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Introduction: Abnormalities of the cerebellum have been displayed to be

a manifestation of schizophrenia (SCH) which is a detrimental psychiatric

disorder. It has been recognized that the cerebellum contributes to motor

function, sensorimotor function, cognition, and other brain functions in

association with cerebral functions. Multiple studies have observed that

abnormal alterations in cerebro-cerebellar functional connectivity (FC) were

shown in patients with SCH. However, the FC of cerebellar networks in SCH

remains unclear.

Methods: In this study, we explored the FC of cerebellar networks of 45

patients with first-episode SCH and 45 healthy control (HC) subjects by using

a defined Yeo 17 network parcellation system. Furthermore, we performed

a correlation analysis between cerebellar networks’ FC and positive and

negative symptoms in patients with first-episode SCH. Finally, we established

the classification model to provide relatively suitable features for patients with

first-episode SCH concerning the cerebellar networks.

Results: We found lower between-network FCs between 14 distinct cerebellar

network pairs in patients with first-episode SCH, compared to the HCs.

Significantly, the between-network FC in N2-N15 was positively associated

with positive symptom severity; meanwhile, N4-N15 was negatively associated

with negative symptom severity. Besides, our results revealed a satisfactory

classification accuracy (79%) of these decreased between-network FCs of

cerebellar networks for correctly identifying patients with first-episode SCH.

Conclusion: Conclusively, between-network abnormalities in the cerebellum

are closely related to positive and negative symptoms of patients with first-

episode SCH. In addition, the classification results suggest that the cerebellar

networks can be a potential target for further elucidating the underlying

mechanisms in first-episode SCH.
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Introduction

Schizophrenia (SCH), described as a disorder of
dysconnectivity, manifests as delusions, hallucinations, and
cognitive dysfunctions (Friston, 1998). Neuroimaging studies
have suggested that abnormalities of the cerebellum may play a
crucial role in SCH (Lynall et al., 2010; Kim et al., 2014; Klauser
et al., 2017). Postural sway, sensorimotor synchronization,
and prediction mediated by the cerebellum are examples
of such structural anomalies contributing to sensorimotor
dysfunction (Apthorp et al., 2019; Moussa-Tooks et al., 2019).
Importantly, functional dysconnectivity within sensorimotor
networks in a resting state has been identified in patients with
SCH (Walther et al., 2017). Apart from sensorimotor function
involving the cerebellum, it has been detected to contribute
to motor function, cognition, and emotion, just like with the
cerebrum (De Zeeuw et al., 2021). Regional and functional
specificity of the cerebellum should be mentioned. There are
three lobes of the cerebellar cortex, namely, the anterior lobe,
the posterior lobe, and the flocculonodular lobe (Schmahmann
et al., 2007). An activation likelihood estimate meta-analysis
of neuroimaging studies has demonstrated that sensorimotor
tasks trigger the anterior lobe (lobule V) and adjacent lobule
VI, with additional foci in lobule VIII; motor activation locates
in VIIIA/B; somatosensory activation is in VIIIB (Stoodley and
Schmahmann, 2009).

Even though the cerebellum accounts for 10% of total
brain mass, it contains four diverse types of neuronal cells
in the cerebellar cortex comprising 80% of brain neurons
(Azevedo et al., 2009). Furthermore, the cerebellum of humans
is functionally coupled to cerebral functional networks (Buckner
et al., 2011; Yeo et al., 2011). It has been revealed by distributed
cerebellar networks that support the movement, attention, and
limbic valence, as well as frontoparietal and default systems
with topographic specificity mapping to the cerebellum (Habas
et al., 2009; O’Reilly et al., 2010). To define the cerebellar
networks, Yeo et al. (2011) proved 17 divergent networks
possessing relatively stable parcellation solutions, in which the
major regions of the cerebellar cortex are linked to cerebral
networks. Baker et al. (2014) provided the names and cortical
regions of the 17 networks in the Supplementary material.
These networks contain the peripheral vision (N1), the central
vision (N2, region Vermis VI), somato-motor A (N3, regions
I-V and VIIb), somato-motor B (N4, region V), dorsal attention
A (N5), dorsal attention B (N6, region VIIb-VIIIa), ventral
attention (N7, regions VI and VIIIa), salience (N8, regions VI,
Crus I-II, and VIIb), limbic (N9-10, white matter), control C
(N11, region Crus I), control A (N12, regions VI and VIIb),
control B (N13, regions Crus I and VIIb), auditory (N14),
default C (N15, region X), default A (N16, regions IX, Vermis
IX, Crus I, and Crus II), and default B (N17, region Crus I-II)
network (Baker et al., 2014).

Several studies have confirmed that cerebro-cerebellar
dysconnectivity is displayed in patients with SCH in association
with somatomotor function (Chen et al., 2013; Shinn et al.,
2015). Considering the modular architecture of cerebro-
cerebellar circuitry, researchers have observed that patients
with SCH showed a pattern of reduced functional connectivity
(FC) between the cerebellum and a set of cerebral regions,
such as the left middle temporal gyrus, right paracentral
lobule, and right thalamus (Liu et al., 2011). Moreover, the
dysconnection of the cerebellum in patients with SCH is
found in the cingulo-opercular network, the right frontoparietal
network, and the motor network (Chen et al., 2013). In SCH
patients with auditory hallucinations, the main causal source
is an occipital-cerebellar component compared with patients
with SCH without auditory hallucinations and healthy controls
(HCs) (de la Iglesia-Vaya et al., 2014). A recent study further
has indicated that the left cerebellar posterior lobe is found to be
negatively correlated with negative symptoms of patients with
SCH (Yang et al., 2021). Therefore, the importance of assessing
the organization and functional connection in the cerebellum
is to better understand its role in SCH. However, the FC of
cerebellar networks in SCH remains elusive.

Given the functional heterogeneity within the cerebellum,
we hypothesized that cerebellar network connectivity would
be aberrant in highly selective ways, exhibiting decreased SCH
compared to HCs. In addition, we expected that cerebellar
networks’ abnormalities are relative to positive and negative
symptoms of patients with SCH. In this study, we first examined
the FC of resting-state cerebellar networks in patients with first-
episode SCH and HCs. Besides, we conducted a correlation
analysis between the FC of cerebellar networks and positive and
negative symptoms in patients with first-episode SCH. Finally,
we established the classification model to provide relatively
suitable features for patients with first-episode SCH concerning
the cerebellar networks.

Materials and methods

Participants

A total of 45 patients with first-episode SCH without
any prior treatment and 45 HCs matched for gender and
age were recruited in the study. This study was approved
by the Ethics Committee of Beijing Anding Hospital, Capital
Medical University, and all protocols were carried out under the
guidance of the Declaration of Helsinki. Informed consent was
obtained from all participants before the study procedures. All
participants were the Chinese Han people.

Patients were included if (a) they were diagnosed as SCH
by two trained psychiatrists under diagnostic and statistical
manual of mental disorders (DSM)-IV criteria; (b) they had
not received any psychotropic medications (e.g., antipsychotics);
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(c) they were 16–45 years old and right-handed; (d) their
highest educational attainment was higher than a secondary
school; and (e) they are without any contraindications to MRI.
Participants were excluded if they (a) had a current comorbid
substance-use disorder (daily consumption of substances for at
least 1 year) and (b) had a history of neurological disorders
or a family history of hereditary neurological disorders. In
addition, HCs were included if they were not diagnosed with any
psychiatric diseases or other chronic/acute diseases (self-report).
Psychiatric symptomatology was evaluated by using the Positive
and Negative Syndrome Scale (PANSS) (Kay et al., 1987).

MRI data acquisition

The MRI data were acquired with a 3.0 Tesla MRI
scanner (Prisma 3.0; Siemens, Munich, Germany) in the Beijing
Anding Hospital, Capital Medical University, China. Resting-
state functional MRI was acquired with a single-shot, gradient-
recalled echo-planar imaging sequence with the following
parameters: repetition time = 2,000 ms, echo time = 30 ms, flip
angle = 90◦, matrix = 64 × 64, field of view = 200 mm × 200 mm,
slice thickness = 3.5 mm, gap = 1 mm, 33 axial sections,
and 240 volumes.

High-resolution brain structural images were acquired
with a T1-weighted three-dimensional (3D) multi-echo
magnetization-prepared rapid gradient-echo (MPRAGE)
sequence (echo time: 3.39 ms, repetition time: 2,530 ms, slice
thickness 1.3 mm, voxel size: 1 × 1 × 1 mm3, field of view
(FOV): 256 × 256 mm2, and volume number: 128).

Prior to scanning, all participants were instructed to rest for
30 min. During scanning, they should remain still, keep their
eyes closed, and not fall asleep.

Image processing

All image processing was completed by the DPABISurf. As
DPABISurf provides results in both surface and volume space,
both surface-based and subcortical analyses can be performed.
DPABISurf ’s default preprocessing pipeline was used, which
included converting the user-specified data into brain imaging
data structure (BIDS), skull-stripping, spatial normalization,
brain tissue segmentation, surface reconstruction for T1-
weighted images and slice-timing correction, realignment,
head-motion estimation, spatial registration, and smooth for
functional images. The detailed methods were described in the
article published by Esteban et al. (2019) and Yan et al. (2021).
The head motion of participants was used to screen the quality
control of images (mean FD_Jenkinson <2 mm).

We constructed a brain functional network for each subject
according to the 17-network parcellation designed by Buckner
et al. (2011). Detailed information on the parcellation is shown
in Supplementary Table 1. Each node of the atlas was a sphere

with a radius of 5 mm. The averaged BOLD signals across
all voxels in the 17 regions of interest (ROIs) were extracted.
The transformed z-scores of Pearson’s correlation coefficient (by
Fisher’s r-to-z formula) of the BOLD signals were computed to
define the FC for any pair of two ROIs; thus, a 17∗17 matrix was
conducted for each subject.

Statistical analysis

Comparisons for clinical information were performed using
an independent sample t-test (age) and a chi-square test
(gender). The group-level network analysis was an independent
sample t-test. We did not use any covariates in the group-
level analysis for the P-values (age and gender) larger than
0.25 (Bursac et al., 2008). In addition, Cohen’s f 2 value was
used to describe the effect size. We used the false discovery
rate (FDR) for multiple comparisons. The Pearson correlation
analysis was applied to test the correlation between PANSS score
and abnormal between-network FCs. Type I error was assumed
to be 0.05.

Feature selection and binary
classification

We selected the significant intergroup differences between
cerebellar networks’ FCs with correlation coefficient (r > 0.2
or r < −0.2) and participants’ age as features to distinguish
patients with SCH from HCs. The linear support vector
machine (LSVM) was conducted by using Python version 3.9.12
(anaconda version) with the Sklearn1 package. In LSVM, a well-
defined sample was used to establish a decision boundary that
could discriminate between categories and predict a new target
subject’s membership in each group. In the training dataset, a
10-fold cross-validation approach was applied to train the best
model. The receiver operating characteristic (ROC) curve and
the area under the ROC curve were calculated based on the
10-fold validation results to quantify the performance of the
model.

Results

Clinical information

A total of 90 participants (SCH: HC = 1:1) were analyzed
without gender and age significant differences. The 45 patients
with first-episode SCH had a 66.51 ± 14.634 PANSS score.
Additionally, none were excluded for head motion or structural
abnormalities in the brain. The details are shown in Table 1.

1 https://scikit-learn.org/stable/
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TABLE 1 Clinical information of participants.

SCH (N = 45) HC (N = 45) P

Gender (Male/Female) 17/28 16/29 0.827

Age 23.0 (6.3) 23.3 (2.3) 0.823

PANSS

Positive scores 18.2 (3.8) – –

Negative scores 17.2 (5.5) – –

General
psychopathology scores

31.1 (6.6) – –

Total scores 66.5 (14.6) – –

SCH, schizophrenia; HC, healthy control; PANSS, Positive and Negative Syndrome Scale.

FIGURE 1

Schematic diagram of functional connectivity (FC) between
cerebellar networks of schizophrenia (SCH) and healthy controls
(HCs).

Network analysis

Compared with HCs, patients with SCH demonstrated
lower between-network FCs between 14 distinct cerebellar
network pairs, namely, N2-N6, N2-N7, N2-N8, N2-N15, N3-
N6, N3-N15, N4-N6, N4-N15, N6-N7, N6-N8, N6-N15, N7-
N15, N8-N13, and N8-N15. The Circos of network analysis
is shown in Figure 1. The detailed t-values (lower triangle)
and Cohen’s f 2 values (upper triangle) are shown in Figure 2.
According to Cohen’s f 2 value, the N2-N15 and N6-N15 had a
medium effect size.

Correlation analysis results

The correlation analysis between PANSS scores and altered
between-network FCs showed that the N2-N15 was positively

correlated with positive scores (Figures 3, 4A), and the N4-N15
was negatively correlated with negative scores (Figure 4B).

Machine learning results

According to the correlation analysis, eight features were
selected for LSVM analysis, namely, N2-N7 (r = −0.22 with
negative scores), N2-N15 (r = 0.3 with positive scores; r = 0.21
with PANSS total scores), N3-N6 (r = −0.26 with negative
scores), N4-N15 (r = −0.3 with positive scores; r = −0.24 with
PANSS total scores), N6-N7 (r = 0.22 with positive scores),
N6-N8 (r = −0.2 with negative scores), N7-N15 (r = −0.24
with negative scores), and N8-N14 (r = −0.21 with negative
scores). In addition, the characteristics of these features between
patients with SCH and HC are shown in Table 2. As shown in
Figure 5, the best area under curve (AUC) score of the LSVM
classification was 0.93, and the mean AUC score was 0.79.

Discussion

In this study, our findings revealed that the patients
with first-episode SCH demonstrated lower between-network
FCs between 14 distinct cerebellar network pairs, compared
to the HCs. Notably, the between-network FC in N2-N15
was positively associated with positive symptom severity;
meanwhile, N4-N15 was negatively associated with negative
symptom severity. In addition, our LSVM analysis revealed
a satisfactory classification accuracy (79%) of these decreased
between-network FCs of cerebellar networks for correctly
identifying patients with first-episode SCH.

In line with our hypothesis, we found that decreased
between-network FCs of cerebellar networks are mainly
involved in N2, N3, N4, N6, N7, N8, N13, and N15. The
cerebellum is a complex region with many subregions
dedicated to different functions associated with higher
cortical areas (Andreasen and Pierson, 2008). Previously
published neuroimaging studies have demonstrated that
the cerebellum links to cerebral regions by the basal
ganglia forming the cerebellar-cortical circuit (Duan
et al., 2015). The 17 cerebellar networks were defined
using the cerebro-cerebellar FC (Buckner et al., 2011).
The altered FCs of cerebellar networks in the current study
belonging to the cerebellar motor and cognitive modules are
mainly coupled with cortical somatosensory network (SMN),
default mode network (DMN), salience network (SN), and
dorsal attention network (DAN) (Balsters et al., 2014), which are
associated with motor and cognitive functions. In accordance
with our results, patients with first-episode SCH revealed
decreased amplitude of low-frequency fluctuations in the right
Crus I (belonging to the cerebellar cognitive module) (Guo
et al., 2018) and decreased gray matter across motor and
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FIGURE 2

Results of network analysis. The lower triangle represents the t-values; the upper triangle represents Cohen’s f2 values.

FIGURE 3

Correlation analysis results between Positive and Negative Syndrome Scale (PANSS) scores and altered between-network functional
connectivity (FCs).

FIGURE 4

(A) The result of correlation analysis between positive score and N2-N15 and (B) the result of correlation analysis between negative score and
N4-N15.

cognitive cerebellar modules (He et al., 2019). The reduced
FC between the cerebellum and a set of cerebral regions, such
as the left middle temporal gyrus, right paracentral lobule,

and right thalamus, was observed in patients with SCH (Liu
et al., 2011). Another previous study on patients with SCH
also showed decreased cerebro-cerebellar FC in ventral attention

Frontiers in Cellular Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fncel.2022.1024192
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-1024192 November 10, 2022 Time: 6:27 # 6

Feng et al. 10.3389/fncel.2022.1024192

TABLE 2 Characteristics of the eight network features for
discriminating patients with schizophrenia (SCH) and healthy
control (HC) subjects.

SCH (N = 45) HC (N = 45) P

N2-N7 1.06 (0.30) 0.84 (0.43) 0.005

N2-N15 0.72 (0.26) 0.50 (0.24) <0.001

N3-N6 0.88 (0.30) 0.70 (0.27) 0.004

N4-N15 0.81 (0.27) 0.61 (0.28) 0.001

N6-N7 1.28 (0.28) 1.09 (0.23) 0.001

N6-N8 1.04 (0.25) 0.87 (0.30) 0.004

N7-N15 0.90 (0.26) 0.68 (0.32) 0.001

N8-N13 1.09 (0.22) 0.93 (0.23) 0.001

SCH, schizophrenia; HC, healthy controls. Two-sample t-tests were used to compare the
differences between two groups.

network (N7), SN (N8), control A (N12), control B (N13), and
DMN A (N16) (Shinn et al., 2015). Nevertheless, there was
controversy in terms of FC changes in SCH. The increased FC
in SCH was found between the cerebellum (lobule IX, lobule X,
Crus I, and CrusII) and the ventral attention network, which
was interpreted as the compensatory adaptation (Kim et al.,
2020). To explain this controversy, Kim et al. (2020) proposed
that functional efficiency, not the functional activity itself, was
impaired between the cerebral network and cerebellum in SCH.
Apart from this, the cerebellum has gained more attention in
several psychiatric disorders, such as bipolar disorder, major
depressive disorder, and generalized anxiety disorder (van Dun
et al., 2022). Most studies have reported the abnormalities
of FC between the cerebellum and the cerebral cortex in
these psychiatric disorders (Phillips et al., 2015). However,
the communication of cerebellar networks in these psychiatric
disorders remains unclear. Thus, we focused on the FC between
cerebellar networks in patients with SCH compared with HCs
to explore the neural mechanism underlying the wide-ranging

symptoms in SCH. Future studies are required to explore
the cerebellar networks in other neuropsychiatric diseases to
differentiate these disorders.

The network N2 is primarily associated with locomotion
and body posture (Coffman et al., 2011). The network N15
includes the retrosplenial complex, parahippocampal complex,
and ventral inferior parietal associated with the prefrontal
area (Buckner et al., 2011). In the present study, we found a
decreased between-network FC value of N2-N15 in patients
with SCH compared to HCs. Furthermore, we observed that
the SCH patients with severer positive symptoms showed less
decreased between-network FC values of N2-N15, suggesting
the underlying relationship between motor function and
positive symptoms of SCH. Clinically, increasing evidence has
shown that psychotic symptoms are accompanied by some
motor impairments in patients with SCH (Gebhardt et al.,
2008; Peralta and Cuesta, 2011). A recent study has illustrated
that motor function is negatively correlated with positive
symptoms (i.e., hallucinations and delusions) in SCH (Wang
et al., 2020). Also, it has been found that motor dysfunction
involves circuits linking with the cerebellum, thalamus, and
basal ganglia (Andreasen et al., 1998). Neuroimaging studies
have demonstrated that patients with SCH are characterized
by abnormalities within the thalamic–prefrontal–cerebellar
network (Woodward et al., 2012). Moreover, a recent study
has exhibited that the FC between the thalamus and cerebellar
is negatively associated with positive symptoms (Ferri et al.,
2018). Significantly, patients with SCH manifest with lower
connectivity between the thalamus and prefrontal cortex, while
patients show stronger connectivity between the thalamus
and motor/somatosensory regions (Woodward et al., 2012;
Damaraju et al., 2014). Noteworthy, our findings showed that
the between-network FC of N4-N15 yielded a trend for a
negative correlation with the severity of negative symptoms.

FIGURE 5

The area under curve (AUC) score of the linear support vector machine (LSVM) classification.
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The N4 correlated with motor cortical regions contains
central sulcus, secondary somatosensory, insula, and auditory
contributing to the somatomotor map (Kelly and Strick, 2003;
Krienen and Buckner, 2009). In line with our results, a recent
study has revealed that the left cerebellar posterior lobe was
negatively correlated with negative symptoms of patients with
SCH (Yang et al., 2021). Another study also confirmed that the
FC between the dorsolateral prefrontal cortex and the cerebellar
network was negatively correlated with negative symptom
severity in SCH (Brady et al., 2019). Based on accumulating
evidence, the change in FC of the cerebellar network was
correlated with positive and negative symptoms of patients with
SCH (Andreasen and Pierson, 2008; Picard et al., 2008; Pappa
and Dazzan, 2009; Abboud et al., 2017). Together, the cerebellar
networks might play a critical role in modulating positive and
negative symptoms for SCH. Despite our results identifying the
relationships between cerebellar networks and symptoms, it may
be obfuscated by common factors in psychiatric neuroimaging
studies such as cognitive function, social function, and aerobic
fitness. Future studies are required to investigate whether these
mediating factors contribute to the cerebellar networks’ FCs and
symptoms of SCH.

Nevertheless, there were some limitations to be concerned
about. First, we did not gather motor and cognitive behavioral
data from the recruited participants. Future studies are needed
to assess the cognitive and motor function in SCH and
the relationship between cerebellar networks. Second, some
mediating factors might play a role in the correlation between
cerebellar networks and symptoms of patients with SCH. Future
research is required to probe whether several mediating factors
contribute to the cerebellar networks’ FCs and symptoms of
SCH, such as cognitive function, social function, and fitness.
Third, we conducted a cross-sectional study to explore the data
at a single point in time. A longitudinal study is needed to
investigate the changes in cerebellar networks and symptoms
from time to time. Fourth, we performed the LSVM learning to
train the best model, thereby distinguishing SCH from HCs. The
independent validation sample is required to test the model in
the future. Moreover, other psychiatric disorders are also needed
to investigate in the cerebellar networks to discriminate SCH
from other psychiatric disorders.

In conclusion, abnormalities between-network FCs of
cerebellar networks were observed in first-episode SCH
correlating positive and negative symptoms. The classification
result between patients with first-episode SCH and HCs
indicated the possible neural mechanisms for the involvement
of cerebellar networks in patients with first-episode SCH.
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