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Abstract

 Objective—Infection by MTB or exposure to MTB constituents is associated with intense 

microbial stimulation of the immune system, through both antigenic and TLR components, and 

induction of a milieu that is rich in pro-inflammatory/anti-inflammatory cytokines. Here, we 

addressed the basis of induced regulatory T-cell (iT-reg) expansion in response to MTB 

stimulation, in the absence of prior T cell antigen responsiveness.

 Methods—PBMC from HIV-1 un-infected TST negative and TST positive control subjects 

were stimulated by virulent MTB H37Rv lysate (L), a French press preparation of MTB that 

includes all bacterial components. Phenotype of MTB H37RvL induced iT-reg was assessed using 

immunostaining and flow cytometry. Functional capacity of iT-reg was assessed using 3H-

Thymidine incorporation and IFNγ production of non-adherent T cells (NAC) in the presence or 

absence of iT-reg in corresponding culture supernatants in response to TCR stimulation. Realtime 

PCR was used to assess IDO and FoxP3 mRNA expression.

 Results—The capacity of MTB H37RvL to induce CD4+CD25hi+ Foxp3+ T-cells in PBMC 

from TST negative subjects was robust (p<0.001), and in fact comparable to induction of iT-reg in 

PBMC from TST positive subjects. MTB-induced CD4+CD25hi+ T-reg were TGFβ positive 

(p<0.05). Further, MTB H37RvL induced CD4+CD25hi+ Foxp3+ iT-reg suppressed 3H-Thymidine 

incorporation and IFNγ production of non-adherent T cells (NAC) in response to TCR stimulation. 

MTB H37RvL induction of iT-reg was significantly stronger (p<0.01) than that by TLR-2, TLR-4, 

TLR-9 ligands, or combination of all TLR ligands. MTB H37RvL inducted indoleamine 2,3-

dideoxygenase (IDO) mRNA expression in monocytes (p<0.001), and co-culture with the IDO 

inhibitor, D-1MT, decreased frequencies of T-reg (p<0.05). Inhibition of TGFβ by siRNA reduced 

Foxp3 mRNA expression in CD4 T cells (p<0.05).

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.
*Corresponding author: Zahra Toossi, Department of Medicine, Division of Infectious Diseases, BRB 10W, 10900 Euclid Ave, 
Cleveland, OH 44106-4984, USA, Tel: 216-368-0441; Fax: 216-368-2034; zxt2@case.edu. 

HHS Public Access
Author manuscript
J Clin Cell Immunol. Author manuscript; available in PMC 2016 July 18.

Published in final edited form as:
J Clin Cell Immunol. 2016 June ; 7(3): . doi:10.4172/2155-9899.1000428.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Conclusion—Therefore, MTB and its components expand functional iT-reg in human 

mononuclear cells from MTB non-sensitized subjects. Also, MTB-induced iT-reg expansion 

depends on mononuclear phagocyte expression of both TGFβ and IDO.
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 Introduction

Expansion of Foxp3+CD4 T cells with regulatory function (T-reg) associated with infections 

and malignancies have been shown to be primarily due to T cell immune responses to 

microbial or tumor antigens. Bystander inflammation, concomitant with immune responses, 

also conditions naïve T cells to Foxp3 expression and reduced effector T cell differentiation 

[1]. A role for induced (i) T-reg in limiting immunogenicity of novel antigens subsequent to 

immunization or infection in humans has been examined, however, remains controversial 

[2,3].

Mononuclear cells recruited to sites of M. tuberculosis (MTB) infection or novel MTB 

antigens, are exposed to MTB Toll-like receptor (TLR) ligands. MTB is rich in TLR2 

ligands [4,5], and a role for TLR2 ligand in expansion of T-reg has been previously shown 

[6]. However, TLR2 ligation leads to reduction in the suppressive function of T-reg also [7]. 

The role of TLR2 and other TLR ligands of MTB in accumulation of iT-reg have not been 

fully examined.

At sites of MTB infection, recruited mononuclear cells are also exposed to an intense TH1 

response in a milieu high in immune activation [8]. In this latter study, Foxp3 mRNA 

expression in pleural fluid mononuclear cells correlated with local levels of IL-6 and IL-8 

and to a lesser extent TGFβ, but not at all with levels of IFNγ. These data imply support of 

Foxp3 mRNA expression in mononuclear cells by the intense inflammation in situ, rather 

than secondary to the developing TH1 responses against MTB. The role of inflammatory 

cytokines in promotion of Foxp3 expression in response to MTB antigens is not clear.

In the absence of immune cytokines, expansion of functional iT-reg is dependent on contact 

with monocyte derived dendritic cells (DC) [9]. Indoleamine 2,3-dideoxygenase (IDO) 

expressed by DC promotes iT-reg development, and additionally blocks conversion of T-reg 

to TH17-like cells [10]. The role of IDO in expansion of iT reg in human mononuclear 

phagocytes in response to MTB antigens has not been studied.

Here, we examined the capacity of MTB to expand iT-reg in the absence of established T-

cell immune responses to the pathogen. For this purpose, PBMC from subjects who did not 

have evidence of prior exposure to MTB (i.e. Tuberculin skin test [TST] negative 

individuals) were examined. The molecular and cellular basis and the functional phenotype 

of MTB-induced T-reg were assessed. MTB H37Rvlysate (L) induced expansion of 

CD4+CD25hi+Foxp3+ T-cells that were characterized by increased intracellular expression 

of TGFβ, and suppression of TCR stimulated T-cell responses. Monocyte expression of both 

IDO and TGFβ were found to be involved in expansion of iT-reg by MTB H37RvL.
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 Methods

 Study subjects

Healthy tuberculin skin test negative and positive volunteers were recruited among the 

research community at Case Western Reserve University in Cleveland, Ohio. Informed 

consent was obtained from all enrollees prior to participation in this study.

To ascertain lack of T-cell responses to MTB as a result of in vitro ‘sensitization’ to MTB 

antigens in TST negative subjects as suggested before [11], standard proliferation assays to 

MTB H37Rv lysate (L) were performed on all donors. No significant proliferation in 

response to MTB H37RvL (stimulation index ≤ 2) was observed in the TST negative 

subjects recruited.

 Reagents

Whole cell lysate of MTB H37Rv (MTB H37RvL) [Tuberculosis Research Materials and 

Vaccine Testing Contract (NO1-AI-75320)], a crude French press preparation of gamma-

irradiated virulent MTB grown to log phase was used. This preparation includes all MTB 

proteins, lipids, and carbohydrates. LPS contamination of this preparation as assessed by 

Limulus Lysate assay (ThermoFisher, Waltham, MA) was negligible. The TLR agonists 

Pam-3-cysk4 (TLR-2 ligand) (EMC Micro-collections, Tuebingen, Germany), LPS (TLR-4 

ligand) (Sigma Fine Chemicals) and CPG (TLR-9 ligand) (Coley Pharmaceuticals, 

Wellesley, MA) were purchased. The selective IDO inhibitor, D-1-methyl-tryptopahn 

(D-1MT) (Sigma Fine Chemicals) was used at 100 μmol/ml as published before [12].

 Isolation and culture of PBMC

PBMC were prepared by Ficoll Hypaque (Pharmacia Fine Chemicals, Piscataway, NJ) 

density gradient centrifugation [13]. To assess the phenotype of T cells, PBMC were 

incubated in 24 well tissue culture plates (2 × 106 cells/ml) in complete medium (RPMI 

1640 supplemented with L-glutamine and 2% pooled human serum (PHS) and subjected to 

flow cytometry.

 Analysis of cell phenotype by flow cytometry

Antibodies to surface CD3 (PerCp), CD4 (FITC) and CD25 (APC) or appropriate isotype 

control antibodies were used in combination with antibody to intracellular Foxp3 (PE) or 

isotype control antibody (rat IgG2a) to identify T-reg (all antibodies were purchased from 

eBioscience, San Diego, CA). Cells then were fixed and acquired within 1 h of completion 

of staining.

To assess intracellular expression of TGFβ, PBMC were cultured with MTB H37RvL for 24 

h. Monensin (1 μg/ml) was added for the final 6 hours of PBMC culture. Washed cells were 

labeled with antibodies to surface CD3 (PerCp), CD4 (FITC), and CD25 (APC) (all from 

eBioscience). Cells were fixed and permeabilized, and then stained with antibody to TGFβ 

(PE) (IQ Products, Groningen; The Netherlands) or isotype control antibody (IgG1 PE).
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 T-cell suppression assay

PBMC (100 × 107) were incubated in complete RPMI supplemented with 5% PHS in 25 

cm2 tissue culture flasks (2.5 × 107 cells/flask) in the presence of MTB H37RvL (1 μg/ml) 

for 5 days. At the end of incubation, CD4+ CD25+ CD127− T cells were purified by 

immune-magnetic separation (T-reg selection kit II) (Miltenyi, Cambridge, MA). By 

immune-staining and FACS analysis, CD4+CD25+ CD127− T cells isolated in this manner 

were over 90% Foxp3 positive.

A fraction of PBMC (3 × 107 cells) from the same donor was kept for preparation of non-

adherent responder T-cells (NAC) and monocytes (MN) by plastic adherence [14]. PBMC (5 

× 104 cells/well) were plated in replicate wells of 96 well round bottom tissue culture plates. 

NAC were harvested after 1 h and frozen in FCS10% DMSO in aliquots of 10 × 106 cells/

vial for use as responder cells later. Wells of adherent MN received complete RPMI and kept 

at 37°C. On the day of the experiment, NAC (responder cell, R) were thawed and seeded 

alone or in combination with MTB H37RvL expanded T-reg at several ratios of R:T-reg 

( 1:3, 1:1 and 3:1) in 200 μl media/well in replicate wells of the tissue culture plates already 

containing adherent MN. Wells either remained un-stimulated or received anti-CD3 (0.1 μg/

ml). Tissue culture plates were incubated for 4 days. On day 4 of culture, supernatants from 

replicate wells were aspirated and stored for assessment of IFNγ by Elisa (Pierce Endogen, 

Rockford, IL) later. Wells were then replenished with 200 μl of culture medium. After 18 hrs 

of incubation, plates were pulsed with 3H-Thymidine. Thymidine incorporation (3H-Tdr) 

was determined by calculating the stimulation index as follows: 3H-Tdr in stimulated well 

minus 3H-Tdr in un-stimulated well/3H-Tdr in un-stimulated well.

 Real time RT-PCR

To Quantify mRNA, Taqman methodologies using an ABI 7700 thermo cycler (Applied 

Biosystems, Foster City, CA) were employed. Primers and probes for ribosomal 18s (R18) 

RNA and Foxp3 mRNA were as before [15,16], and for IDO mRNA prepared as published 

[17]. Quantities of mRNA were determined by using a dilution series of target cDNA in each 

assay, and expression of mRNA copies were corrected to the copy numbers of R18 in the 

same sample.

 Inhibition of T cell Foxp3 mRNA expression by TGFβ, IL-6, or IL-8 siRNA

Adherent MN (0.2 × 106) were incubated with siRNA to IL-6, IL-8, TGFβ, or control siRNA 

(Dharmacon Inc; Lafayette, CO) for 4 days according to methodologies provided by the 

manufacturer. Autologous CD4 T-cells obtained by negative selection with magnetic beads 

(Miltenyi), were then added to MN at a ratio of 5:1 (CD4/MN). Cultures received MTB 

H37RVL (1 μg/ml) or remained unstimulated for 24 hr. CD4 T-cells were then aspirated, 

dissolved in Tri-reagent (Molecular Science, Cincinnati, OH) and assessed for Foxp3 mRNA 

expression.
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 Statistics

Normally distributed data sets were analyzed by student t-test. Wilcoxon or Kruskall Wallis 

tests were used for data sets that were not normally distributed. P value ≤ 0.05 was 

considered significant.

 Results

 Characterization of human T-reg expanded by MTB

T-regs are characterized by expression of high surface levels of CD25, intracellular 

expression of Foxp3, and suppression of T-cell responses to TCR stimulation [18]. To 

establish the phenotype of T-reg expanded by exposure to MTB, first PBMC from TST 

negative and TST positive subjects were cultured in presence of MTB H37RvL (1 μg/ml) 

and assessed for intracellular Foxp3 expression in CD4+CD25hi+ T-cells. Five day 

stimulation with MTB H37RvL resulted in increased CD4+CD25hi+ T-cell frequencies to 

13.1 ± 0.2% (mean+SEM) in TST negative, and 19.5 ± 0.4% in TST positive donors. 

Intracellular expression of Foxp3 was detected in 84.6 ± 0.3% CD4+CD25hi+ T-cells in TST 

negative subjects (Figure 1A). By contrast, Foxp3 expression was found in 75.8 ± 0.6% of 

CD4+CD25hi+ T-cells from TST positive subjects (Figure 1B). To ascertain that the increase 

in frequencies of Foxp3+CD25hi+ CD4+ T-cells after stimulation by MTB in TST negative 

subjects was due to their expansion among CD4 T cells, rather than accentuated attrition of 

non-T-reg T-cells, we also assessed the absolute frequencies of CD4 T-cells after culture and 

found them to be comparable to time zero in TST negative subjects (data not shown). 

Therefore, the capacity of MTB H37RvL to induce CD4+CD25hi+ T-cells that are Foxp3+ is 

comparable between TST negative and TST positive subjects.

Next, we evaluated the intracellular expression of TGFβ in CD4+ T-cell subsets from TST 

negative subjects following culture with MTB H37RvL (1 μg/ml) for 5days. Control cultures 

received media alone. Frequencies of TGFβ+CD4+CD25hi T-cells increased in the presence 

of MTB H37RvL. In a total of 7 experiments, 71.3 ± 8.1% of MTB H37RvL -stimulated as 

compared to 25.1 ± 4.8% of un-stimulated CD4+CD25hi+ T-cells stained positive for 

intracellular TGFβ at 5 days (P<0.05) (Figure 1C).

The functional profile of MTB H37RvL induced T-reg were assessed next. First, 

CD4+CD25+ CD127−T-cell were expanded in bulk by MTB H37RvL (1 μg/ml) and 

separated as in Methods. CD4+CD25+ CD127− T cells were then co-cultured with NAC 

responder cells (R) at ratios of 1:3, 1:1, 3:1 R:T-reg. In control wells, responder NAC were 

cultured alone. T cell proliferation was assessed following stimulation with anti-CD3 (0.1 

μg/ml). T cell proliferation was suppressed by addition of increasing numbers of 

CD4+CD25+ CD127− T cells (Figure 1D). Maximal suppression was achieved when MTB 

H37RvL expanded CD4+CD25+ CD127− T cells were added to responder NAC at a ratio of 

3:1. Similarly, high amounts of IFNγ were found in supernatants of anti-CD3 stimulated 

NAC responder cells alone. IFNγ levels were suppressed significantly by MTB H37RvL 

expanded T-reg at ratios of 1:1 and 3:1 (Figure 1D insert).
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Cumulatively, these data indicate that functional Foxp3 positive T reg can be induced by a 

preparation of MTB H37Rv components, in the absence of prior established T cell responses 

to MTB.

 The role of TLR ligands in MTB induced expansion of Foxp3+ CD4 T-cells

Next the relative capacity of MTB H37RvL and the TLR-2 ligand, Pam 3-cysk4, in 

induction of T-reg in PBMC from TST negative subjects was assessed. Frequencies of 

CD4+CD25hi+Foxp3+ T-cells were assessed following 48 h and 5 day of culture. Both MTB 

H37RvL and Pam 3-cysk4 induced expansion of T-reg in a time dependent manner (Figure 

2A). At 48 h, frequencies of MTB H37RvL-induced CD4+CD25hi+Foxp3+ T-cells exceeded 

that by Pam 3-cysk4 by 2.5 fold (P<0.001). Incubation for 5 days, increased frequencies of 

CD4+CD25hi+Foxp3+ T-reg further to 13.1% by MTB H37RvL, and 5.0% by Pam-3-cysk4.

Other than TLR-2 ligands, TLR-4 and TLR-9 ligands have also been found to be involved in 

MTB infection [19,20]. The possibility of signaling through other TLRs singly or in synergy 

with Pam 3-cysk4 was addressed next. PBMC were cultured with CPG, LPS, or combination 

of all three ligands (CPG, LPS, and Pam 3-cysk4). Cultures were maintained for 5 days 

(Figure 2B). The capacity of all 3 TLR ligands to support expansion of T-reg was significant 

as compared to un-stimulated PBMC (p<0.001, for all), however, inferior to that by MTB 

H37RvL. No synergism was found when all TLR ligands were used in combination.

 The role of IDO in expansion of Foxp3+ T cells by MTB

To examine if support of T-reg by MTB in non-sensitized subjects involved IDO, first we 

examined the capacity of MTB H37RvL to induce expression of IDO mRNA in MN from 

TST negative subjects. For this purpose, PBMC were cultured in the presence or absence of 

MTB H37RvL (0.1 or 1 μg/ml) for 24 hours. Then, NAC were removed. Adherent MN were 

solubilized in Tri-reagent and extracted RNA assessed for IDO mRNA expression. 

Incubation with MTB H37RvL induced expression of IDO mRNA in MN in a dose-

dependent manner (Figure 3A). Stimulation with 0.1 μg/ml and 1 μg/ml of MTB H37RvL 

resulted in a 35-fold and 60-fold induction of IDO mRNA (P<0.05 and P<0.01, respectively) 

(Figure 3A).

Next, the role of IDO in expansion of T-reg was examined using D-1MT to block IDO 

expression in MN. For this purpose adherent MN monolayers were prepared from PBMC of 

TST negative subjects, and incubated in medium alone or medium containing D-1MT (100 

μmol/ml) for 2 hours. Then, NAC were added back to cultures of MN. Replicate cultures 

were stimulated with MTB H37RvL (1 μg/ml) or left un-stimulated for 24 h and 5 days. 

Adherent MN were assessed for IDO mRNA expression at 24 h. Stimulation with MTB 

H37RvL significantly up-regulated expression of IDO mRNA in MN (p<0.001). Pre-

incubation of MN with D-1MT decreased IDO mRNA expression in MN by more than 50% 

(P<0.01) (data not shown). NAC collected from cultures on day 5, were assessed for T-reg 

(CD4+CD25hi+Foxp3+) expansion by immunostaining and FACS analysis. D-1MT 

significantly reduced expansion of CD4+CD25hi+Foxp3+ T-reg (P<0.01) (Figure 3B). Thus, 

up-regulation of IDO expression in MN in response to MTB H37RvL appears to be 

conducive to expansion of T-reg in PBMC from TST negative subjects.
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 The role of IDO in expansion of Foxp3+ T cells by MTB

To examine if support of T-reg by MTB in non-sensitized subjects involved IDO, first we 

examined the capacity of MTB H37RvL to induce expression of IDO mRNA in MN from 

TST negative subjects. For this purpose, PBMC were cultured in the presence or absence of 

MTB H37RvL (0.1 or 1 μg/ml) for 24 hours. Then, NAC were removed. Adherent MN were 

solubilized in Tri-reagent and extracted RNA assessed for IDO mRNA expression. 

Incubation with MTB H37RvL induced expression of IDO mRNA in MN in a dose-

dependent manner (Figure 3A). Stimulation with 0.1 μg/ml and 1 μg/ml of MTB H37RvL 

resulted in a 35-fold and 60-fold induction of IDO mRNA (P<0.05 and P<0.01, respectively) 

(Figure 3A).

Next, the role of IDO in expansion of T-reg was examined using D-1MT to block IDO 

expression in MN. For this purpose adherent MN monolayers were prepared from PBMC of 

TST negative subjects, and incubated in medium alone or medium containing D-1MT (100 

μmol/ml) for 2 hours. Then, NAC were added back to cultures of MN. Replicate cultures 

were stimulated with MTB H37RvL (1 μg/ml) or left un-stimulated for 24 h and 5 days. 

Adherent MN were assessed for IDO mRNA expression at 24 h. Stimulation with MTB 

H37RvL significantly up-regulated expression of IDO mRNA in MN (p<0.001). Pre-

incubation of MN with D-1MT decreased IDO mRNA expression in MN by more than 50% 

(P<0.01) (data not shown). NAC collected from cultures on day 5, were assessed for T-reg 

(CD4+CD25hi+Foxp3+) expansion by immunostaining and FACS analysis. D-1MT 

significantly reduced expansion of CD4+CD25hi+Foxp3+ T-reg (P<0.01) (Figure 3B). Thus, 

up-regulation of IDO expression in MN in response to MTB H37RvL appears to be 

conducive to expansion of T-reg in PBMC from TST negative subjects.

 Role of TGFβ and inflammatory cytokines in induction of Foxp3 mRNA

Next, we assessed the cytokine basis of T-reg expansion in PBMC from TST negative 

subjects. MTB products are potent in induction of TGFβ in MN [21,22], a cytokine well 

established to be involved in induction of Foxp3 expression and T-reg expansion [23,24]. 

However, MTB and its products induce the pro-inflammatory cytokines, IL-6 and IL-8 also 

[25,26]. To assess which cytokine is involved in induction of T-reg by MTB, siRNA to 

TGFβ, IL-6, or IL-8 were used to inhibit their expression in adherent MN. In control 

experiments MN were treated with control siRNA. Then, CD4 T-cells prepared from PBMC 

by negative immune-selection, were added to MN at a ratio of 5:1 (CD4 T-cell/MN). 

Induction of Foxp3 mRNA was assessed following 24 h of culture in the presence or 

absence of MTB H37RvL (1 μg/ml). In a total of 6 experiments, inhibition of TGFβ by 

siRNA reduced Foxp3 mRNA expression in CD4 T cells by a median of 25%, range 0–49% 

(p<0.05) (Figure 4). Interestingly, inhibition of IL-8 by siRNA increased Foxp3 mRNA 

expression, while siRNA to IL-6 did not affect Foxp3 mRNA expression at all.

Therefore, induction of Foxp3 mRNA expression by MTB H37RvL in T cells from TST 

negative subjects involves expression of TGFβ by MN.
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 Discussion

Infection by MTB or exposure to its products is associated with intense microbial 

stimulation, through both antigenic and TLR components, and induction of a milieu that is 

rich in pro-inflammatory/anti-inflammatory cytokines. Here, we addressed the basis of T-reg 

expansion in response to MTB stimulation, in the absence of prior T cell antigen 

responsiveness. A simple cellular model that includes PBMC from HIV-1 un-infected TST 

negative subjects was developed. A crude French-press preparation of virulent MTB H37Rv, 

that includes all bacterial components, was used. Our findings indicate that MTB induces 

expansion of functional iT-reg, and that this is dependent on expression of both TGFβ and 

IDO by mononuclear phagocytes.

In this human in vitro cellular model, MTB H37RvL induced CD4+CD25hi+Foxp3+ T-regs 

that were characterized by increased intracellular expression of TGFβ, and suppression of T-

cell responses. The magnitude of expansion of T-reg on day 5 of culture in response to MTB 

H37RvL stimulation, although higher in PBMC from TST positive individuals, was not 

significantly higher than in PBMC from TST negative subjects (Fig 1A and B). This 

contrasts with a study by Garg et al. [4], where heat-killed MTB and the MTB TLR-2 

ligand, mannosylated lipoarabinomannan, resulted in expansion of T-reg in PBMC from 

TST positive, but not TST negative subjects. It is possible that this discrepancy is due to the 

fact that different stimuli and experimental set-ups were used in that study as compared to 

the current study. The MTB H37RvL used here, likely provides a more inclusive and diverse 

mix of components of virulent MTB. Others have found that, MTB infection of macaques 

leads to expansion of iT-reg concomitantly with development of effector T-cell responses 

[27]. In a murine model, Foxp3+ T-reg accumulated in the lung and pulmonary lymph nodes 

within weeks following aerosol infection with MTB [28]. In this latter study, temporary 

depletion of T-reg resulted in lower bacterial burdens in the lungs of treated mice as 

compared to control animals, implicating functionality of T-reg in suppression of control of 

MTB. In another study, enhanced immunogenicity of multiple vaccines, including BCG, 

resulted from depletion of iT-reg by concomitant administration of anti-CD25 antibody [29]. 

By contrast, depletion of circulating natural T-reg prior to immunization with BCG did not 

affect bacterial load or boost protective immune responses to BCG [30]. Differences in the 

profiles of natural as opposed to iT-reg, likely underlie these discrepancies. In the current 

study, addition of iT-reg that had been expanded by exposure of PBMC from TST negative 

subjects to MTB H37RvL in vitro, suppressed T-cell responses to anti-CD3 (Figure 1D). 

The potential role of iT-reg that develop in response to MTB antigens contained in vaccine 

candidates, in modulating establishment of protective immunity, needs to be considered.

Another aspect of the current study was to examine the contribution of signaling through 

TLRs in T-reg expansion in MTB naïve individuals. Evidence for a role for TLR-2, TLR-4 

and TLR-9 in T-reg expansion has been shown [5,31–35]. MTB lipoproteins, such as 19kD 

(Lpqv) antigen and LprG [5,34] or ManLAM [36,37], are all TLR-2 ligands and involved 

with development of immune responses. Engagement of TLR-2 in the absence of antigen 

presenting cells was sufficient to induce proliferation of T-reg [6]. Here, TLR2 ligand even 

in combination with a cocktail of TLR-4- and TLR-9 ligands were inferior to MTB H37RvL 

in expansion of iT-reg (Figure 2), may imply non-TLR mechanisms in their expansion. 
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Whether TLR2 ligation leads to reduction in the suppressive function of iT-reg as shown 

before [7] was not addressed here.

Molecules such as IDO, which are induced in DC and mononuclear phagocytes, have been 

shown to be key in T-reg expansion [33,38–40]. Interestingly, IDO-mediated auto-regulatory 

loops supporting T-reg expansion appear to involve TGFβ [41]. Our data show that MTB 

H37RvL is a potent inducer of IDO expression in monocytes, and that IDO expression plays 

a role in expansion of T-reg, as co-culture with its inhibitor D-1MT [12] not only inhibited 

expression of IDO mRNA in MN, but also decreased frequencies of T-reg (Figures 3A and 

3B). The effect of inhibition of IDO by D-IMT- in expansion of iT-reg was partial, 

implicating effect of other molecules also. IDO has been shown to activate T reg induction 

and block their conversion to TH17-like T cells [10]. Whether this mechanism is also 

involved in expansion of iT-reg in response to MTB needs to be examined.

Among molecules implicated in expansion of iT-reg in response to MTB, the cytokine TGFβ 

features prominently [23]. High amounts of TGFβ are induced in mononuclear phagocytes in 

response to MTB and its protein and non-protein products [21,22,42]. Here, inhibition of 

MTB-induced TGFβ mRNA expression by siRNA in MN, reduced expression of Foxp3 

mRNA in CD4 T-cells (Figure 4). However, intracellular expression of TGFβ characterized 

CD4+CD25hi T-cells induced by H37RvL in PBMC from TST negative subjects in vitro 
(Figure 1C). This observation may indicate that an auto-regulatory circuit perpetuating T-reg 

expansion involving TGFβ may be established by MTB. Thus, TGFβ produced by 

mononuclear phagocytes in response to MTB H37Rv and its components support expansion 

of TGFβ producing T-reg. TGFβ expressed by iT-reg further supports expansion of iT-reg. 

The finding here of increased Foxp3 mRNA expression by inhibition of IL-8 expression by 

siRNA treatment of MN was unexpected, however, may indicate a possible role for IL-8 in 

modulation of T-reg expansion. Interestingly, T-reg among pleural mononuclear cells from 

TB patients were found to be IL-8 reactive [8]. Collectively, these data suggest auto-

regulatory circuits, both positive (by TGFβ) and negative (by IL-8) regulation of Foxp3 

mRNA expression in iT-reg.

In summary, data presented here make a strong argument for a role for MTB and its 

components in expansion of iT-reg that are suppressive of T cell responses in human 

mononuclear cells from MTB non-sensitized subjects. Further, these data suggest a role for 

mononuclear phagocyte TGFβ and IDO expression in induction of MTB-induced iT-reg in 

TST negative subjects. Whereas iT-reg thus expanded may ultimately be controlled by other 

components of innate immunity, is not known. However, activated NK cells have been 

shown to lyse MTB-induced iTreg through NKG2D [43]. Whether NK cells from peripheral 

circulation are recruited efficiently to sites of exposure to MTB antigens is unknown. Given 

the potential interference to development of protective immune T-cell responses to novel 

MTB antigens by iT-reg, implications in the design of future vaccines against MTB needs to 

be considered.
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Figure 1. 
Phenotype and function of MTB H37RvL induced T-reg. PBMC from healthy TST negative 

and TST positive donors were cultured in media alone or media containing MTB H37RvL (1 

μg/ml) for 5 days. At the end of incubation frequencies of T-reg (CD4+CD25hi+Foxp3+) 

were assessed. A. Frequencies of CD4+CD25hi+T-reg (mean ± SEM) and relative 

proportions of CD4+CD25hi+Foxp3+ T-cells in un-stimulated and MTB H37RvL stimulated 

cultures from TST negative subjects (n=12). B. Frequencies of CD4+CD25hi+T-reg (mean ± 

SEM) of and relative proportions of CD4+CD25hi+Foxp3+ and CD4+CD25hi+Foxp3− T-cells 

in un-stimulated and MTB H37RvL stimulated cultures from TST positive subjects (n=6). C. 

Intracellular TGFβ expression of CD4+CD25hi+, CD4+CD25lo+ and CD4+CD25− T-cells 

was assessed by combined intracellular and surface immune-staining following 5days of 

culture (n=7). Mean (± SEM) frequencies of TGFβ+ CD4 T-cell subsets in un-stimulated and 

MTB H37RvL stimulated cultures are shown. D. PBMC from TST negative subjects (n=6) 

were incubated with H37RvL for 5 days. Isolated CD4+CD25+ T-cells were purified and 

added to autologous responder (R) NAC (1 × 105/well) at ratios of 3:1–1:3 (R: RvL iT-reg). 

Cultures were stimulated by anti-CD3 (0.1 μg/ml). IFNγ immunoreactivity was assessed in 

supernatants at 4 days of culture (insert). Proliferative responses were assessed by 3H-

Thymidine incorporation on day5. Stimulation index was calculated. Data shown are 

expressed as mean (± SEM) of stimulation index or IFNγ activity (pg/ml).
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Figure 2. 
Frequencies of MTB H37RvL and TLR-ligand induced CD4+CD25hi+Foxp3+ T-reg. A. 

PBMC from TST negative subjects (n=10) were incubated with optimal amounts of MTB 

H37RvL (1 μg/ml), or Pam-3-cysk4 (5 μg/ml). At 48 hr and 5 days frequency of 

CD4+CD25hi +Foxp3+ T-cells was assessed. Induction of iTreg was significantly higher 

(p<0.001) by H37RvL than Pam-cysk-4. B. PBMC from TST negative subjects (n=6) were 

cultured with MTB H37RvL (1 μg/ml), Pam-3-cysk4 (5 μg/ml), LPS (10 ng/ml) or CPG (3 

μg/ml) alone or a combination of TLR ligands (CPG + Pam cysk4 +LPS) for 5 days. 

Frequency of CD4+CD25hi+Foxp3+ T-cells was assessed Data shown are mean ± SEM of 

experiments.
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Figure 3. 
Role of MTB H37RvL in IDO mRNA induction and T-reg expansion. PBMC from TST 

negative subjects (n=6) were assessed for IDO expression and induction of 

CD4+CD25hi+Foxp3+ T-reg by MTB H37RvL. A. PBMC were cultured for 24 hours in the 

presence or absence of MTB H37RvL (0.1 or 1 μg/ml). IDO mRNA was assessed by 

quantitative RT-PCR in adherent MN. B. Adherent MN monolayers were prepared from 

PBMC of TST negative subjects, and incubated in medium alone or medium containing 

D-1MT (100 μmol/ml) for 2 hours. NAC were added to MN cultures at 5:1 (NAC/MN). 

Wells received MTB H37RvL (1 μg/ml) or media alone. After 5 days, NAC were washed 

and assessed for CD4+CD25hi+Foxp3+ by immunostaining and flow cytometry. Frequencies 

of MTB H37RvL-induced CD4+CD25hi+Foxp3+T-reg were significantly lower in cultures in 

which MN were pre-treated with D-1MT. Mean ± SEM of 6 experiments is shown.
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Figure 4. 
Inhibition of Foxp3 mRNA by TGFβ siRNA treatment of MN. Adherent MN were incubated 

with siRNA to IL-6, IL-8, TGFβ, or control siRNA for 4 days. Autologous CD4 T-cells 

obtained by negative selection with magnetic beads were added to MN at a ratio of 5:1; 

(CD4/MN). MTB H37RvL was added to some cultures. Non-adherent cells were harvested 

after 24 h and assessed for Foxp3 mRNA. Fold induction of Foxp3 was assessed for each 

condition as mRNA in MTB stimulated culture over that in control siRNA alone. Percent 

inhibition by IL-6, IL-8, and TGFβ siRNA compared to that by control siRNA (100%) was 

calculated. Mean ± SEM of 6 experiments is shown.
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