better OS than
those in the high-risk group (Figure 3B, p < 0.0001). The time-
dependent ROC curve revealed that for predicting prognosis at 1,
3, and 5 years, the AUCs were 0.87, 0.88, and 0.81, respectively
(Figure 3C). Because the CGGA dataset still contains grade IV
gliomas, it suggests that the signature also has potential
application value in high-grade gliomas.
Frontiers in Immunology | www.frontiersin.org 6
However, in the CGGA external verification cohort, CTC-
548K16.2 was removed due to probe loss. We used the same
coefficient to integrate other genes for analysis. The 6-gene
signature in the CGGA external verification set also had a superior
ability to distinguish the clinical outcomes of the high-risk group and
the low-risk group (Figure 3E, p < 0.0001). The 1-, 3-, and 5-year
AUCs of the time-dependent ROC curves were 0.76, 0.75, and 0.75,
respectively (Figure 3F). The results showed that although one
variable was removed, the multigene prediction model still had
good differentiation for the prognosis of glioma patients.
A B

C

D E

F

G H I

FIGURE 3 | Validation of the prognostic performance of the risk stratification gene signature in TCGA and CGGA cohorts. (A, D) Distribution of risk score, survival
time, and gene expression panel in TCGA and CGGA validation cohorts. (B, E) Kaplan–Meier curves of OS based on the risk score in the TCGA and CGGA cohorts.
(C, F) ROC curve of the risk gene signature at 1, 3, and 5 years in the TCGA and CGGA cohorts. (G, H) Time-dependent ROC curve of the risk gene signature at 1,
3, 5, 7, and 10 years in the TCGA cohort with and without CTC-548K16.2. (I) The area under the ROC curve (AUC) of prognosis prediction using different risk
stratification models in the TCGA dataset.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Luo et al. Prognosis Prediction of LGG
CTC-548K16.2 is a noncoding RNA that has low expression
in the TCGA cohort. Next, we evaluated the significance of CTC-
548K16.2 in the prediction signature. In the TCGA dataset, the
AUC of the seven-gene model considering CTC-548K16.2 was
0.91 (1 year), 0.85 (3 years), 0.74 (5 years), 0.77 (7 years), and
0.67 (10 years) (Figure 3G). With the increase in survival time,
the AUC showed a downward tendency. However, the 1-, 3-, 5-,
7-, and 10-year AUCs were 0.91, 0.85, 0.71, 0.72, and 0.57,
respectively, when the 6-gene signature was used for prediction
(Figure 3H). Figure 3I shows that the AUC decreased sharply at
approximately 1800 days. These results suggest that CTC-
548K16.2 may be related to the late prognosis of glioma patients.

The Signature Has Suitable Identification
for Different Clinical Subgroups and
Molecular Subgroups
We aimed to determine whether the signature has universal
applicability, whether it has a more accurate prediction for
different types of patients, such as age or gender, and whether
is unsuitable for a specific type of patient. We divided the
patients into different subgroups according to clinical
information. For all subgroups in the internal training set, the
OS time of high-risk patients was shorter than that of low-risk
patients (Figure S1). Signatures can achieve satisfactory
identification in most subgroups in the validation set, except
for G2 gliomas (Figure S2). One reason may be that the
prognosis of G2 is usually good, so the number of samples
identified as high-risk is minimal (only 3 patients in the high-
risk group).

In terms of molecular subgroups, the IDH1 wild-type group
(76%) had a higher proportion of high-risk patients than the
IDH1 mutant group (34%) (Figure S3A). In addition, the
percentage of high-risk patients in the 1p19q codeletion group
(33%) was lower than that in the nondeletion group (58%)
(Figure S3B). There was no significant difference in MGMT
promoter methylation (Figure S3C). Regarding different
molecular characteristics, the OS time of the high-risk group
was significantly shorter (Figures S3D-I).

The Nomogram Integrated Signature
Shows That the Clinical Benefit to Patients
Has Been Improved
A prognostic nomogram is a quantitative method for clinicians
to predict the survival of LGG patients (29). We integrated
clinically independent prognostic factors that were identified
before. Nomogram was constructed based on these factors to
predict the 1-year, 3-year, and 5-year survival probability of
glioma patients (Figure 4A). The calibration plot closely
resembled the ideal diagonal curve at 1-year, 3-year, and
5-year (Figures 4B–D), and the C-index of the nomogram was
0.807, suggesting that the performance of the nomogram
was reliable.

Figure 4E shows that the AUC of the 1-year ROC curve was
significantly higher than that of age (AUC = 0.791) and radiation
(AUC = 0.505). In addition, we included independent prognostic
factors to compare the decision curve analysis (DCA) of the
Frontiers in Immunology | www.frontiersin.org 7
predictive models with or without risk scores. We found that the
clinical benefit of patients with risk score integration was much
greater than that of patients with only age, grade, and other
factor integration (Figure 4F). In other words, compared to the
conventional clinical classification system, the nomogram with
the risk score had a better performance in predicting survival
outcomes. Therefore, these results illustrated that the nomogram
could be used to predict the prognosis of glioma patients in
clinical practice.

Immune Response and Extracellular
Matrix Remodeling Were Significantly
Activated in High-Risk Patients
To further determine the functional position of risk stratification
genes in glioma progression. We selected 20000 genes according
to the median absolute deviation and transformed glioma
expression profiles (TCGA) into gene co-expression networks
using the WGCNA package, as described previously (22). The
soft threshold (beta = 4) was selected to build a scale-free
network and check the mean connectivity of the network
(Figure S4A). Figure S4B is used to verify the network node
connection statistics and scale-free distribution. The fractional-
step algorithm constructs the modules and calculates the
correlation (Figure S4C). Then, the clusters with a degree of
difference less than 0.2 were merged, and 19 different
co-expression modules were finally obtained (Figure 5A).

Through the enrichment analysis of theWGCNA co-expression
modules, we found that the risk stratification genes were located in
four different co-expression modules. MLLT3 and FAM66C are
light green in the network, and SEL1L3 and SOX13 are turquoise.
The genes in these two modules are mainly related to the nervous
system and synapses (Figures S5A, B). EFHB, which is depicted in
brown, is primarily involved in DNA metabolism and chromatin
remodeling in gliomas (Figure S5C). Finally, METTL7B, depicted
in royal blue, is engaged mainly in vasculogenesis and extracellular
structure organization (Figure 5B), suggesting that METTL7B has
the closest relationship with glioma invasion, migration, and
vasculogenesis among the risk stratification genes.

Then, based on the DESeq2 algorithm (20), we analyzed the
differentially expressed genes between the high- and low-risk
groups from the TCGA cohort, including 3883 upregulated and
1101 downregulated genes. The log2 enrichment ratio and -log10
adjusted p were visualized in a volcano plot (Figure 5C). GO
analysis indicated that these genes could be categorized into
inflammatory signaling pathways and immune responses,
including T-cell activation and leukocyte and lymphocyte
activation (Figure 5D). GO items with statistical significance
were mainly concentrated in three clusters: immune response,
extracellular matrix remodeling, and interferon-gamma
mediated immune response (Figure 5E). KEGG analysis
showed that the DEGs were mainly associated with essential
biological processes, including ECM-receptor interactions,
phagosomes, focal adhesion, the JAK-STAT signaling pathway,
and the cAMP signaling pathway (Figure 5F). Fold changes in
the mRNA expression levels of DEGs between the high- and low-
risk groups were calculated and preranked in GSEA, and it
June 2022 | Volume 13 | Article 909189
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revealed that the low-risk group was significantly associated with
immune system development (NES = -1.75, p.adj = 0.03,
Figure 5G) and extracellular matrix structural constituents
(NES=-2.46, p.adj < 0.0001, Figure 5H).

High-Risk Patients Have Prominent
Immune Cell Infiltration and Increased
Expression of Immune Checkpoints
Functional enrichment analysis (GO, KEGG and GSEA) found
immune response activation in high-risk patients, and we further
analyzed this difference. We conducted different machine
learning approaches to integrate multidimensional immune-
related variables for every patient. CIBERSORT used a linear
model to predict the content of immune cells in the tumor
microenvironment and evaluated the accuracy of the results by
1000 permutation tests. In Figure 6A, patients in the high-risk
group had a significantly higher proportion of CD8+ T cell, M1,
and M2 types of macrophages and a substantially lower
proportion of activated mast cells. The increased ratio of
macrophage infiltration is associated with a worse prognosis in
LGG, which seems to be unrelated to patients with glioblastoma
(Figure 6B). We also conducted ssGSEA to evaluate the
association with immune-infiltrating cells and the gene
signature in individual glioma samples; however, the two
Frontiers in Immunology | www.frontiersin.org 8
algorithms are different. We obtained similar conclusions, and
ssGSEA indicates that we should pay more attention to the
general upregulation of the proportion of immune cell
infiltration (Figure 6C).

The huge difference in the immune landscape suggests that high-
risk patients may have different benefits from immunotherapy.
Therefore, we expanded our analysis to 28 immune checkpoint
molecules, including the B7-CD28 family (30, 31), TNF superfamily
(32), and others (33–35). Surprisingly, most immune checkpoints
were upregulated (Figure 6D), including the B7-CD28 family (p <
0.0001: CD274, CD276, ICOS, PDCD1 and PDCD1LG2), TNF
superfamily (p < 0.0001: CD40, CD40LG and TNFRSF14) and
others (p < 0.0001: HAVCR2) (Figure 6E). Based on the
outstanding performance in the therapeutic effect of PD-1/L1
inhibitors, PD-L1 and PD-1 in glioma deserve more attention (36).

The Amplification of TMB and CNV in the
High-Risk Group Confirmed the High
Response of ICI Therapy
We found that the majority of immune checkpoints in patients in
high-risk group were upregulated, especially PD-1/L1. The high
expression of these molecules has been proven to be related to
patients’ better response to ICI therapy. In addition to the
detection of PD-1/L1 molecules, the increase in TMB has also
A B

C

D E F

FIGURE 4 | Construction of the nomogram. (A) Nomogram predicts 1-, 3-, and 5-year OS for low-grade glioma patients based on the risk signature and other
clinicopathological parameters. (B–D) The calibration curves of the nomogram for predicting and observing 1-, 3- and 5-year OS. (E) ROC curve of the risk gene
signature and other parameters at one year. (F) The decision curve analysis (DCA) shows the clinical benefits of patients after risk stratification.
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been proven to be related to the effectiveness of immunotherapy
and TMB detection has been used as a clinical reference guide
(12, 13). Therefore, we analyzed gene mutation and CNV,
hoping to support our view further.

The analysis of SNP in the high- and low-risk groups
(Figures 7A, B, respectively) revealed that IDH1 and TP53
Frontiers in Immunology | www.frontiersin.org 9
were in the top two with the highest frequency of gene
mutation. Among them, there were 39% IDH1 mutations in
the high-risk group and 91% in the low-risk group, which is
consistent with previous reports that IDH1 wild-type gliomas
tend to have a significantly worse prognosis (37). We analyzed
the TMB (the frequency of mutation events per million bases).
A B

C

D

E

F

G H

FIGURE 5 | The immune response, extracellular matrix remodeling, and other pathways were significantly activated in high-risk patients. (A) Combining the modules
with slight dissimilarity, 19 weighted gene coexpression subnetworks were obtained by a dynamic tree cut algorithm. (B) GO enrichment analysis was performed on
all genes in the coexpression module where mettl7b is located. (C) Volcano plot of differentially expressed genes between high- and low-risk patients. (D) Dot plot of
Gene Ontology (GO) enriched terms colored by p values. (E) Significant GO items were clustered according to biological function. (F) Dot plot of Kyoto Encyclopedia
of Genes and Genomes (KEGG) enriched terms colored by p values. Gene set enrichment analysis between high- and low-risk patients. There was a significant
enrichment of immune (G) and extracellular matrix remodeling (H) in the high-risk group. NES, normalized enrichment score.
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The results showed that the average TMB of high-risk patients
was 0.64/MB (Figure 7C), and that of low-risk patients was 0.38/
MB (Figure 7D), which was nearly twice the difference. CNV
analysis also showed significant copy number amplification in
Frontiers in Immunology | www.frontiersin.org 10
the high-risk group, which mainly involved three regions
(1q32.1, 7p11.2, and 12q14.1, Figures 7E, F). All these
conclusions confirm that the high-risk group may have higher
benefits from immunotherapy. The TIDE score was used to test
A B

C

D

E

FIGURE 6 | Immune infiltration and immune checkpoint expression in the high-risk group. (A) Heatmap and boxplot of the CIBERSORT algorithm evaluating the
proportion of 22 kinds of immune cell infiltration in high- and low-risk solid tumors. (B) The proportion of macrophage infiltration was significantly correlated with the
overall survival time of patients with low-grade glioma. (C) Heatmap of the immune cell infiltration landscape in high- and low-risk solid tumors using the ssGSEA
algorithm. (D) The heatmap integrated the clinical features and the expression of the immune checkpoint in the TCGA dataset. (E) In TCGA datasets, most of the
immune checkpoints were activated in high-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns. (no significance).
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H

FIGURE 7 | Analysis of single-nucleotide polymorphisms (SNPs) and copy number variations (CNVs) in patients in the high- and low-risk groups. Single-nucleotide
polymorphisms in patients in the (A) high- and (B) low-risk groups. Tumor mutation load in patients in the (C) high- and (D) low-risk groups. Copy number variation in
patients in the (E) high- and (F) low-risk groups. (G) Based on the calculation of TIDE, the prediction score of each sample (left) the difference of T-cell dysfunction and
(right) the difference of TIDE score between high-risk and low-risk groups. ***p < 0.001. (H) Spearman correlation between risk stratification genes and extracellular matrix
remodeling markers (green), chemokines (lilac), inflammatory factors (yellow), and immune activation markers (cyan). Gene function annotation is from the MSigDB
database.
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our conclusion. A higher TIDE score means that patients are
unlikely to benefit from immunotherapy (16). We found that the
TIDE score in the high-risk group was low, suggesting more
significant benefits of immunotherapy. We also observed a
higher proportion of T-cell inactivation, indicating the
existence of immune escape (Figure 7G).

By integrating all the current conclusions, we returned to the risk
grading gene itself and selected genes related to extracellular matrix
(KEGG_ECM_RECEPTOR_INTERACTION, NABA_ECM_
REGULATORS, and REACTOME_ECM_PROTEDGLYCANS,
total of 366 genes), chemokines (KEGG_CHEMOKINE_
SIGNALING_PATHWAY and WP_CHEMOKINE_
SIGNALING_PATHWAY, total of 354 genes), inflammatory
factors (HALLMARK_INFLAMMATORT_RESPONSE, total of
200 genes) and immune activation (GO_BP_ACTIVATION_
OF_IMMUNE_RESPONSE, total of 563 genes) from the
MsigDB database (https://www.gsea-msigdb.org/gsea/msigdb/)
to analyze the relationship of signature genes and these
signaling pathways.

We found that the extracellular matrix and immune
activation-related genes, chemokines, and inflammatory factors
were significantly activated in high-risk solid tumors (Figure S6).
These results confirm that the signature genes regulate a
molecular signaling network in glioma, which is strongly
associated with tumor extracellular matrix remodeling and
immune response. Figure 7H shows that METTL7B has the
closest relationship with these immune response-related genes
among the risk stratification genes. Additionally, METTL7B has
the highest correlation coefficient.

Knockdown of METTL7B in Glioma
Promotes the Expression of PD-L1
At present, there is no report on the definite function of
METTL7B in glioma, especially its relationship with the
immune response. Considering the expression difference
between the two risk groups in Figure 6E, we analyzed PD-L1,
which is mainly expressed on the side of tumor cells and has been
widely developed as a target of tumor immunotherapy. The
relationship between this molecule and METTL7B was studied
in vitro.

We selected the human glioma cell line U251 and
glioblastoma cell line A172 to realize the knockdown of
METTL7B through small interfering RNA (siRNA), as shown
in Figure 8A. qRT–PCR showed that the two siMETTL7B
targets could achieve a specific inhibition efficiency. We
detected the expression of PD-L1 in two cell lines transfected
with siMETTL7B and the results showed that the transient
inhibition of METTL7B increased the mRNA level of PD-L1
(Figure 8B). We also verified this conclusion by Western
blotting (Figure 8C). To further confirm this change, we
transfected shRNA with lentivirus and transfected exogenous
plasmids to knock out and overexpress METTL7B (Figures 8D,
E). Consistent with the above conclusions, knockout of
METTL7B further increased the expression of PD-L1, and
overexpression reduced the level of PD-L1 (Figures 8F, G).
Interferon-gamma is usually produced by activated T cells and
Frontiers in Immunology | www.frontiersin.org 12
NK cells and is responsible for inhibiting the growth of tumor
cells (38). We used interferon-gamma to simulate the immune
process of the body. We found that interferon-gamma can make
this change more significant, and the Western blot results
obtained a consistent conclusion (Figures 8H, I).

METTL7B Inhibits the Stability
of PD-L1 mRNA, and This May
Involve m6A Modification
At present, there are few reports on METTL7B, and there is no
thorough report on its role in glioma. We analyzed other family
members and found that the three members METTL3, METTL14,
and METTL16 of the family have been reported to play the role of
m6Awriters and play vital roles in the occurrence anddevelopment
of various tumors (39, 40). Considering an in vitro experiment by
Franjic et al., it was verified that METTL7B functions as a
methyltransferase via S-adenosylmethionine (SAM) as a methyl
donor (41). We tried to study the relationship between METTL7B
and intracellular m6A modification. The results showed that
siMETTL7B reduced the overall m6A change in cells
(Figure 9A), which seemed more evident in the shMETTL7B cell
line (Figure 9B). Moreover, an increase in m6A modification was
observed in overexpressing cells (Figure 9C). We predicted the
posttranscriptional modification of RNA by the SRAMP method
(42) and found 15 possible m6A modification sites on PD-L1
mRNA (Figure 9D). One of the most direct consequences of
modifying intracellular RNA m6A is the change in the stability of
the modified RNA. We verified that METTL7B inhibited the
stability of PD-L1 mRNA. As shown in Figure 9E, knockdown of
METTL7B in two different glioma cell lines increased the level of
PD-L1 mRNA but decreased it in overexpressed cells. All these
results suggest that the changes in total m6A modification in cells
caused by METTL7B changes may affect the stability of PD-L1
mRNA molecules.

The PD-L1 molecule expressed on the surface of tumor cells
binds to the PD-1 receptor on the surface of T lymphocytes,
inhibits the function of T lymphocytes, and induces lymphocyte
apoptosis. We cocultured Jurkat lymphocytes and U251 glioma
cells to simulate the immune process of the body. The results
showed that shMETTL7B cells increased the apoptosis of Jurkat
lymphocytes coincubated (Figure 9F).

All the results show that METTL7B may regulate the
expression of PD-L1 molecules through m6A, and m6A
modification is likely to be an essential method for METTL7B
to play a role in glioma cells, which has not been fully
demonstrated at present. In glioma, we analyzed the
correlation between METTL7B and the widely reported m6A
writer, m6A eraser, and m6A reader. As we speculated,
METTL7B has a significant correlation with many molecules,
such as ZBP1, IGFBP2, and IGFBP3 (Figure 9G).
DISCUSSION

At present, many studies on the prognostic prediction of glioma
patients have been reported. Most studies are based on predefined
June 2022 | Volume 13 | Article 909189
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gene sets to screen prognostic factors. A very detailed analysis based
on24autophagycharacteristic genes constructedanaccuratemodel
to predict the prognosis of glioma patients (AUCof 3 years is 0.795)
(43). Another study also accurately predicted the prognosis of
glioma patients by integrating the expression of 19 lncRNAs
related to hypoxia (AUC of 0.862 in one year) (44). We obtained
much inspiration from these analyses. The risk prediction model
based on a specific gene set can distinguish the prognosis of patients
to a certain extent.However, theoccurrence anddevelopmentof the
tumor is a highly complex biological process involving a variety of
regulatory pathways. We believe that it is not comprehensive to
predict only from several aspects of tumor cell development. Given
this, we selected the most significant gene as the predictor through
various machine learning screening methods starting from the
whole genome. We analyzed the tumor as a whole, which
achieved an excellent prediction effect (AUC of 0.91 in one year),
showing the feasibility of the screening strategy and providing a
reference for the development of subsequent cancer
prognosis models.

Among these risk genes, the specific biological functions of
SEL1L3 and CTC548K16.2 are rarely reported. FAM66C is a long
noncoding RNA that has been found to regulate glycolysis and
inhibit the proliferation and migration of tumor cells (45, 46).
Consistent with these conclusions, we found that the expression of
FAM66C in high-risk patients was significantly lower than that in
low-risk patients, suggesting that FAM66C ismore likely toplay the
role of a tumor suppressor gene in tumor cells and prevent tumor
progression. As a widely reported transcription factor, SOX13
Frontiers in Immunology | www.frontiersin.org 13
affects cell migration, invasion, and angiogenesis in various
cancers and plays a role in an oncogene (47–49). This is closely
related to the activation of extracellular matrix remodeling in high-
risk people found in our study. For the EFHB gene, Takaoka et al.
found through complete exon sequence analysis that EFHB single-
nucleotide variationmay induce the accumulation ofDNAdouble-
strandbreaks inhumanAMLcells (50). Similarly, we found that the
coexpression subnetwork of EFHB in glioma regulates DNA
metabolism and chromatin remodeling of tumor cells. In
addition, MLLT3, as a developmental active epigenetic modifier
during the generation of cortical projection neurons, participates in
the development of the cerebral cortex by regulating the
methylation of histone H3K79 (51). The WGCNA part of this
study identified this gene as a factor participant in the development
of the nervous system, neuronal differentiation, and ion transport.
These results suggest the potential function of MLLT3 in glioma.
Most studies on the biological function of risk grading genes are
consistent with our results in glioma. These results also suggest that
the above genes may have similar roles in glioma.

For predicting whether patients can benefit from PD-1/PD-
L1 inhibitor therapy, at present, the detection of PD-L1 has been
proven to be an effective method, and the conclusion that
patients with high expression of PD-L1 have better overall
survival and remission rates after receiving immunotherapy
has been widely recognized. In addition to detecting the
expression level of PD-L1 at the genomic level, it has also been
confirmed that the higher the TMB is, the higher the efficacy of
immunotherapy, and the detection of TMB has been written into
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FIGURE 8 | METTL7B affects the expression of PD-L1 in glioma. qRT–PCR showed that the METTL7B siRNAs in (A) U251 and (B) A172 cells could significantly
downregulate METTL7B at the transcriptional level. (C) The expression of METTL7B and PD-L1 in U251 siMETTL7B and A172 siMETTL7B cells was detected by
Western blot. (D) The expression of METTL7B mRNA in the U251 shMETTL7B cell line was detected by qRT–PCR. (E) The expression of METTL7B mRNA in U251
METTL7B-overexpressing cells was detected by qRT–PCR. The expression of PD-L1 in (F) U251 shMETTL7B and (G) overexpression cell lines in the presence and
absence of interferon-gamma (80 ng/mL) was detected by qRT–PCR. The expression of PD-L1 in (H) U251 shMETTL7B and (I) overexpression cell lines in the
presence and absence of interferon-gamma (80 ng/mL) was detected by Western blot. *p < 0.05, **p < 0.01, ***p < 0.001.
June 2022 | Volume 13 | Article 909189

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Luo et al. Prognosis Prediction of LGG
the guidance guidelines of multiple clinical immunotherapy trials
(52, 53). In addition to these two, a recent study also reported
that CNV of plasma cell-free DNA in blood could predict the
clinical results of PD-1 inhibitors combined with lenvatinib and
other ICI-based hepatobiliary cancer treatments (15). In this
study, we found that in the high-risk patients identified by the
signature, the expression of PD-L1 increased significantly,
accompanied by an increase in TMB and CNV, indicating the
Frontiers in Immunology | www.frontiersin.org 14
high potential benefits of PD-L1 ICI therapy in high-risk patients
in all aspects. Therefore, this signature can accurately predict the
prognosis of glioma patients and help identify the benefits of ICI
therapy. We verified our conclusion through the TIDE score.

We identified a new functional molecule, METTL7B, for the first
time in an in vitro experiment in a risk grading gene. We found that
knockdown of METTL7B leads to increase in PD-L1, and high
expression of PD-L1 is often accompanied by immune escape and
A B C
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G

FIGURE 9 | The change in METTL7B in glioma through m6A modification affects the stability of PD-L1 mRNA. (A) In U251 and A172 cells transfected with
siMETTL7B, the total level of m6A modification decreased significantly. (B) In the U251 shMETTL7B cell line, the whole level of m6A modification decreased
significantly. (C) In U251 cells overexpressing METTL7B, the total level of m6A increased significantly. (D) The potential m6A modification sites on PD-L1 mRNA
molecules were predicted based on SRAMP. (E) Actinomycin D (10 µg/mL) inhibited the transcription of nascent RNA in different treatment groups. Cells were
collected at 0 h, two h, four h, and six h. The PD-L1 mRNA content in cells was detected by qRT–PCR. (F) The U251 shMETTL7B cell line was incubated with
suspended Jurkat lymphocytes for 24 hours (10:1), and the supernatant was collected to detect lymphocyte apoptosis. (G) Correlation coefficient between
METTL7B and RNA m6A modification-related molecules in low-grade gliomas. *p < 0.05, **p < 0.01, ***p < 0.001.
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malignant progression of the tumor. Recently, Song et al. reported
that METTL7B in lung adenocarcinoma reversed resistance to
epidermal growth factor receptor (EGFR)-tyrosine kinase
inhibitors by changing m6A modification (54). As a new
molecule in glioma, we demonstrated that METTL7B participates
in the cellular immune response by affecting the mRNA stability of
PD-L1 and showed the critical role of m6A in this process. These
results suggest that we should pay attention to the role of METTL7B
in the occurrence and development of glioma, especially in T cells
apoptosis and immune response. In addition, we should also
consider the unique correlation between METTL7B and the
widely identified m6A participants in gliomas. Considering all the
factors, we still need to carry out a large number of in vitro
experiments to clarify the function of this molecule in gliomas.
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Supplementary Figure S1 | Survival analysis of cases in TCGA training cohort
stratified by gender, WHO grades and Radiotherapy. Kaplan-Meier curves of OS in
(A) male, (B) female, (C) G2, (D) G3, (E) with or (F) without radiotherapy patients
based on risk score in low grade glioma population.

Supplementary Figure S2 | Survival analysis of cases in TCGA validation cohort
stratified by gender, WHO grades and Radiotherapy. Kaplan-Meier curves of OS in
(A) male, (B) female, (C) G2, (D) G3, (E) with or (F) without radiotherapy patients
based on risk score in low grade glioma population.

Supplementary Figure S3 | Validation the prognostic performance of patients
carrying wild‐type IDH1 genes, 1p19q codeletion or MGMT methylation. (A) IDH1
wild-type (WT) and mutation (Mutant) proportions in High Risk or Low Risk. (B)
Chromosome 1p19q codeletion or not (Non) proportions in different risk groups. (C)
MGMT methylation or not proportions in different risk groups. Kaplan-Meier curves
of OS in IDH1 WT (D), IDH1 mutant (E), 1p19q codeletion (F), 1p19q non-
codeletion (G), MGMT methylation (H) and MGMT unmethylation (I) based on risk
score.

Supplementary Figure S4 | Construction of weighted risk stratification gene co-
expression network and functional enrichment analysis. (A) The scale-free fit index
for soft thresholding powers. (B) Selecting the soft threshold of 4, checking the
node connection number, and verifying the network connectivity of a scale-free
network. (C) The correlation between network modules.

Supplementary Figure S5 | Functional enrichment analysis of co-expression
networks which containing risk stratification genes. The co-expression module of
weighted gene and the Gene Ontology Analysis of all the module gene within (A)
MLLT3, FAM66C, (B) SEL1L3, SOX13, (C)EFHB colored by specific cluster ID.

Supplementary Figure S6 | Correlation between marker genes and risk grading
genes. Marker genes related to (A) extracellular matrix remodeling, (B) immune
response, (C) cytokine, and (D) chemokine release were selected from MsigDB
database, and the correlation between the above marker genes and risk grading
genes was analyzed in TCGA-LGG data set.
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