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Simple Summary: This study explored an image-based method for recognizing pigs’ postures during
growth and established the world’s first human-annotated pig-posture-recognition dataset, which
includes pigs standing, lying, lying on their sides, and exploring (the four common postures). Finally,
the pig postures were judged, and good results were obtained in practical applications.

Abstract: Posture changes in pigs during growth are often precursors of disease. Monitoring pigs’
behavioral activities can allow us to detect pathological changes in pigs earlier and identify the
factors threatening the health of pigs in advance. Pigs tend to be farmed on a large scale, and
manual observation by keepers is time consuming and laborious. Therefore, the use of computers
to monitor the growth processes of pigs in real time, and to recognize the duration and frequency
of pigs’ postural changes over time, can prevent outbreaks of porcine diseases. The contributions
of this article are as follows: (1) The first human-annotated pig-posture-identification dataset in the
world was established, including 800 pictures of each of the four pig postures: standing, lying on the
stomach, lying on the side, and exploring. (2) When using a deep separable convolutional network to
classify pig postures, the accuracy was 92.45%. The results show that the method proposed in this
paper achieves adequate pig-posture recognition in a piggery environment and may be suitable for
livestock farm applications.

Keywords: computer vision; posture recognition; pig posture; agricultural automation; auto-
mated breeding

1. Introduction

According to the National Bureau of Statistics of China, China is a major consumer of
pork. A total of 544.19 million live pigs were sold in 2019 in China, accounting for 45.08%
of the total sold globally and ranking China first in the world for pig sales [1]. In 2017, the
output value of pig feeding in China was nearly 1.3 trillion yuan, accounting for about
56.5% of the total output value of domestic livestock and poultry (pigs, cattle, sheep and
poultry) [2]. With an increase in the scale of the pig breeding industry, the possibility of
swine diseases also increases. A failure to intervene or eliminate these hidden dangers
over time may cause serious economic and human losses. For example, African Swine
Fever (ASF), which has had a huge impact on the world in recent years, is a virulent,
infectious swine disease caused by the ASF virus, which is clinically characterized by acute
febrile hemorrhage, high morbidity, and high mortality [3]. It poses a serious danger to the
development of the pig industry. An epidemic not only incurs great economic losses for the
affected country but also hampers international trade. Many diseases that may occur in the
growth of live pigs are accompanied by changes in their postures before other subclinical
and clinical symptoms emerge, which, at the same time, lead to changes in various external
physiological parameters, such as decreased daily activities, a loss of appetite, and changes
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in their cries. Monitoring pigs’ posture can reveal the precursors of swine disease in a
timely manner, identify the factors threatening the health of pigs in advance, detect and
control the source of infection, and reduce the scope of infection, which will help to slow
down the transmission of severe infectious diseases in the pig population [4].

Secondly, the traditional pig industry requires breeders to obtain real-time information
about the statuses of pigs so as to detect abnormalities, but the traditional observation
method is time consuming and laborious, and interferes with the normal growth of pigs.
At present, some breeders observe the statuses of pigs by watching surveillance videos, but
this is time consuming, and, in most cases, breeders cannot accurately identify the postures
of pigs.

In recent years, technology led production systems have developed rapidly. For
example, radio frequency identification (RFID) technology is now being used to identify
the individual characteristics of pigs [5], and microinertial sensors are being used to monitor
pig posture [6]. Various sensors, such as those for pressure, water volume, and acceleration,
are also used to monitor lameness, drinking water, movement, and other postures [7–9].
However, these methods all rely on wearable hardware. In practical applications, sensors
used at close range in denser piggeries are prone to damage or falling off.

With the development of deep-learning technology, image processing has been gradu-
ally enhanced. It is mostly applied for animal-posture recognition in animal husbandry [10].
For example, Leroy et al. automatically recognized the standing, walking, and scratching
postures of a single laying hen through a distribution model that used the elliptical fitting
of points to measure the contours of laying hens [11]. Jiazhen Han used the Densenet model
to realize the multi-label classification of dairy goat datasets [12]. However, most of these
methods are based on individual identification, while in pig breeding, group breeding
is the main method used and the pigs are generally clustered close together. L Zhang
et al. used key point tracking, triangulation, and other methods to detect multiple pigs.
This type of method solves the problem of occlusion between pigs. In most production
environments, background factors in the collected images greatly impact the recognition
effect, and this effect is not ideal after image marginalization processing.

Object detection is an important research direction in computer vision. Its purpose
is to accurately identify the category and location of a specific target object in a given
image. In recent years, the feature learning and transfer learning capabilities of deep
convolutional neural networks (DCNN) have significantly progressed in the feature extrac-
tion, image expression, classification, and recognition for object-detection algorithms [13].
Image-segmentation technology is a process that involves dividing an image into several
regions with different characteristics based on the principle of similarity, while semantic
image segmentation is based on common pixel points and processes images at the pixel
level [14]. These two methods have also been applied in many agricultural fields in re-
cent years. For example, Huimin Liao used the RGB-D (RGB+ Depth Map) method to
segment individual images from groups [15], while Xiangze Lin used Mask R-CNN to
quickly locate and identify rice planthoppers [16]. Though the target-detection method has
a high recognition speed, it cannot remove the influence of the background. However, the
semantic-segmentation method can segment the target completely.

In order to make pig-posture recognition more accurate, this study established the
world’s first human-annotated pig-posture-recognition dataset, including four pig postures:
standing, lying on the stomach, lying on the side, and exploring. All the experiments
described in this paper were based on this dataset.

To solve the abovementioned problems, this paper proposes a hybrid model that
combines object detection and semantic segmentation. First, we used the YOLOv5 object-
detection method to extract individual pigs from pig-group pictures, and then, we used
the DeepLab v3+ semantic-segmentation method to extract the individual contours of the
pigs. The experimental results show that the method proposed in this paper adequately
recognizes the postures of pigs in a piggery environment. The overall framework of the
method is shown in Figure 1.
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Figure 1. The overall framework of the envisaged method. First, we extracted a single target from the original dataset of
multiple targets; then, we preprocessed the image of the single target, extracted the action features and, finally, carried out
semantic segmentation and classification.

This paper is divided into five sections. This section introduces the significance and
objectives of pig-posture research. The second section describes the network principles
used and compared in this paper. The third section specifically introduces the dataset and
explains the image-preprocessing method. The fourth section describes the training process
and experimental results for target extraction and classification, and analyzes the results
obtained with different processing methods. The fifth section summarizes the findings and
makes suggestions for future research.

2. Related Work
2.1. YOLOv5-Based Detection Network for a Single Pig

Object detection is a form of image segmentation based on the geometric and statistical
features of a target that also combines the segmentation and recognition of the target. The
current deep-learning methods in the field of object detection are mainly divided into two
categories. The one-stage target-detection algorithm is an end-to-end process, no candidate
frames are required, and the positioning problem of the target frame is directly transformed
via regression-problem processing, such as YOLO [17] or SSD [18]. The two-stage object-
detection algorithm is based on the candidate area: the algorithm first generates a series
of candidate frames as samples and then classifies the samples through the convolutional
neural network. In the early stage of the development of end-to-end algorithms, such as
YOLOv1, speed is the main advantage, while methods based on the candidate region have
an advantage in terms of detection accuracy and precision. However, YOLOv1 has the
following two shortcomings: (1) Due to the output layer for the fully connected layer, in the
test, the YOLO training model only supports and trains at the same input-image resolution.
(2) Although each grid can predict the B bounding boxes, only the bounding box with
the highest intersection over union (IoU) is selected as the object detection output; that is,
each grid can only predict one object at most. When objects occupy a small proportion of
the picture, such as when the image contains a flock of birds, each grid contains multiple
objects, but only one of them can be detected [17]. YOLOv2 proposed a new training
method: the joint training method. The basic idea is to train the object detector on both the
detection and classification datasets at the same time, to learn the exact position of the object
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with the data from the detection dataset, and to increase the number of categories and
improve the robustness of the data from the classification dataset [19]. YOLOv3 introduces
multi-scale prediction, and independently performs detection on the fusion feature maps of
multiple scales, ultimately improving the detection effect of small targets significantly [20].
YOLOV4 [21] and YOLOV5 have a greatly improved training speed and accuracy, so this
study adopted YOLOV5 as the first step of the joint training method.

2.2. DeepLabv3+-Based Edge-Extraction Network for a Single Pig

Image segmentation is another basic task in computer vision, in addition to classifica-
tion and detection. It involves segmenting the picture into different blocks according to
the content. DeepLab is a semantic-segmentation model proposed by Google. It improves
the feature extractor of the convolutional neural network (CNN), which can model objects
more successfully and interpret contextual information more accurately [22]. DeepLabv3+
is the latest improvement to the DeepLab model [23]. The main body of the DeepLabv3+
Encoder is DCNN with dilated convolutions. Common classification networks such as
Resnet and Xception can be used, followed by atrous spatial pyramid pooling (ASPP)
with dilated convolutions, to control the receptive field without changing the size of the
feature map, which is beneficial for the extraction of multi-scale information. Compared
with DeepLabv3, the direct bilinear interpolation to the original image size after the 1 × 1
classification layer is not conducive to obtaining finer segmentation results [24]. V3 +
introduces a new DECODER module to further integrate low-level features with high-level
features in order to improve the accuracy of the segmentation boundaries.

2.3. Feature-Extraction Network
2.3.1. Resnet

Resnet is a convolutional neural network proposed by Kaiming He from Microsoft
Research, alongside three other people. It won the prize for image classification and object
recognition as part of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2015 [25]. The characteristics of this residual network include the fact that it is easy to
optimize and the fact that it can increase the accuracy of recognition with the addition of
considerable depth. The internal residual block uses jump connections, which alleviate the
problem of the vanishing gradient caused by increasing depth in a deep neural network.
An overview of the residual network is shown in Figure 2.
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2.3.2. Xception

Xception [26] is another Google modification of Inception-V3 [27]. The author of [26]
believes that the correlation between channels and the spatial correlation should be han-
dled separately. Therefore, depthwise separable convolution is also used to replace the
convolution operation in Inception-v3, which can improve the effect of the model with
only a small increase in network complexity.

2.3.3. MobileNet

In 2012, AlexNet won the first prize in the ImageNet competition [28]. Since then, even
deeper neural networks have been proposed, such as the excellent VGG series, GoogleNet,
and the Resnet series. However, as these networks become deeper, the huge storage
pressure and computing overheads caused by model computation begin to seriously affect
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the application of deep neural networks in some low-power fields, such as Resnet152 in
the Resnet series, where the network layer reached 152 layers and the weight of the model
reached hundreds of megabytes.

MobileNet is a network architecture that was released by Google in 2017. It is a
convolutional neural network with a small model volume, fewer training parameters, and
fewer requirements for computation [29]. Aimed at making full use of limited computing
resources and maximizing the accuracy of the model, it is one of the models most commonly
deployed in edge computing. The main innovation of MobileNet is the replacement of
regular convolution with depthwise separable convolution and the use of a width multiplier
to reduce the number of parameters. In addition, it can achieve better data throughput
with only a minimal cost to its precision.

The performance of the abovementioned three networks on Pascal VOC 2012 is shown
in Table 1.

Table 1. The classification network structures mentioned in this paper. In this study, a total of three
classical classification networks were used. Performance of each network on Pascal VOC 2012 is
presented.

Backbone MIoU in Val

Resnet 78.43%
MobileNet 70.81%
Xception /

3. Materials and Methods
3.1. Dataset

The pictures used in this study are from the Sichuan Wangjiang Farming Muli Base.
The dataset was captured by the surveillance camera in the base, with a resolution of
1920 × 1080 pixels, which was located on the upper side of the pig house, shooting at
about 45 degrees from top to bottom. The videos were taken from October to November
2020. Frames were extracted based on 2 s intervals. Most of the images in the dataset are
clear, though some pigs in a few images were blurry when static images were captured
due to movement. In this study, such images were also added to the dataset in order to
increase its robustness. The dataset marked the position of each pig whose posture could
be clearly judged, as well as the positions of any pigs visible at the edges of the frame, and
marked four common postures, including standing, lying on the stomach, lying on the
side, and exploring. Finally, this article collected 1550 multi-target object detection images,
and further segmented the datasets into the standing, lying on the side, lying on the side,
and exploring categories, leading to a total of 3200 images in the detection results. The
detection and classification datasets were divided into training and testing sets at a ratio of
7:3.

3.2. Image Pre-Processing
3.2.1. Single-Target Extraction by Target Detection

This paper used the YOLOv5 network to extract a single target from the input multi-
pig images. There are four versions of the object detection network given by YOLOV5,
which are YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The goal of this step was to
detect a single pig body as quickly as possible. We tested YOLOv5 on the constructed
dataset. YOLOv5s showed the fastest speed and relatively high accuracy, so we chose it as
the model for this step. The multi-angle single-pig image size was adjusted to 608 × 608
through adaptive image scaling, and it was sent to the network. The original 608 × 608 × 3
image was input into the newly added focus structure; first, it was turned into a feature
map of 304 × 304 × 12 by using the slicing operation, and then, it became a feature map of
304 × 304 × 32 after a convolution operation with 32 convolution kernels. After the input
into the structure of feature pyramid networks (FPN) combined with the path aggregation
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network (PAN), GIoU_Loss was used as the loss function of the bounding box frame to
perform the final target detection. The recognition result is shown in Figure 3.
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3.2.2. Noise Reduction

In order to enhance the effectiveness of the feature extraction and the accuracy of
algorithm recognition, image pre-processing was performed on single-target pictures
before semantic-segmentation training. In order to solve the problem of jaggy edges in the
test set for semantic segmentation, non-local means (NL-means) filtering [30] was used
to denoise the image. The algorithm used redundant information commonly found in
natural images to remove noise. Differently from the commonly used bilinear filtering
and median filtering [31], which use the local information of the image to filter any noise
present, NL-means denoised the entire image, finding similar areas in the image in units of
image blocks and then averaging these regions to remove the Gaussian noise in the image
more successfully. Color images were first converted to the CIELAB color space, and then,
we denoised the L and AB components separately. The formula is as follows:

ũ(x) = ∑
y∈Ωz

ω(x, y)v(y) (1)

ω(x, y) > 0 and ∑
y∈Ωz

ω(x, y) = 1, ∀x ∈ Ω, y ∈ Ωx

where ω(x, y) is a weight that represents the similarity between pixels x and y in the
original image v. The weight is greater than 0, and the sum of the weights is 1. Ωx is the
neighborhood of pixel x.

The method most commonly used to measure the similarity of two image blocks is
calculating the Euclidean distance between them [32]. The formula is as follows:

ω(x, y) =
1

n(x)
exp


∣∣∣∣∣∣Ω(x)−Ω(y) ||22,a

h2

 (2)
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where n(x) is a normalized factor, which is the sum of all the weights. After dividing each
weight by this factor, the condition of the sum of the weights being 1 is met. h, which is >0,
is the filter coefficient, which controls the attenuation of the exponential function to change
the weight of the Euclidean distance. Ω(x) and Ω(y) represent the neighborhoods of pixels
x and y, and these neighborhoods are called patch neighborhoods. The block neighborhood
is generally smaller than the search area.

∣∣∣∣∣∣Ω(x)−Ω(y) ||22,a is the Gaussian-weighted
Euclidean distance between two neighborhoods, where a, which is >0, is the standard
deviation of the Gaussian kernel.

The image after noise reduction is shown in Figure 4.
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3.3. DeepLabv3+ Network Structure

In DeepLab v3+, Liang-Chieh Chen et al. used an encoder–decoder to perform
multi-scale information fusion while retaining the original dilated convolutions and ASPP
layer. Its backbone network uses the Xception model, which improves the robustness and
operating speed of semantic segmentation [23]. DeepLabv3+’s network structure is shown
in Figure 5. It achieved a mean intersection over union (MIoU) of 89.0% on Pascal VOC,
and an MIoU of 82.1% on Cityscape. The greatest improvement of DeepLab v3+ is to
regard the DCNN part of DeepLab as an encoder, and up-sample the feature map output
by DCNN into the part of the original image size regarded as a decoder, which constitutes
the encoder–decoder system. Bilinear interpolation up-sampling is a simple decoder, and
the enhancement of the decoder can make the model as a whole obtain good results for
the edge features during semantic image segmentation. By experimenting with DeepLab
v3 and DeepLab v3+, this study discovered that, when the original DeepLab v3 uses the
backbone Resnet-101, the feature map of the subsequent nine layers becomes larger, the
amount of calculation greatly increases, and dealing with high-resolution images is time
consuming [23]. On this basis, DeepLab v3+ uses modified aligned Xception’s improved
Resnet-101, and uses 1 × 1 convolution to reduce the number of channels from low-level
features. By inputting the noise-reduced pig pictures into the network where Resnet-101,
MobileNet, and Xception are the backbone, after experimental feedback, Resnet-101 shows
the best effect. Xception first finds the correlation across a 2D space and then finds the
correlation across a 1D space. According to the experimental results, it is believed that, in
this experiment, part of the feature information of the pig body was lost, when comparing
with the full mapping method’s results.
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3.4. Experimental Environment

The experimental environment was based on Ubuntu 18.04; the hardware environ-
ment was an Intel Xeon E5-2678 48 Core CPU, an NVIDIA TITAN Xp graphics card, and
64 GB of RAM; the programming development environment was CUDA-Toolkit 10.0; the
programming language was Python 3.6; the deep-learning framework was Pytorch; and
the compiler adopted GCC 4.8.

3.5. Experimental Evaluation Index

This article used semantic segmentation accuracy, classification accuracy, MIoU, fre-
quency weighted intersection over union (FWIoU), and loss as evaluation criteria. The
definition of the experimental evaluation index is shown in Table 2.

Table 2. Definition of the experimental evaluation index.

Expected Results

Positive Negative

Actual Results
Positive TP FP

Negative FN TN

Pii indicates that the original category i is predicted as category i; Pij indicates that the
original category i is predicted to be category j. The results are divided into the following
four situations:

(1) True positive (TP): the prediction result is positive, and the prediction is correct.
(2) True negative (TN): the prediction result is negative, and the prediction is correct.
(3) False positive (FP): the prediction result is positive, but the prediction is wrong.
(4) False negative (FN): the prediction result is negative, but the prediction is wrong.
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Acc is used to calculate the ratio between the number of correctly classified pixels and
the total number of pixels:

Acc = TP+TN
TP+TN+FP+FN

Acc = ∑k
i=0 pii

∑k
i=0 ∑k

j=0 pij

(3)

The mean intersection over union (MIoU) is a standard measure of semantic segmen-
tation that is used to calculate the ratio of the intersection and the union of two sets of true
and predicted values:

MIoU = TP
FP+FN+TP

MIoU = 1
n+1

n
∑

i=0

pii
∑n

j=0 pij+∑n
j=0 pji−pii

(4)

The frequency weighted intersection over union (FWIoU) sets the weight according to
the frequency of each category, and the weight is multiplied by the IoU of each category
and summed. In the confusion matrix calculation, the true number of each category is
TP+FN, and the total is TP + FP + TN + FN. The calculation formula for the product of the
weight of each category and its IoU is as follows, and then, the sum of all the categories is
calculated:

FWIoU = [(TP + FN)/(TP + FP + TN + FN)]× [TP/(TP + FP + FN)]

FWIoU = 1
∑k

i=0 ∑k
j=0 pij

k
∑

i=0

∑k
j=0 pij pii

∑k
j=0 pij+∑k

j=0 pji−pii

(5)

4. Results
4.1. Model-Training Method

This study analyzed a classic model based on previous experience gained from many
experiments. In DeepLab training, the weights are initialized with the pre-trained weights
of Resnet-101 and Xception, respectively, the output step is 16, the loss function uses
cross-entropy loss (ce), the batch size is 4, the Lr is 0.01, the poly learning rate drops, the
momentum is 0.9, and the decay is 0.0005.

4.2. Experimental Comparative Analysis

The results of the semantic segmentation are shown in Figure 6. The figure shows the
training process and experimental results using the dataset constructed in this paper. The
highest semantic-segmentation accuracy rate based on Resnet-101 was 92.45%, and the
classification accuracy rate under the four posture types was 92.26%.

In the process of model training, overall loss changes are shown in Figure 7. Four
indicators are mainly used to measure the availability of the model, and the test data of
each indicator is shown in Figure 8.

Based on the observation of the figures below, the following conclusions can be drawn:

1. Through the above experimental process, for the feature extraction models Resnet-101,
Xception, and MobileNet, there were oscillations in the early training process, but the
convergence effect was good in the later period.

2. Resnet had the best classification effect on this dataset, with a classification accuracy
of up to 92.26%.

3. Although MobileNet had an absolute advantage in terms of its training speed, and
its accuracy in the later training period was close to that of the Resnet training, the
accuracy curve fluctuated significantly in the training process and lacked stability.

4. Based on the dataset used in this paper, the Resnet training lasted 7 h and 30 min, the
Xception training lasted 7 h and 23 min, and the MobileNet training lasted 1 h and
50 min.
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We respectively used three different Backbones for testing. Through comparison, we
finally adopted ResNet as our backbone. The detailed test results are shown in Table 3.

Table 3. The semantic-segmentation accuracy and classification accuracy of each epoch, based on
three experimental methods.

Category Epoch10 Epoch20 Epoch30 Epoch40 Epoch50

Resnet
Acc 84.85 85.16 89.72 90.58 92.45

AccClass 82.22 83.8 88.37 89.67 92.26

Xception Acc 66.1 73.7 83.7 83.66 87.53
AccClass 57.99 66.4 79.98 80.19 85.68

MobileNet
Acc 84.86 83.58 79.04 89.6 91.69

AccClass 82.82 83.53 77.14 88.62 91.03
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4.3. Discussion

This study explored an automatic method for recognizing the posture states of pigs on
a farm. We could extract key frames from the monitoring image, detect a single pig from a
single image in each frame, extract the contours of each pig, and distinguish their posture
through the classifier we designed, to determine the effect of posture monitoring in the pig
herd. With regard to the feasibility of this method, we must consider the following:

(1) In terms of the recognition accuracy, since our current experimental data source was
based on a single camera to the side of the pigs, the observation angle of the pig
posture was singular, and the identification of postures by cameras in front or to
the side of moving pigs had a certain influence. Therefore, in practical applications,
a pig farm should install multiple cameras to collect data in all directions in the
environment and assign different weights to calculate pig postures based on different
angles.

(2) In terms of the processing speed, in order to realize the real-time monitoring of pig
postures, data could be extracted from one frame every 2 s in practical applications.
In terms of the computational speed of the model, both YOLOv5 and DeepLab v3+
have good processing speeds, as explained in Sections 2.1 and 2.3.

(3) This method also has certain limitations. For example, after extracting frames from a
video to obtain a static image, it is impossible to determine whether a pig is moving.
In the future, video recognition or a recurrent neural network (RNN) could be used
to generate a sequence of pictures with which to classify behaviors in order to solve
this problem.
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Jiazhen Han sought to solve the problem of multi-target recognition [12], while Dan Li
proposed that the establishment of a standard dataset for pigs is necessary and would have
far-reaching significance [33]. Unlike in other studies, the target of this work was a group
of pigs, and this study created the world’s first human-annotated pig-posture-recognition
dataset. After an improved combined training method involving target detection and
semantic segmentation, this study obtained more accurate recognition than related research
and solved the problems related to the difficulty of removing background factors and
multi-target recognition.

Based on the above discussion, we believe that the method proposed in this paper can
effectively identify pig postures and could be used as the basis for an automated breeding
system.

5. Conclusions

This study applied deep-learning technology for pig-posture recognition and proposed
a joint training method involving target detection and semantic segmentation. First,
a dataset containing images of multiple pigs was collected; then, target detection was
performed using the collected images to extract individual pigs. These pigs were then
classified and labeled by professionals. To the best of our knowledge, this is the world’s first
dataset of pig postures. After the construction of the dataset was complete, in order to solve
the problem of edge aliasing in semantic segmentation, non-local average filtering was used
for image pre-processing. After the dataset was formed, the improved DeepLab v3+ was
used to conduct multiple experiments using the Resnet, Xception, and MobileNet networks.
The experimental results show that the accuracy of the semantic segmentation reached
92.45%. Resnet had the best classification performance, and its classification accuracy
reached 92.26%. Therefore, the accuracy of the pig-posture extraction and classification
method developed in this study meets the requirements for practical applications. It may
have certain value in practical applications of pig-posture assessments on pig farms, and
also provides new ideas regarding posture identification among related animals.
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