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Abstract

Little is known about the characteristics of ambient sound in shallow waters southwest of

Hainan Island, China, a tropical habitat of the Indo-Pacific humpback dolphin. The spatio-

temporal patterns of soundscape in this area were thus studied and described here. Acous-

tic data collected from February 2018 to February 2019 at ten monitoring sites, spanning

~200 km of the coastline, were analyzed. The ambient sound characteristics in the investi-

gated area showed significant spatiotemporal variations. Sound levels centered at 0.5 and 1

kHz were higher during dusk and night than other times of the day at all monitoring sites

except for one. Higher sound levels at frequencies above 8 kHz were documented during

autumn and winter at all sites except for three of them. Biological and anthropogenic sound

sources including soniferous fishes, snapping shrimps, dolphins, ships, pile-driving activi-

ties, and explosions were identified during spectrogram analyses of a subsample of the

dataset. The shipping noise was frequently detected throughout the monitoring sites. Spa-

tiotemporal variations of the soundscape in the investigated waters provided baseline infor-

mation on the local marine environment, which will be beneficial to the protection of the

vulnerable Indo-Pacific humpback dolphin population recently discovered in the investigated

waters.

Introduction

The soundscape of an environment is the aggregation of geophysical, biological and anthropo-

genic sounds present in it [1]. The research on marine soundscape could provide insights into

the species composition of a given marine environment, provide valuable information on habi-

tat quality, and reflect long-term changes of species distribution, biodiversity and human activ-

ities [2, 3].

In shallow waters, natural phenomena such as waves, wind and rain [4, 5] generate part of

the ambient sound by interacting with the surface layer of the ocean [6, 7]. The wind
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contribution dominates from a few Hz to 30 kHz [4], surface waves cause mostly infrasonic

sounds at frequencies from 10 to 100 Hz [4], and rainfall also produces energy peaks from 15–

20 kHz [8]. Biological sounds are related to marine mammals [9, 10], fishes [11, 12] and inver-

tebrates [13], and their activities [14]. Marine mammals produce various types of sounds as

efficient mean to exchange information with conspecific and interact with the surrounding

environment, using signals at various frequency bandwidths [10, 15]. For example, toothed

whales emit echolocation clicks when locating prey and narrow-banded frequency modulated

whistles when socializing [10]. In contrast, some baleen whales emit songs which are generally

produced at low frequencies and consist of a combination of pulses and tonal sounds [15].

Soniferous fishes produce impulsive or frequency-modulated sounds below 10 kHz with dif-

ferent types of signals and biological activities [16], while most fish calls at low-median fre-

quencies (<2kHz) [16, 17]. They use sounds to perceive the environment and to coordinate

certain behaviors such as reproduction or territory defense [17]. Reef fishes use sounds to

guide settlement onto reefs [18]. The key biological sound sources in shallow waters are snap-

ping shrimps, especially in subtropical and tropical areas [13, 19, 20]. They emit broadband

pulse signals (up to 200 kHz) [21], which are affected by time of day [22], environmental vari-

ables [23] and social context [24]. Higher rate of snaps were usually recorded during dusk and

night for individuals and same-sex pairs, while different daily trends for opposite-sex pairs and

a mixed-sex group [24, 25]. Anthropogenic sources are generally marine traffic, geophysical

explorations, wind farm constructions, pile-driving, military exercises and other noisy human

activities [26, 27]. In general, ship noise is believed to be the main contributor to man-made

sounds in shallow waters throughout the world [14, 28, 29], particularly at low frequencies

(< 1 kHz) [30].

Man-made underwater sound levels have increased at a rate of 3 dB per decade [31, 32].

This increase is mainly associated to the growing shipping activity, and global concern is con-

currently growing up about the impact of noise on marine life [33]. For marine mammals,

anthropogenic sounds may cause behavioral alterations, including: changes in surfacing and

diving patterns [34], stranding [35], hearing loss [36, 37], and communication masking [26,

38]. For example, in shallow waters, small vessels traveling at 5 knots can reduce the communi-

cation range of bottlenose dolphins by 26% within 50 m [39]. The rates and signal characteris-

tics of dolphin sounds seem to be affected by man-made noise as well [40–42]. Understanding

the effect of noise on dolphin population can improve the effectiveness of protection actions,

especially for vulnerable and endangered species.

The waters southwest of Hainan Island, China, are a tropical habitat of Indo-Pacific hump-

back dolphin (IPHD, Sousa chinensis), which was only recently discovered [43]. IPHD mainly

lives in shallow and coastal waters [44, 45], where they are overlap with human activities that

generate underwater noise [46, 47]. The species has already been classified as “Vulnerable” by

the International Union for Conservation of Nature (the IUCN Red List of Threatened Species

2018). Recently, PAM studies reported that distribution, acoustic behavior, and habitat use of

IPHD in this area are strongly influenced by the abundance of soniferous fishes and the species

seemed to be more acoustically active in locations with lower levels of noise [47, 48]. Research

on the log-term and large-scale variation of soundscape in Hainan waters would help to better

understand the marine acoustic environment and eventually benefit the conservation of

IPHD. The soundscape of other two IPHD habitats located in subtropical areas have been pre-

viously studied [49, 50]. In two sites of waters off Taiwan, China, two frequency bands (150–

300 Hz and 1.2–2.4 kHz) were studied during a 3-month monitoring, and it was reported that

the lower frequency band was mainly associated with container vessels at one site, while the

higher frequency band was from fish chorus at nighttime in both sites [49]. The variation of

soundscape in the Pearl River Estuary waters was studied during a 16-day monitoring and
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reported a significant variation in diel and tidal soundscapes, but with the majority of IPHD

sounds detected during periods without fish sounds [48]. However, in that specific study the

acoustic monitoring was conducted during a very short monitoring period.

Although these studies provided important regional information about the acoustic space

occupied by IPHD, a long-term and large-scale spatiotemporal analysis is needed to generate a

comprehensive understanding of its habitat [47, 48]. Different waters have different sounds-

cape signatures related to distinctive physical and biological features [49, 51]. For example, sea-

bed hardness and snap rate have a significant relationship that may be accounted for by the

higher reflection properties of hard surfaces compared to soft substrates [52]. The IPHD habi-

tat quality in the waters southwest of Hainan Island and potential impacts of anthropogenic

activities on this habitat remain unclear. Underwater soundscape is considered a reliable index

to indicate habitat quality [53], characterize sound sources in a specific underwater environ-

ment, and evaluate potential impacts of anthropogenic activities [54].

In this study, we aimed to describe how the soundscape varies during long-term monitor-

ing and at a large spatial scale (~200 km along the coast) in an important IPHD habitat. Specif-

ically, we set eleven monitoring sites in waters southwest of Hainan Island and adopted

stationary passive acoustic monitoring (PAM) platforms to collect one-year data. Then, the

temporal and spatial patterns of soundscape in frequency range between 20–144 kHz were

analyzed. The possible effect of different seabed features on the soundscape were also studied,

and the main biological and anthropogenic sound sources were described in this tropical habi-

tat of a vulnerable coastal dolphin species.

Methods

Ethics statement

This study was performed under an Ethical Statement from the Institute of Deep-sea Science

and Engineering, Chinese Academy of Sciences, with the number of IDSSE-SYLL-MMMBL-01.

Study area and PAM sites

Fig 1A shows the location of eleven PAM sites in the study area. Six stations were located in

sandy seabed, four in muddy bottom, and one in a rocky area (Table 1).

Each platform, composed of a concrete structure and exposed stainless steel frame, has a

total weight of about two tons and was placed on the seabed (Fig 1B). The stainless steel frame

was used to protect the acoustic recorder. The distance between adjacent monitoring sites was

set to be about 20 km to obtain distinct soundscape features from each site and also to cover all

the potential IPHD habitat.

Acoustic data collection

An acoustic recorder (SoundTrap 300HF, Ocean Instruments, New Zealand) was fixed on one

of the short stainless steel columns at the center of each platform (Fig 1B). The SoundTrap pre-

sented a sensitivity of -203 ± 3 dB re V/μPa within a frequency range of 20 Hz-150 kHz and it

was set to have a maximum SPL before clipping of 172 dB re 1μPa. The recorder acquired data

at a resolution of 16 bits and a sampling rate of 288 kHz. In order to balance the battery life

and data storage, a duty cycle of 5 minutes in every 30 minutes was used. Each 5-minute con-

tinuous acoustic data were stored as a single audio file. In this way, each acoustic recorder was

able to keep acquiring data for about 60 days. Therefore, the SoundTrap on each platform was

regularly retrieved and redeployed by professional divers approximately every two months.

Unfortunately, the platform deployed at site P02 was lost after the first deployment. Therefore,
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there were no data acquired from site P02 in this study. Recorders of sites P00-P06 were first

deployed on February 2018. Recorders of sites P07, P09 and P10 were first deployed on May

2018, and recorder of site P08 were first deployed on September 2018.

Soundscape analysis

All acoustic data were analyzed in MATLAB (Version R2017a, The MathWorks Inc.). In order

to reveal the variation patterns of ambient sound during the investigated period, broadband

sound pressure levels (broadband SPLs) and octave band sound pressure levels (octave band

SPLs) were calculated. Broadband SPLs were used to show the change of SPLs in the total fre-

quency band of acquisition. For each audio file (5 minutes), the root-mean-square broadband

SPL in the frequency range between 20 Hz and 144 kHz for every 1-min signal segment was

calculated. Such frequency band was determined based on the frequency response (0.02–150

kHz) and sampling rate (288 kHz) of the recording system. The root-mean-square octave

band SPLs for 11 octaves including 62.5 Hz (44–88 Hz), 125 Hz (88–177 Hz), 250 Hz (177–355

Hz), 500 Hz (355–710 Hz), 1000 Hz (710–1420 Hz), 2000 Hz (1420–2840 Hz), 4000 Hz (2840–

5680 Hz), 8000 Hz (5680–11360 Hz), 16000 Hz (11360–22720 Hz), 32000 Hz (22720–45440

Hz), and 64000 Hz (45440–90880 Hz) in every 1-min signal segment were also calculated.

Fig 1. Map of the study area and monitoring sites (A) and picture of the acoustic platform (B). Monitoring sites are

marked with �, and different colors means different types of seabed. The major ports and other ports are marked with

☆. The SoundTrap recorder was fixed on a stainless steel column at the center of each platform.

https://doi.org/10.1371/journal.pone.0236938.g001

Table 1. Information about each PAM site (Latitude, Longitude, depth, and bottom).

Monitoring site Latitude Longitude Depth (m) Bottom

P00 18˚20.5670 108˚57.0680 10 sandy

P01 18˚17.0910 109˚13.4420 15.5 muddy

P02 18o17.6620 109o 03.6360 18 sandy

P03 18˚23.9110 108˚45.6240 13.7 muddy

P04 18˚29.7050 108˚39.6780 16.3 sandy

P05 18˚38.7940 108˚35.7140 10.2 muddy

P06 18˚49.6520 108˚33.8540 14 sandy

P07 19˚00.3580 108˚35.6030 11.8 muddy

P08 19˚11.0160 108˚34.3620 10.5 sandy

P09 19˚20.4620 108˚39.5990 14.3 sandy

P10 19˚26.1710 108˚47.9580 15 rocky

https://doi.org/10.1371/journal.pone.0236938.t001
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The datasets of broadband SPLs and octave band SPLs were tested for normality with a Kol-

mogorov–Smirnov test. When datasets were not normally distributed (p<0.05), Kruskal-Wal-

lis test and Mann-Whitney U test were used in this study. Spatial comparisons of broadband

SPLs and octave band SPLs were made among all sites. Features of sea bottom and water depth

were considered environmental factors that can affect the ambient noise [55]. In this study, the

depth of the recorders at the PAM sites were between 10 and 16 m and considered to be com-

parable among each other. However, the monitoring sites had different sea bottom features,

with P00, P04, P06, P08 and P09 characterized by sandy seabed, P01, P03, P05 and P07 charac-

terized by muddy floor, and P10 characterized by a rocky environment. Therefore, broadband

SPLs and octave band SPLs were assigned to different sea bottom categories, and the variation

of ambient sound levels within each benthic environment was analyzed. Kruskal-Wallis test

was conducted to explore whether the characteristic of seabed had effects on the acoustic sig-

nature of local soundscape and Mann-Whitney U test was conducted to explore the difference

of acoustic signature between different sea floor features.

For each site, temporal trends of soundscape were determined by comparing broadband

SPLs and octave band SPLs among different time of day (dawn, day, dusk and night) and

among seasons (spring, summer, autumn, and winter). Dawn and dusk were defined respec-

tively as the periods ±90 min from sunrise and sunset. Day was defined as the period from -90

min of sunrise to +90 min of sunset, and night was defined as the period from -90 min of sun-

set to +90 min of sunrise. The sunrise and sunset times were obtained from Time and Date AS

website (http://www.timeanddate.com). Seasons were defined as follows: spring (March-May),

summer (June-August), autumn (September-November) and winter (December-February).

The average broadband SPLs and octave band SPLs for different time of day and for each sea-

son of the year were calculated from the data. Kruskal-Wallis and Mann-Whitney U tests were

used to assess the significance of differences of broadband SPLs and octave band SPLs among

time of day (dawn, day, dusk and night) and between different time of day at each site. Krus-

kal-Wallis test was conducted to examine the difference of acoustic characteristics among sea-

sons (spring, summer, autumn and winter), which was also assessed by Mann-Whitney U test.

In this study, all statistical analyses were performed by using IBM SPSS Statistics 20.0 (IBM

Corp., Armonk, NY, USA).

Description of the main biological and anthropogenic sound sources

A subsample of the large dataset was analyzed to describe the main biological and anthropo-

genic sound sources recorded in coastal waters southwest of Hainan Island during this long-

term and large-scale PAM study. Spectrograms of three-day sound recordings during the new

moon period were manually inspected (both aurally and visually) for all the monitoring sites

by using the CHORUS toolbox [56]. The reasons justified the application of this data analysis

protocol were: (1) the manual examination of all the dataset was a big time-consuming effort

due to the large amount of recordings acquired; (2) in coastal waters, an higher occurrence of

biological sounds was commonly documented during the new moon phase [57, 58]. The three

days for manual examination were selected one day before to after the new moon day. Infor-

mation about the new moon days in the study area were obtained from Time and Date AS

website (http://www.timeanddate.com). Each spectrogram of the three-day acoustic data was

created by two steps: (1) data were first Fourier transformed in 1-s windows in MATLAB, and

power spectral densities (PSDs) of each 1-s window were produced as pre-processed data; (2)

the CHORUS GUI toolbox was used to plot pre-processed data to make a three-day spectro-

gram for visual and aural examination of the main biological and anthropogenic sound

sources. Following a recent investigation on the acoustic habitat variation of IPHD in part of
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the study area [47] and similar studies on different geographical areas [50, 59–61], the occur-

rence of sounds from soniferous fishes and ships were inspected in detail. Fish calls were con-

sidered as a possible prey distribution factor for IPHD, and ship noise was described as the

main chronic man-made sound influencing its habitat. Therefore, information about occur-

rence of fish calls and ship noise were reported during the spectrogram inspection of the data-

set subsample.

Results

A total of 122,832 five-minute files of acoustic data were collected during the investigated

period (from February 2018 to February 2019), at ten PAM sites (P00, P01, P03, P04, P05, P06,

P07, P08, P09, and P10) in shallow waters southwest of Hainan Island (Table 2). The monitor-

ing activity started a few months late at sites P07- P10, for that reason lack of data in these loca-

tions was reported at the beginning of the experiment. The other acquisition stops were

mainly related to the battery duration of the SoundTrap. All data were analyzed for spatial and

temporal soundscape patterns.

Spatial patterns

Average broadband SPLs for the ten sites P00, P01, P03, P04, P05, P06, P07, P08, P09, and P10

were 115.7, 113.3, 113.9, 119.7, 112.6, 113.3, 114.0, 113.7, 113.0, and 114.1 dB re 1μPa, respec-

tively (S1 Table). Significant difference in broadband SPLs existed among the ten sites (Krus-

kal-Wallis test, df = 9, p< 0.001; Fig 3). P04 and P05 were found to have the highest and

lowest average broadband SPLs, respectively (Kruskal-Wallis test, df = 9, p< 0.001; Mann-

Whitney U test, df = 1, p< 0.001; Fig 2 and S1 Table).

The ten PAM sites were further compared in terms of octave band SPLs (Fig 3 and S2

Table). SPLs at certain bands were more variable than others. Octave band SPLs centered at

62.5 Hz was the lowest at site P10 (Mann-Whitney U test, df = 1, p < 0.001). Octave band

SPLs centered at 16, 32, and 64 kHz were higher at sites P04 and P10 than that at other sites

(Mann-Whitney U test, df = 1, p< 0.001). Octave band SPLs centered at 125, 250, and 500 Hz

were the lowest at site P05 (Mann-Whitney U test, df = 1, p< 0.001).

Table 2. Acoustic effort in number of days by month and deployment sites.

Year Month Monitoring site

P00 P01 P03 P04 P05 P06 P07 P08 P09 P10

2018 February 2 2 1 - - - - - - -

March 31 31 31 31 29 29 - - - -

April 30 30 30 30 30 30 - - - -

May 10 8 11 9 16 8 3 - 3 4

June 30 30 30 30 30 30 30 - 30 30

July 27 27 27 29 27 31 31 - 31 28

August 23 24 23 - - 3 5 - 13 -

September 30 30 30 4 3 20 19 17 30 3

October 9 9 12 31 31 31 31 31 22 31

November 16 17 17 30 30 15 30 28 14 30

December 31 31 31 31 31 4 31 31 31 31

2019 January 24 29 19 31 24 31 28 12 27 22

February 28 28 - 28 28 28 28 - 28 28

day - 291 296 262 284 279 260 236 119 229 207

https://doi.org/10.1371/journal.pone.0236938.t002
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Fig 4 showed the comparison of broadband SPLs among sandy, muddy and rocky sea bot-

toms. Average broadband SPLs for the three seabed environments were 115.4, 112.6 and 114.4

dB re 1μPa, respectively. Besides, the 45th to 55th percentile of broadband SPLs was 112.3 to

Fig 3. Spatial variation of octave band sound pressure levels (octave band SPLs) at different frequencies at the

PAM sites. The differences of eleven octave band SPLs among ten monitoring sites (Median; Whisker: 25th–75th).

https://doi.org/10.1371/journal.pone.0236938.g003

Fig 2. Spatial variation of broadband sound pressure levels (broadband SPLs) at the PAM sites. The differences of broadband SPLs from 20 Hz to 144 kHz among

ten monitoring sites (Median; Whisker: 25th–75th).

https://doi.org/10.1371/journal.pone.0236938.g002
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117.4 dB re 1μPa for sandy seabed and 109.6 to 115 dB re 1μPa for muddy areas. The smallest

variation of broadband SPLs (113.0–114.7 dB re 1μPa) was recorded in the rocky sea bottom

(Fig 4). The three seabed categories (sandy, muddy and rocky) were different from each other

in terms of broadband SPLs (Mann-Whitney U test, df = 1, p< 0.001). Moreover, these three

underwater environments were further compared in terms of octave band SPLs (Fig 5). Octave

band SPLs centered at 62.5 and 125 Hz were lower for rocky seabed compare to the other cate-

gories (Mann-Whitney U test, df = 1, p< 0.001). Octave band SPLs centered at 2, 4, 8, 16, 32,

and 64 kHz were higher for rocky and sandy areas compare to muddy seabed locations

(Mann-Whitney U test, df = 1, p< 0.001). Octave band SPLs centered at 250 Hz, 500 Hz, and

1 kHz were similar for the three categories (Kruskal-Wallis test, df = 2, p> 0.05) (Fig 5).

Temporal patterns

Significant daily and seasonal differences in soundscape were observed at all PAM sites (Figs

6–8).

Daily trends of broadband SPLs at ten sites are shown in Fig 6 and S1 Table. For all PAM

sites, except for P10, broadband SPLs were higher during dusk and night than the other times

of the day (Mann-Whitney U test, df = 1, p< 0.001). Fig 7 and S2 Table showed the variations

of octave band SPLs among time of day. The sites P00, P01, P03, P04, P05, P07, and P09

showed higher octave band SPLs centered at 62.5 Hz during day and dusk than other times

(Mann-Whitney U test, df = 1, p< 0.001). All monitoring sites, except P10, showed higher

octave band SPLs centered at 500 and 1kHz during dusk and night (Mann-Whitney U test,

df = 1, p< 0.001). The site P10 showed highest octave band SPLs centered at 500 and 1 kHz

during dusk (Mann-Whitney U test, df = 1, p< 0.001). The sites P00, P01, P03, P05, P08, and

Fig 4. Comparison of broadband sound pressure levels (broadband SPLs) among different seabed environments. The three categories were muddy, sandy and

rocky sea floors. Differences are marked with ��� for p-level< 0.001 (Mann-Whitney U test).

https://doi.org/10.1371/journal.pone.0236938.g004
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Fig 5. Comparison of octave band sound pressure levels (octave band SPLs) among different seabed environments. The three categories were muddy, sandy and

rocky sea floors. Differences are marked with ��� for p-level< 0.001 (Kruskal-Wallis test).

https://doi.org/10.1371/journal.pone.0236938.g005

Fig 6. Daily trends of broadband sound pressure levels (broadband SPLs) during one year at the PAM sites. Differences among dawn, day, dusk and night are

marked with ��� for p-level< 0.001 (Kruskal-Wallis test).

https://doi.org/10.1371/journal.pone.0236938.g006
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P09 showed higher octave band SPLs centered at 2–64 kHz at night compare to the other

times of the day (Mann-Whitney U test, df = 1, p< 0.001). Octave band SPLs centered at 2–64

kHz were higher during dusk and night at sites P04, P06 and P07 (Mann-Whitney U test,

df = 1, p< 0.001).

Fig 8 and S2 Table showed the seasonal variations of soundscape at each site. The site P01

presented the highest octave band SPLs at 500 and 1kHz during spring and summer (Mann-

Fig 7. Daily trends of octave band sound pressure levels (octave band SPLs) for different frequency bands during

one year at the PAM sites. Differences among dawn, day, dusk and night are marked with ��� for p-level< 0.001; ��

for p-level< 0.005; � for p-level< 0.05 (Kruskal-Wallis test).

https://doi.org/10.1371/journal.pone.0236938.g007

Fig 8. Seasonal trends of octave band sound pressure levels (octave band SPLs) at the PAM sites. Differences

among spring (March, April and May), summer (June, July, and August), autumn (September, October and

November) and winter (December, January, and February) are marked with ��� for p-level< 0.001; �� for p-

level< 0.005; � for p-level< 0.05 (Kruskal-Wallis test).

https://doi.org/10.1371/journal.pone.0236938.g008
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Whitney U test, df = 1, p< 0.001). At sites P09 and P10, octave band SPLs centered at 62.5,

125 and 250 Hz were higher in autumn and winter compared to the other seasons (Mann-

Whitney U test, df = 1, p< 0.001). At sites P00, P01, P03, P04, P05, P06 and P07, octave band

SPLs centered at 8, 16, 32 and 64 kHz were higher in autumn and winter (Mann-Whitney U

test, df = 1, p< 0.001). At site P09, octave band SPLs centered at 32 and 64 kHz showed no sig-

nificant seasonal variations (Kruskal-Wallis test, df = 3, p> 0.05). At site P10, octave band

SPLs centered at 8 and 16 kHz were lowest in winter.

Main biological and anthropogenic sound sources

Prominent biological and anthropogenic sounds recorded in the study area were produced by

snapping shrimps, fishes, dolphins, vessel traffic, pile-driving activities, and explosions (Figs 9

and 10).

Snapping shrimp “snaps” were observed constantly in each recording file at all sites, with

frequencies above 2 kHz (Fig 9B). Dolphin “clicks” were sporadically recorded in frequencies

above 20 kHz (Fig 9A), confirming that dolphin sounds are a minor component in the varia-

tion of the soundscape in Hainan waters [47, 48]. Species-specific identification of the sounds

produced by dolphins was not applied in this work. We supposed that the majority of these

sounds were produced by IPHD, considering that IPHD is the only dominant dolphin species

recorded during our long-term periodical boat-based visual surveys (started in 2013) and local

ecological knowledge (LEK) survey in the investigated waters [62], with other dolphin species

Fig 9. Spectrograms of the selected biological sounds. Spectrograms of “clicks” produced by IPHD (A), the sounds

produced by snapping shrimp (B) and six different fish call types (C–H). (FFT length = 144000 points, Hanning

window and 50% overlap, the color-bar shows the power spectral density (dB re 1 μPa2Hz-1)).

https://doi.org/10.1371/journal.pone.0236938.g009
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(i.e., the Indo-Pacific bottlenose dolphin) emitting similar sounds of IPHD were sighted only

once, which was in the northernmost part of the investigated waters. Besides, up to six types of

sounds from soniferous fishes were found, on which the species-specific identification was not

applied. The majority energy of fish sounds was from 0.1 kHz to 2 kHz except one category

with a wide frequency band (0.2–10 kHz) (Fig 9C–9H). The percentage of files with fish calls

was 24.5%, which were mainly found during the time intervals 17:00–06:00 (Fig 11).

Three different man-made sound sources including vessel traffic, explosions and pile-driv-

ing activities were identified (Fig 10). The majority of energy for ship noise was below 0.5 kHz

(Fig 10B). However, the peak frequency reached 20 kHz with nearby passing vessels or idling

engines (Fig 10A) [54]. Percentages of files containing ship noise for the files manually

inspected varied from 1.97% to 29.4% among the ten PAM sites (Fig 12). The least number of

ship sounds was recorded at site P05 (Fig 12), confirming previous results in the study area

[47]. Sounds from explosions produced by illegal fishing activity were found in the 20 Hz–20

Fig 10. Spectrograms of the selected anthropogenic sounds. Spectrograms of ship noise (A-B), the sound from

explosion used for illegal fishing activity (C) and the sound of pile-driving activity (D). (FFT length = 144000 points,

Hanning window and 50% overlap, the color-bar shows the power spectral density (dB re 1 μPa2 Hz-1)).

https://doi.org/10.1371/journal.pone.0236938.g010

Fig 11. The percentage of files with fish calls in the time of day for the PAM sites. For each site, the percentage of

files that contained fish calls were documented at different time of the day by analyzing the spectrogram of three-day

sound recordings during new moon period.

https://doi.org/10.1371/journal.pone.0236938.g011
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kHz range (Fig 10C). Pile-driving pulses were recorded as a series of sharp pulses every few

seconds, with the frequency between 50 Hz–1 kHz (Fig 10D) [26]. Few recordings with explo-

sions and pile-driving sounds were reported during the spectrogram analysis of the subsample

dataset.

Discussion

Numerous studies have shown that underwater ambient sound varies in time and space

among different marine habitats [3, 63]. However, there is a lack of research on soundscape

variation over a long period and a large spatial scale in tropical underwater environments. In

the present study, we described the acoustic environment of a tropical habitat of IPHD during

one-year monitoring and at ten sampling sites, spanning ~200 km of the coastline.

The monitoring sites P04 and P10 were found to have the highest octave band SPLs cen-

tered at 16, 32, and 64 kHz. This could be mainly contributed by biological sounds. Snapping

shrimps were considered to be the major source of biological sounds, which were identified in

each inspected audio file in this study, same as the previous work documented in other tem-

perate and tropical waters [20, 21]. The typical spectrum of a “snap” has a low-frequency peak

between 2 and 5 kHz and energy extending out to 200 kHz [21]. Dolphins also emit high-fre-

quency “clicks” for echolocation and navigation. The observed “clicks” were considered to be

mainly from IPHD in this study, while further investigation to classify the sounds from other

possible species that emit similar sounds is deserved. However, previous studies [48] claimed

that the presence of dolphin clicks has a very little influence on the variation of the soundscape

Fig 12. Percentage of files with ship noise. For each site, number of files with ship noise were documented by examining the spectrogram of three-day recordings

during new moon period.

https://doi.org/10.1371/journal.pone.0236938.g012
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in the investigated waters. Therefore, the higher SPLs at frequencies above 16 kHz for the sites

P04 and P10 may reflect the prevalence of snapping shrimp at these two sites. An earlier study

[47] also reported that high levels of noise at mid-high frequency bands during the first two

months of the monitoring at the site P04 reported were noted, which were observed to be

strongly influenced by anthropogenic sounds and natural abiotic phenomena (e.g. tides). The

site P05 displayed the lowest broadband SPL and octave band SPLs centered at 125, 250, and

500 Hz, which may due to the least human activities at this site, as previously reported with

recordings from the first two months of monitoring [48]. The percentage of files containing

ship noise at site P05 was only 1.97%, which is the lowest record of ship activities among the

ten sites.

Seabed structure can affect ambient sound in shallow waters [20, 51]. The propagation of

sound is greatly influenced by environmental factors, such as water depth [63] and seabed

structure [51, 63, 64]. In this study, the ten sites were located at 10–16 m water depth. Only fre-

quencies below 110 Hz might have been affected by normal mode 1 cutoff frequency [63, 65,

66]. Therefore, it is reasonable to consider that the sound levels at frequencies more than 110

Hz for the three different seabed structures (sandy, muddy and rocky seabed) in this study

could be compared. The lowest octave band SPLs centered at 125 Hz were recorded for rocky

area, which is probably due to the weak water flow and wind-dependent surface waves [27].

Higher octave band SPLs centered at 2, 4, 8, 16, 32 and 64 kHz were observed for rocky and

sandy sea bottoms than for muddy area. This was probably related to the fact that attenuation

of high-frequency signals is smaller in waters with rocky and sandy bottoms and/or snapping

shrimps prefer to dwell in habitat with hard seabed structures. A previous study showed that

sandy seabed refracts sounds with a high impedance ratio [63]. In general, a significant corre-

lation between bottom hardness and the number of snaps (shrimps) was reported in coastal

marine environments [55]. However, in our PAM survey there was only one monitoring site

with rocky bottom, thus further investigations are needed to accurately compare the sounds-

cape of locations with different seabed environments.

Additionally, there was considerable temporal variation of soundscape at each site. The

daily patterns of broadband SPLs at the PAM sites were significant, with higher values during

dusk and night than the other times of the day at all sites except for P10. The same pattern was

identified for octave band SPLs centered at 0.5 and 1 kHz at all sites except P10, which may be

a result of evening fish chorus. In this study, fish calls were mainly detected during 17:00–

06:00 with most energy levels falling below 2 kHz. Previous studies both in the present investi-

gated area and other waters around the world showed similar daily pattern in acoustic activity

of soniferous fishes [49, 50, 67, 68]. Besides, studies in other temperate habitats of IPHD, such

as the west coast of Taiwan [49] and the Pearl River Estuary waters [50], reported similar

results. In the west coast of Taiwan, the SPLs from 1.2 to 2.4 kHz became higher after sunset,

which was associated with the acoustic activity of croakers (family: Sciaenidae) [49]. Also, in

the Pearl River Estuary waters, the SPLs in the frequency band between 0.2 and 2.2 kHz were

significantly higher during nighttime [50]. In this study, octave band SPLs centered at 2, 4, 6,

8, 16, 32 and 64 kHz during nighttime were higher than other times of day at sites P00, P01,

P03, P05, P08 and P09, which may be due to the daily variation of snapping shrimps sounds.

Similarly, a study of Lampedusa Island (Mediterranean Sea) found higher octave band SPLs at

frequencies from 2 to 64 kHz at night [14]. The acoustic activity of snapping shrimps is influ-

enced by light intensity and time of the day [22, 24]. However, the sites P04, P06, and P07

showed higher octave band SPLs centered at 2–64 kHz during dusk and night than the other

times of the day, and the site P10 showed highest octave band SPLs centered at 2–8 kHz during

dawn. Possible explanations include different species, habitats and social contexts of snapping

shrimps [69].
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Seasonal variation of octave band SPLs centered at 8, 16, 32 and 64 kHz were found at sites

P00, P01, P03, P04, P05, P06 and P07, with higher values in autumn and winter. Those fre-

quency bands were mainly occupied by impulsive signals of snapping shrimps. As previously

reported, the acoustic activity of snapping shrimps was connected to different factors, such as

dissolved oxygen concentration [70], water temperature [14] and social context [24]. Higher

sound levels at frequencies from 2 kHz to 64 kHz during the summer were reported in coastal

waters of the Mediterranean Sea [14], which is different from those in the present study in

waters southwest of Hainan Island. This may be due to less variation of water temperature in

tropical areas. However, we cannot exclude that the differences found among these different

regions could be also related to other environmental and species-specific factors. For the site

P08, this study failed to compare octave band SPLs centered at 8, 16, 32 and 64 kHz among

spring, summer, autumn and winter due to missing acoustic data during spring and summer.

Sites P09 and P10 showed a small seasonal variation in octave band SPLs at 8–64 kHz com-

pared with other sites, which may be due to different species composition and/or environmen-

tal conditions influencing the distribution and acoustic activities of snapping shrimps [71].

It is important to note that the waters southwest of Hainan Island were also affected by

many anthropogenic activities, including vessel traffic, explosions used for illegal fishing and

pile-driving activities. In our study, most of the ship noise had frequencies below 500 Hz,

while the ship noise with frequency even up to 20 kHz were also recorded. Such difference was

probably related to the differences in ship type/speed and distance from the receiver [54]. The

major ship activity in the investigated area was considered to be related to fishing, following

these considerations: (1) the China fishery statistics yearbook for 2018 reported that there were

over 25,000 motor fishing boats in Hainan and the motor power of more than 80% of the fish-

ing boats was below 44.1kW [72]; (2) the highest number of ships observed in coastal waters

southwest of Hainan Island during our periodical visual surveys were fishing boats. The pres-

ence of sounds from both explosions for illegal fishing and pile-driving activities were docu-

mented in this study, while there were not many of them being detected, which could be due

to the manual check of only a subsample of the large dataset. Further investigations are needed

to disclose how dolphins respond to these human activities in the study area. Many studies

have shown negative effects of these intense anthropogenic noises on marine mammals [9, 37,

39, 41, 73]. Regarding IPHD, studies have shown that the behavioral state of this species can be

disrupted by vessel noise [50, 74, 75], and the dolphin sightings in certain waters of the Pearl

River Estuary were diminished in areas of high vessel activity [76, 77]. Although IPHD showed

a degree of tolerance for vessels due to foraging pressure [60], intense noises from pile driving

activities can surely induce behavioral disturbances on marine mammals [78] and cause audi-

tory masking in IPHD whistles [79]. Explosions from illegal fishing activities do acoustically

pollute the waters and severely affect the local marine environment. When the animals are

close to the explosion site, their survival may be badly affected [80]. Therefore, we strongly rec-

ommend the policy makers to strengthen the supervision and regulation of illegal fishing activ-

ities in coastal waters southwest of Hainan Island.

Future research should focus on whether human activities have negative impacts on IPHD

in waters southwest of Hainan Island. Attention should be specially paid to their physical

behavior (such as swim speed, activity state, and movement patterns) and acoustical behavior

(such as changes in the intensity, repetition and duration of their sounds). Besides, PAM stud-

ies should continue to investigate the occurrence and habitat use of IPHD and quantify the

influence of different sound sources on IPHD occurrence. An earlier primary investigation

showed that the habitat use of IPHD is strongly related to the presence of soniferous fishes and

quiet noise environment in mid-high frequency band [47]. PAM studies could be beneficial
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for the establishment of conservation actions and policies for the protection of IPHD in coastal

waters southwest of Hainan Island.

Conclusions

The waters southwest of Hainan Island were highly variable in their soundscape characteris-

tics. This one-year PAM study revealed significant spatial and temporal variation in broad-

band SPLs and octave band SPLs in this region. The sites P04 was nosier than the other sites,

and the site P05 was the quietest location in the area. The seabed structure affected the ambient

sound. Sandy bottom and rocky bottom had higher broadband SPLs and octave band SPLs

centered at 2, 4, 8, 16, 32 and 64 kHz. The PAM sites also showed daily and seasonal variation

in broadband SPLs and octave band SPLs, with higher octave band SPLs centered at 0.5 and 1

kHz during dusk and night than other times at all sites except for one, and higher octave band

SPLs centered at 8, 16, 32, and 64 kHz were observed in autumn and winter at seven sites.

Three main categories of biological sounds were described, including six different types of fish

sounds, “snap” produced by snapping shrimps, and “clicks” produced by dolphins. Three

main sources of anthropogenic sounds were identified, including vessel traffic, explosions for

illegal fishing activities and pile-driving pulses. The soundscape variation illustrated the acous-

tic complexity of the study area. How IPHD effectively navigates this acoustic complex envi-

ronment, and the influence of natural abiotic, biotic and anthropogenic sound sources on the

dolphin ecology needs to be determined during long-term and large-scale PAM programs.

Future further studies in the investigated waters would provide more fundamental informa-

tion on how to mitigate possible negative effects of different sound sources on IPHD in its

tropical habitat, the shallow waters southwest of Hainan Island.
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