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Abstract: This paper proposes a method for improving saturation in the context of hue-preserving
color image enhancement. The proposed method handles colors in an RGB color space, which
has the form of a cube, and enhances the contrast of a given image by histogram manipulation,
such as histogram equalization and histogram specification, of the intensity image. Then, the color
corresponding to a target intensity is determined in a hue-preserving manner, where a gamut problem
should be taken into account. We first project any color onto a surface in the RGB color space, which
bisects the RGB color cube, to increase the saturation without a gamut problem. Then, we adjust the
intensity of the saturation-enhanced color to the target intensity given by the histogram manipulation.
The experimental results demonstrate that the proposed method achieves higher saturation than that
given by related methods for hue-preserving color image enhancement.

Keywords: color image enhancement; hue preservation; saturation improvement; gamut problem;
histogram equalization; histogram specification

1. Introduction

Image enhancement is the process of the quality improvement of an image for both
human viewers and other automated image processing techniques [1]. Although there
are many books that discuss the techniques for image enhancement for grayscale images,
the generalization of these techniques to color images is not straightforward because color
images have more factors to be considered than grayscale images [2], and those factors,
e.g., hue, saturation and lightness, are mutually dependent on each other. This situation
makes it more challenging to enhance color images than grayscale ones.

The performance evaluation of image-enhancement techniques has also been the main
topic in the field of image processing research and development. For example, Puniani
and Arora used two quantitative measures: the contrast improvement index (CII) and
Tenengrad measure [3], both of which focus on the local contrast of target images. However,
the quality of color images is not evaluated by contrast only. Huang et al. [4] used two color
image quality metrics—the color naturalness index (CNI) and color colorfulness index
(CCI), based on luminance, hue and saturation—to demonstrate that the closer CNI is to 1
in the range [0, 1], the more natural the color of an image, and the best range for CCI is
between 16 and 20, according to [5]. These results show the mutual dependence of color
attributes, and the relationship between saturation and colorfulness. When the luminance
or intensity is predetermined by an appropriate contrast enhancement technique, which
is the case that we discuss in this paper, we can improve the colorfulness by increasing
saturation while preserving hue.

Color image enhancement is one of the main issues in digital image processing for
human visual systems and computer vision. A color has three attributes, including hue,
saturation and intensity (or lightness), which are modified by color image enhancement.
Among the three attributes of a color, hue determines the appearance of the color. Therefore,
it is often preferable to preserve hue in the process of color image enhancement. A typical
way of preserving hue is color space conversion, i.e., we convert an RGB (red, green and
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blue) color, which is a typical format for storing colors in computers, into the HSI (hue,
saturation and intensity) color, then modify saturation and intensity, and finally return the
modified HSI color to the original RGB color space. However, such a naive procedure may
cause a gamut problem in that the modified color may be beyond the color gamut. A gamut
problem, which is also called the out-of-gamut problem [6], is a common problem in color
image processing, where color space transformations between an RGB color space and
other color spaces compatible with human perception are utilized. Different color spaces
or color coordinate systems have a different color gamut, and color image processing in
each color space is independent of other color spaces. Therefore, the domain and range of
gamut mapping do not match generally, which may influence the results of color image
processing, e.g., Yang and Kwok proposed a gamut clipping method for avoiding such
out-of-gamut problems [6]. However, clipping any value of color attributes may cause the
degeneration of different colors into the same color.

To overcome the gamut problem, Naik and Murthy proposed a scheme for hue-
preserving color image enhancement without a gamut problem [2], which was surveyed
by Bisla [7]. Han et al. also presented an equivalent method to theirs from the point
of view of 3D color histogram equalization [8]. However, as they pointed out, their
scheme always decreases the saturation in a common condition [2]. To alleviate such a
decrease in saturation, Yang and Lee proposed a modified hue-preserving gamut mapping
method, which outputs the color with a higher saturation than that given by Naik and
Murthy’s method [9]. Yang and Lee’s method partitions the range of luminance, which is a
normalized intensity, into three parts, corresponding to dark, middle and bright colors. For
a dark or bright color, their method first enhances the saturation, and then applies Naik and
Murthy’s method to the enhanced color. However, for a color with the luminance in the
middle range, Yang and Lee’s method is the same as that of Naik and Murthy. Therefore,
we cannot improve the saturation of such colors, even if we adopt the method of Yang and
Lee. Yu et al. proposed a method for improving the saturation, using three bisecting planes
of an RGB color cube, and demonstrated that their method achieves higher saturation,
compared with the methods of Naik and Murthy, and Yang and Lee [10]. Park and Lee
proposed a piecewise linear gamut mapping method, which balances color saturation
while avoiding color clipping [11].

In this paper, we propose a method for hue-preserving saturation improvement by
eliminating the middle part, where Yang and Lee’s method is the same as that of Naik
and Murthy, which decreases the saturation. As a result, we can minimize the decrease in
saturation caused by hue-preserving color image enhancement. We assume that the hue,
saturation and intensity are defined in the HSI color model [12]. We first compute the target
intensities for all pixels by histogram equalization (HE) [13] or histogram specification (HS),
which is also called histogram matching [14], where an RGB color cube-based method [15]
is adopted for further improvement of saturation. Then, we project each color in a given
input image onto a surface in an RGB color space, which bisects the RGB color cube into
dark and bright parts. The surface spreads to the edges of the RGB color cube far from
the center of the cube, which denotes a neutral gray point. Therefore, the projection of
an RGB color point onto the surface can increase the saturation. After that, we move the
saturation-improved color to the final color point, corresponding to the target intensity. In
our experiment, we compare the proposed method with those of Naik and Murthy, and
Yang and Lee, and demonstrate the effectiveness of the proposed method.

In this work, we address the research question of how to maximize the color saturation
in the context of hue-preserving color image enhancement. The reason why we want to
preserve the original hue is that we want to keep the image contents unchanged, before
and after the process of color image enhancement. For example, if red becomes green
by a hue-changing color image enhancement, then a red apple will become a green one,
which will alter the appearance of the image greatly. In order to keep the appearance
unchanged, we consider it important for the color image enhancement to preserve the hue.
Previous works had subregions in an RGB color space in which the colors always fade by
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the enhancement procedure. To avoid the effect of color fading, we try to eliminate the
subregion for maximizing the effect of the saturation improvement. This elimination of the
subregion is our main contribution.

The rest of this paper is organized as follows: Section 2 summarizes the histogram
manipulation methods used in the following sections. Section 3 summarizes Naik and
Murthy’s method and that of Yang and Lee for hue-preserving color image enhancement,
and proposes a method for improving the saturation of Yang and Lee’s method by avoiding
the direct use of Naik and Murthy’s method in the middle range of the intensity axis.
Section 4 shows our experimental results, which is discussed in Section 5. Finally, Section 6
concludes this paper.

2. Histogram Manipulation

Let P = [pij] be an RGB (red, green and blue) color image for i = 1, 2, . . . , m and
j = 1, 2, . . . , n, where pij = [rij, gij, bij]

T denotes the RGB color vector of a pixel at the
two-dimensional point (i, j) on the image P with m rows and n columns of pixels, and the
superscript T denotes the matrix transpose. Assume that P is a 24-bit true color image;
then, every element of pij is an integer between 0 and 255 such that rij ∈ {0, 1, . . . , 255}, i.e.,
we equally assign 8-bit to each element to express 28 = 256 levels. The intensity of pij is
defined by lij = rij + gij + bij, from which we have lij ∈ {0, 1, . . . , L} for L = 255× 3 = 765.
Instead of the intensity, LHS (luminance, hue and saturation) and YIQ (Luminance (Y),
In-phase Quadrature in NTSC (National Television System Committee) color space) color
spaces define the luminance L or the Y component Y: L = Y = 0.299R + 0.587G + 0.114B
for a normalized RGB color vector [R, G, B]T with 0 ≤ R, G, B ≤ 1. Both of them can
be expressed as the inner product of a constant vector and an RGB color vector, and
are proportional to the length of the RGB color vector. Therefore, they have essentially
equivalent information.

In this section, we briefly summarize two histogram manipulation (HM) methods:
histogram equalization (HE) and histogram specification (HS).

2.1. Histogram Equalization

Histogram equalization (HE) is an effective method for contrast enhancement as used
by Naik and Murthy [2]. The histogram of the intensity image of P can be equalized as
follows. Let h = [h0, h1, . . . , hL] be the histogram; then, the lth element of h is given by
hl = ∑m

i=1 ∑n
j=1 δl,lij , where δl,lij denotes the Kronecker delta defined by δl,lij = 1 if l = lij,

and 0 if l 6= lij. Next, let H = [H0, H1, . . . , HL] be the cumulative histogram of h; then,
the lth element of H is given by Hl = ∑l

k=0 hk. Then, HE transforms an intensity lij into
the following:

l̃ij = round

(
L

Hlij

HL

)
, (1)

where the ‘round’ operator rounds a given argument toward the nearest integer, and
HL = ∑L

k=0 hk = ∑L
k=0 ∑m

i=1 ∑n
j=1 δk,lij = ∑m

i=1 ∑n
j=1 1 = mn.

2.2. Histogram Specification

Histogram specification (HS) assumes that a target histogram is given, and trans-
forms the original histogram into the target one. Let h̃ = [h̃0, h̃1, . . . , h̃L] be a target
histogram into which we want to transform the original histogram of intensity, and let
H̃ = [H̃0, H̃1, . . . , H̃L] be the cumulative histogram of h̃, i.e., the l̃th element of H̃ is given
by H̃l̃ = ∑l̃

k=0 h̃k. Then, HS transforms an intensity lij into the following:

l̃ij = arg min
l̃∈{0,1,...,L}

{∣∣∣HLH̃l̃ − H̃L Hlij

∣∣∣}. (2)



J. Imaging 2021, 7, 150 4 of 19

As a reasonable choice for the target histogram, we have proposed an RGB color cube-
based method as follows [15]: We compute the area of the cross section of a normalized
RGB color cube [0, 1]3 and an equi-intensity plane 1T p = ‖1‖l, where 1 = [1, 1, 1]T ,
p = [r, g, b]T ∈ [0, 1]3, and ‖ · ‖ denotes the Euclidean norm, as a function of l ∈ [0, 3]:

a(l) =


a1(l) =

√
3

2 l2 if 0 ≤ l ≤ 1,

a2(l) = 3
√

3
4 −

√
3
(
l − 3

2
)2

if 1 ≤ l ≤ 2,

a3(l) =
√

3
2 (3− l)2 if 2 ≤ l ≤ 3,

(3)

from which the target histogram is given by the following:

h̃l̃ = a
(

3l̃
L

)
(4)

for l̃ = 0, 1, . . . , L. We also have the integral of a(l) as follows:

A(l) =
∫ l

0
a(x)dx

=


A1(l) =

∫ l
0 a1(x)dx =

√
3

6 l3 if 0 ≤ l ≤ 1,

A2(l) = A1(1) +
∫ l

1 a2(x)dx =
√

3
6
(
3− 2l3 + 9l2 − 9l

)
if 1 ≤ l ≤ 2,

A3(l) = A2(2) +
∫ l

2 a3(x)dx =
√

3
6

[
6− (3− l)3

]
if 2 ≤ l ≤ 3,

(5)

from which the target cumulative histogram is given by the following:

H̃l̃ = A
(

3l̃
L

)
(6)

for l̃ = 0, 1, . . . , L. This method regards the area of the cross section between the color cube
and a plane perpendicular to the intensity axis as the value of the target histogram. Since
the wider the cross section becomes, the more saturated colors it contains, it is expected
that HS with the obtained target histogram can produce saturation-enhanced images.

Figure 1 illustrates the procedure of HS based on this method. In this figure, the
left graph shows an original intensity histogram (the blue bars) of a color image shown
in Figure 2a and its cumulative version (the red curve), and the right graph shows the
target histogram (the blue bars) in (4) and its cumulative version (the red curve) in (6). We
first extend an arrow upward from a point on the horizontal axis of the left graph, which
denotes an input intensity, to the red curve. Then we turn right, and move to the right
graph to find the intersection point with another red curve. Finally, we go down from the
intersection point to the horizontal axis of the right graph, on which the indicated point
gives the output intensity.

Figure 1. The left and right graphs show the original and target histograms with blue bars, and their
cumulative counterparts are also shown in red curves. An input intensity is transformed into the
output one as indicated by black arrows.
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(a) Input image (b) Output image

Figure 2. Color image enhancement by histogram equalization with the gamut problem. The intensity
histogram of an input color image (a) is equalized, and the corresponding colors in the output image
(b) are computed by (7). The computed color values are saved with the ‘Image.save’ function in
Python Image Library (PIL).

Figure 3 shows an example of HM for a grayscale image, where the original image in
Figure 3a, which is in the standard image database (SIDBA) [16], is slightly dark. HE in
Figure 3b enhances the contrast; however, an excessive enhancement makes some details
invisible, e.g., a leaf on the girl’s chest is assimilated into her scarf. On the other hand, HS
in Figure 3c enhances the overall details moderately.

(a) Grayscale image (b) Histogram equalization (c) Histogram specification

Figure 3. Histogram manipulation: the contrast of an input grayscale image (a), which is an image in
the SIDBA [16] image dataset, is enhanced by histogram equalization (b) and RGB color cube-based
histogram specification (c).

3. Hue-Preserving Color Image Enhancement

A straightforward way of applying HM of an intensity image to the corresponding
color image may be to rescale all colors to adjust their intensities to targets as follows:

p̃ij =
l̃ij
lij

pij, (7)

where lij and l̃ij denote the original and target intensities, respectively. However, this may
cause a gamut problem when p̃ij goes out of the range of color gamut. For example, a
color image in Figure 2a is broken by the method in (7) with l̃ij computed by HE as shown
in Figure 2b, where the computed color values are simply saved with the ‘Image.save’
function in Python Image Library (PIL).
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3.1. Naik and Murthy’s Method

To avoid the above gamut problem, Naik and Murthy proposed a method that
ensures that the modified colors always go into the color gamut as follows [2]: Let
p = [r, g, b]T ∈ [0, 1]3 be an RGB color vector in a normalized RGB color cube [0, 1]3

for notational simplicity, and assume that a target intensity l̃ ∈ [0, 3] is given. Then, we
compute the intensity of p as l = r + g + b ∈ [0, 3], and compare it with l̃. If l̃ ≤ l, then (7)
is adopted without a gamut problem because 0 ≤ l̃

l ≤ 1 ensures that p̃ = l̃
l p ∈ [0, 1]3.

On the other hand, if l̃ > l, then (7) may cause a gamut problem. To avoid this,
we transform p into the corresponding CMY (cyan, magenta and yellow) color vector as
p̄ = 1− p. The intensity of p̄ is given by l̄ = (1− r) + (1− g) + (1− b) = 3− l. Similarly,
the target intensity in the CMY color space is given by ¯̃l = 3− l̃. Then we compute the

modified CMY color vector ˜̄p =
¯̃l
l̄ p̄, which does not cause any gamut problem in the CMY

color space because l̄ − ¯̃l = (3− l)− (3− l̃) = l̃ − l > 0 or
¯̃l
l̄ < 1. Finally, we transform ¯̃p

back into the RGB color vector as the following:

p̃ = 1− ¯̃p = 1−
¯̃l
l̄

p̄ = 1− 3− l̃
3− l

(1− p). (8)

Naik and Murthy’s method is summarized in Algorithm 1.

Algorithm 1 Naik and Murthy’s method

Require: RGB color vector p = [r, g, b]T ∈ [0, 1]3, target intensity l̃ ∈ [0, 3]
Ensure: Modified RGB color vector p̃

1: Compute the intensity of p as l = r + g + b;
2: if l̃ ≤ l then
3: p̃ := l̃

l p;
4: else
5: p̃ := 1− 3−l̃

3−l (1− p);
6: end if

We can see that the above method does not increase the saturation defined by the fol-
lowing:

S(p) =

∥∥∥∥∥
[

I −
(

1
‖1‖

)(
1
‖1‖

)T
]

p

∥∥∥∥∥, (9)

which is the distance from the intensity axis joining the black and white vertices to p [12],
where I denotes the 3× 3 identity matrix. We have proved that the following equations
hold for any nonnegative numbers β and γ [15]:

S(βp) = βS(p) (10)

S(1− γ(1− p)) = γS(p). (11)

The lines 3 and 5 in Algorithm 1 correspond to the cases where β = l̃
l ≤ 1 and

γ = 3−l̃
3−l < 1 in the above Equations (10) and (11), both of which mean a non-increase

in saturation.

3.2. Yang and Lee’s Method

To increase the saturation, Yang and Lee modified Naik and Murthy’s method as
follows [9]. First, we divide the normalized RGB color space into three parts by two planes
perpendicular to the intensity axis: 1T p = 1 and 1T p = 2. If a color vector p satisfies
1T p = l < 1, then the intensity of p is boosted by p′ = p/l to 1T p′ = 1T p/l = l/l = 1.
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After that, p′ is passed to the function φNM, which computes Naik and Murthy’s method
in Algorithm 1 to obtain a modified color vector p̃ = φNM(p′, l̃).

On the other hand, if p satisfies 1T p = l > 2, then the intensity of p is dropped down
to 2 to increase the saturation as follows. First, we transform p into the CMY color vector as
p̄ = 1− p whose intensity is 1T p̄ = 1T(1− p) = 3− l < 1. Next, the intensity is boosted up
by p̄′ = p̄/(3− l) to 1T p̄′ = 1T p̄/(3− l) = (3− l)/(3− l) = 1. After that, we transform
p̄′ back into the RGB color vector as p′ = 1− p̄′ = 1− p̄/(3− l) = 1− (1− p)/(3− l).
Finally, p′ is passed to the function φNM to obtain a modified color vector p̃ = φNM(p′, l̃).
If 1 ≤ l ≤ 2, then we simply apply Naik and Murthy’s method to p as p̃ = φNM(p, l̃).

Yang and Lee’s method is summarized in Algorithm 2.

Algorithm 2 Yang and Lee’s method.

Require: RGB color vector p = [r, g, b]T ∈ [0, 3]3, target intensity l̃ ∈ [0, 3]
Ensure: Modified RGB color vector p̃

1: Compute the intensity of p as l = r + g + b;
2: if l < 1 then
3: p′ := p/l;
4: p̃ := φNM(p′, l̃);
5: else if l > 2 then
6: p′ := 1− 1

3−l (1− p);
7: p̃ := φNM(p′, l̃);
8: else
9: p̃ := φNM(p, l̃);

10: end if

We have proved that the saturation given by Yang and Lee’s method is greater than
or equal to that given by Naik and Murthy’s method [15]. However, as described on line
9 in Algorithm 2, Yang and Lee’s method directly uses Naik and Murthy’s method for
1 ≤ l ≤ 2. Therefore, Yang and Lee’s method also does not increase the saturation of any
color whose intensity falls in the range.

Regarding the drawback of Yang and Lee’s method, Park and Lee recently proposed a
piecewise linear gamut mapping method, which employs multiplicative and additive color
mapping to improve the color saturation [11]. However, as pointed out by the authors,
the color shifting in the additive algorithm used in the middle part may cause a gamut
problem, rarely. Therefore, they added an exceptional procedure to avoid the problem. In
the next subsection, we consider a gamut problem-free method.

3.3. Middle Part Elimination

In this subsection, we propose a method for eliminating the middle part in Yang
and Lee’s method, where Naik and Murthy’s method is directly used without boosting
the saturation of colors. More precisely, Yang and Lee’s method divides the RGB color
space into three disjoint parts with two planes perpendicular to the intensity axis l: l < 1,
1 ≤ l ≤ 2 and 2 < l; in the middle part, satisfying 1 ≤ l ≤ 2, their method cannot increase
the saturation as well as Naik and Murthy’s method. On the other hand, we divide the RGB
color space into two parts with a boundary surface: l ≤ θ and θ < l, where θ denotes the
boundary threshold. We refer to this change from tripartition to bipartition as the middle
part elimination.

The method described in this subsection is a refined version of Yu’s method [10],
which uses three planes for bisecting an RGB color cube. Those planes have unused
regions redundantly, which are removed in the refined method. Moreover, the algorithm is
simplified as described in Algorithm 3.

Figure 4 shows the proposed boundary surface, which bisects the RGB color space,
illustrated by a cube, into black-leaning and white-leaning parts. The letters attached to
the vertices of the cube denote eight basic colors normalized as follows: K = [0, 0, 0]T ,
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R = [1, 0, 0]T , G = [0, 1, 0]T , B = [0, 0, 1]T , C = [0, 1, 1]T , M = [1, 0, 1]T , Y = [1, 1, 0]T

and W = [1, 1, 1]T . The boundary surface is painted in red, green and blue based on the
coplanarity of each color point. Unlike Yang and Lee’s division of the RGB color space into
three parts, the proposed bisection eliminates the middle part where Naik and Murthy’s
method is directly used. Therefore, the drawback of their methods will be successfully
avoided in the proposed method. For example, a color point p in this figure is first projected
onto the boundary surface along the direction of the yellow arrow, where the end point is
denoted by qα. Note that qα is more distant from the intensity axis than p, which means
that qα has higher saturation than p, i.e., by projecting a color point onto the boundary
surface as shown in Figure 4, we can always increase the saturation.

Figure 4. RGB color space, illustrated by a cube is bisected by a boundary surface, which passes
through the center of the space. The letters attached to the vertices of the cube denote eight ba-
sic colors, normalized as follows: K = [0, 0, 0]T , R = [1, 0, 0]T , G = [0, 1, 0]T , B = [0, 0, 1]T ,
C = [0, 1, 1]T , M = [1, 0, 1]T , Y = [1, 1, 0]T and W = [1, 1, 1]T . Every color point in the space can be
projected onto the surface to increase the saturation.

Figure 5 shows an orthographic view of the boundary surface in Figure 4 from the
white point to the black pointhidden behind the boundary surface, which forms a regular
hexagon composed of six regular triangles colored in red, green and blue that correspond
to the colors in Figure 4. The sides of those triangles correspond to the edges of the cube in
Figure 4. A color p = [r, g, b]T satisfies one of the inequalities written in the triangles onto
which p is also orthographically projected. We can see that the median value of the RGB
components in each triangle corresponds to the color of the triangle. This correspondence
gives us an idea that elongates an RGB color vector p to the boundary surface shown in
Figure 4 to increase the saturation prior to the application of Naik and Murthy’s method,
i.e., we can select a plane onto which a color is projected, according to the median value of
the RGB components.
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Figure 5. The proposed boundary surface in RGB color space viewed from the white point makes
a regular hexagon, which is composed of six regular triangles painted in red, green and blue,
separately. A color p = [r, g, b]T falls in one of the triangles, and satisfies the inequality written in the
corresponding triangle. For example, if p is orthographically projected onto the top-left red triangle
BMW, then we have b > r > g.

In Figure 4, each pair of triangles with the same color is coplanar, where the normal
vectors of red, green and blue planes are given by ur = [0, 1, 1]T , ug = [1, 0, 1]T and
ub = [1, 1, 0]T , respectively. For a color p = [r, g, b]T , we first select the median value in
{r, g, b} as follows:

pmed = median{r, g, b}, (12)

where the ‘median’ operator selects the median value from the given values. Then, we
project p onto the plane with the normal vector upmed to increase the saturation. The
detailed procedure is as follows. The procedure is divided into two parts according to the
position of p in the RGB color space separated by the boundary surface.

1. If uT
pmed

p ≤ 1, then we compute the intersection point of a line q = αp, where α is a
parameter, and a plane uT

pmed
q = 1. From these equations, we have α = 1

l−pmed
where

l = r + g + b, that is, the intersection point is given by qα = 1
l−pmed

p. Then, we apply

Naik and Murthy’s method to obtain the modified color as p̃ = φNM(qα, l̃).
2. On the other hand, if uT

pmed
p < 1, then we compute the intersection point of a line

passing through p and 1, which is expressed as q = 1 + α(p − 1), and a plane
uT

pmed
q = 1. From these equations, we have α = 1

2−(l−pmed)
, that is, the intersection

point is given by qα = 1 + 1
2−(l−pmed)

(p− 1). Then, we apply Naik and Murthy’s

method to obtain the modified color as p̃ = φNM(qα, l̃).

This method is summarized in Algorithm 3.
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In this algorithm, before applying Naik and Murthy’s method at line 9, every color
p is modified to qα so that the middle part where Naik and Murthy’s method is directly
applied to p is eliminated. We can confirm that the saturation of qα is not smaller than
that of p as follows. Line 5 in Algorithm 3 corresponds to β = 1

l−pmed
in (10), and the

denominator is not greater than 1 as l − pmed = uT
pmed

p ≤ 1, which means that β ≥ 1.
Therefore, we find that S(qα) = βS(p) ≥ S(p) by (10). On the other hand, line 7 in
Algorithm 3 corresponds to γ = 1

2−(l−pmed)
in (11), and the denominator is smaller than

1 as 2− (l − pmed) = 2− uT
pmed

p < 2− 1 = 1, which means that γ > 1. Therefore, we
conclude that S(qα) = γS(p) > S(p) by (11).

Algorithm 3 The proposed method.

Require: RGB color vector p = [r, g, b]T ∈ [0, 3]T , target intensity l̃ ∈ [0, 3]
Ensure: Modified RGB color vector p̃

1: Compute the intensity of p as l = r + g + b;
2: ur := [0, 1, 1]T , ug := [1, 0, 1]T , ub := [1, 1, 0]T ;
3: Compute pmed = median{r, g, b};
4: if uT

pmed
p ≤ 1 then

5: qα = 1
l−pmed

p;
6: else
7: qα = 1 + 1

2−(l−pmed)
(p− 1);

8: end if
9: p̃ = φNM(qα, l̃);

4. Experimental Results

In this section, we show the experimental results of hue-preserving color image
enhancement with Naik and Murthy’s method [2], Yang and Lee’s method [9] and the
proposed method.

Figure 6 shows six enhanced color images computed from the common input image in
Figure 2a. In Figure 6a, the contrast is enhanced by HE, compared with that of the original
image, and the gamut problem is avoided by Naik and Murthy’s method successfully.
However, the saturation is deteriorated as shown in Section 3.1. In Figure 6b, Yang and
Lee’s method recovers the saturation better than that of Naik and Murthy. In Figure 6c,
the proposed method improves the saturation further than that of Yang and Lee. This
result coincides with the results of Yu’s method [10]. Figure 6d shows the result of HS
combined with Naik and Murthy’s method, where the contrast is suppressed while the
saturation is improved, compared with Figure 6a. Figure 6e of Yang and Lee’s method
shows a more colorful image than Figure 6d. Figure 6d,e coincides with the results of
Inoue’s method [15]. Figure 6f of the proposed method shows further improved saturation
than Figure 6e, specifically for the regions of the facial skin and curtain in the background.

Table 1 shows the mean saturation of each image in Figure 6, which numerically
confirms that the proposed method achieved maximum saturation among the compared
methods for both HE and HS.

Table 1. Mean saturation of the images in Figure 6, where the maximum value in each row is
indicated in boldface.

Naik and Murthy [2] Yang and Lee [9] Proposed

Histogram equalization 13.73 27.40 33.39
Histogram specification 15.12 39.98 49.89
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(a) Naik and Murthy + HE (b) Yang and Lee + HE (c) Proposed + HE

(d) Naik and Murthy + HS (e) Yang and Lee + HS (f) Proposed + HS

Figure 6. Hue-preserving color image enhancement: The top row (a–c) shows the output images with
histogram equalization (HE) for computing target intensities, and the bottom row (d–f) shows that
with histogram specification (HS). The left (a,d), middle (b,e) and right (c,f) columns show the results
with Naik and Murthy’s method, Yang and Lee’s method and the proposed methods, respectively.

As well as the compared methods, the proposed method is also applicable to other in-
tensity transformation methods. For example, we show the results of the gamma correction
(GC) in Figure 7, where we choose γ = 0.5 to obtain subjectively better results.

(a) Naik and Murthy + GC (b) Yang and Lee + GC (c) Proposed + GC

Figure 7. Gamma correction: the intensity of the input image in Figure 2a is modified by the gamma
correction with γ = 0.5, which is adjusted manually. Then, the corresponding RGB color values
are determined by Naik and Murthy’s method (a), Yang and Lee’s method (b) and the proposed
methods (c).

The compared three methods preserve the intensity of every input color image as
shown in Figure 8, where we can see the luminance [9] images, which are the normalized
intensity images, as lij/3 = (rij + gij + bij)/3, corresponding to the enhanced color images
in Figure 6. The intensity images in the top row are identical to the histogram equalized-
grayscale image in Figure 3b, and those in the bottom row are identical to the histogram
specified-grayscale image in Figure 3c.
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(a) Naik and Murthy + HE (b) Yang and Lee + HE (c) Proposed + HE

(d) Naik and Murthy + HS (e) Yang and Lee + HS (f) Proposed + HS

Figure 8. Luminance images computed from the corresponding color images in Figure 6: the top row
(a–c) shows the luminance images with histogram equalization (HE) for computing target intensities,
and the bottom row (d–f) shows that with histogram specification (HS).

We also computed hue images from the color images in Figure 6 as shown in Figure 9,
where each hue value is computed from the RGB color values on the basis of the definition
of hue given by the Equation (6.2–2) in the reference [12]. All images in Figure 9 are similar
to the original hue image shown in Figure 10a. We observed that the hue values contain
numerical errors whose maximum standard deviation is 0.50 for normalized RGB color
vectors. The mean and standard deviation of hue values at every pixel are visualized in
Figure 10b,c, respectively. In Figure 10c, the black and white pixels indicate the standard
deviation values 0 and 1, respectively.

Figure 11 shows hue histograms of the color images in Figure 6, where the vertical and
horizontal axes of each graph denote the number of pixels and hue in degrees, respectively.
The blue and red lines denote the original enhanced histograms, which are similar to each
other. The small differences between them are mainly resulted from the quantization errors
caused by recording color values in an image file format.

Next, Figure 12 shows six color images selected from an image dataset by Afifi et al. [17],
where the first three images are underexposed, and the last three ones are overexposed. We
selected the images in Figure 12 based on their relative exposure values (EVs), that is, the
underexposed images have smaller than or equal to −1 relative EVs, and the overexposed
images have greater than or equal to +1 relative EVs. As the dataset was originally
rendered using raw images taken from the MIT-Adobe FiveK dataset, their dataset follows
the original license of the MIT-Adobe FiveK dataset [18].



J. Imaging 2021, 7, 150 13 of 19

(a) Naik and Murthy + HE (b) Yang and Lee + HE (c) Proposed + HE

(d) Naik and Murthy + HS (e) Yang and Lee + HS (f) Proposed + HS

Figure 9. Hue images computed from the corresponding color images in Figure 6: the top row (a–c)
shows the luminance images with histogram equalization (HE) for computing target intensities, and
the bottom row (d–f) shows that with histogram specification (HS).

(a) Original hue (b) Mean image (c) Standard deviation image

Figure 10. Mean and standard deviation of hue values of the six images in Figure 9 compared with
the original hue image (a) computed from the input color image in Figure 2a: (b) the mean image of
Figure 9a–f, and (c) their standard deviation.

Figure 13 shows the results of HE applied to the images in Figure 12, where Naik
and Murthy’s method in the top row enhances the contrast without a gamut problem for
both under- and overexposed images; however, the resultant images look like sepia or
grayscale ones with faded colors. Yang and Lee’s method in the middle row recovers the
color saturation compared with the above results. The proposed method in the bottom row
improves the saturation further than the above two results.
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(a) Naik and Murthy + HE (b) Yang and Lee + HE (c) Proposed + HE

(d) Naik and Murthy + HS (e) Yang and Lee + HS (f) Proposed + HS

Figure 11. Hue histograms computed from the color images in Figure 6. In each graph, the blue line
denotes the hue histogram of the original color image in Figure 2a, and the red line denotes that of
the enhanced image by the corresponding method indicated in the subcaption.
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(a) Naik and Murthy + HE (b) Yang and Lee + HE (c) Proposed + HE

(d) Naik and Murthy + HS (e) Yang and Lee + HS (f) Proposed + HS

Figure 11. Hue histograms computed from the color images in Figure 6. In each graph, the blue
line denotes the hue histogram of the original color image in Figure 3(a), and the red line denotes
that of the enhanced image by the corresponding method indicated in the subcaption.
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dataset, their dataset follows the original license of the MIT-Adobe FiveK dataset [18].302

No.1 No.2 No.3 No.4 No.5 No.6

Figure 12. Color images selected from Afifi’s image dataset [17], which was originally rendered
using raw images taken from the MIT-Adobe FiveK dataset [18]. No.1 to 3 are underexposed
images, and No.4 to 6 are overexposed ones.

Figure 13 shows the results of HE applied to the images in Figure 12, where Naik303

and Murthy’s method in the top row enhances the contrast without gamut problem for304

both under- and overexposed images, however, the resultant images look like sepia or305
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Figure 12. Color images selected from Afifi’s image dataset [17], which was originally rendered using
raw images taken from the MIT-Adobe FiveK dataset [18]. Nos. 1 to 3 are underexposed images, and
Nos. 4 to 6 are overexposed ones.
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Naik and Murthy’s method

Yang and Lee’s method

Proposed method

Figure 13. Histogram equalization applied to color images in Figure 12, where the top, middle and
bottom rows show the output images by Naik and Murthy’s, Yang and Lee’s and the proposed
methods, respectively.

Figure 14 also shows the results of HS applied to the images in Figure 12, where we309

obtained more natural results of contrast enhancement than the results of HE in Figure310

13.311

Naik and Murthy’s method

Yang and Lee’s method

Proposed method

Figure 14. Histogram specification applied to color images in Figure 12, where the top, middle and
bottom rows show the output images by Naik and Murthy’s, Yang and Lee’s and the proposed
methods, respectively.

Figure 15 shows two graphs (a) and (b) of the mean saturation of the above images312

in Figures 13 and 14 enhanced by HE and HS, respectively, where the vertical and313

horizontal axes of each graph denote the mean saturation and the images numbered314

from 1 to 6 in Figure 12. The green, yellow, orange and red bars denote the original315

image in Figure 3(a), Naik and Murthy’s, Yang and Lee’s and the proposed methods,316

respectively, which show that Naik and Murthy’s method decreases the mean saturation317

Figure 13. Histogram equalization applied to color images in Figure 12, where the top, middle and
bottom rows show the output images by Naik and Murthy’s method, Yang and Lee’s method and
the proposed method, respectively.
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Figure 14 also shows the results of HS applied to the images in Figure 12, where we
obtained more natural results of contrast enhancement than the results of HE in Figure 13.

Version August 13, 2021 submitted to J. Imaging 16 of 21

Naik and Murthy’s method

Yang and Lee’s method

Proposed method

Figure 13. Histogram equalization applied to color images in Figure 12, where the top, middle and
bottom rows show the output images by Naik and Murthy’s, Yang and Lee’s and the proposed
methods, respectively.

Figure 14 also shows the results of HS applied to the images in Figure 12, where we309

obtained more natural results of contrast enhancement than the results of HE in Figure310
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Figure 14. Histogram specification applied to color images in Figure 12, where the top, middle and
bottom rows show the output images by Naik and Murthy’s, Yang and Lee’s and the proposed
methods, respectively.

Figure 15 shows two graphs (a) and (b) of the mean saturation of the above images312
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respectively, which show that Naik and Murthy’s method decreases the mean saturation317

Figure 14. Histogram specification applied to color images in Figure 12, where the top, middle and
bottom rows show the output images by Naik and Murthy’s method, Yang and Lee’s method and
the proposed method, respectively.

Figure 15 shows two graphs, (a) and (b), of the mean saturation of the above images in
Figures 13 and 14 enhanced by HE and HS, respectively, where the vertical and horizontal
axes of each graph denote the mean saturation and the images numbered from 1 to 6 in
Figure 12. The green, yellow, orange and red bars denote the original image in Figure 2a,
Naik and Murthy’s method, Yang and Lee’s method and the proposed method, respec-
tively, which show that Naik and Murthy’s method decreases the mean saturation from the
original values, Yang and Lee’s method outperforms that of Naik and Murthy, and the pro-
posed method outperforms that of Yang and Lee, quantitatively. In Figure 15, the standard
deviation of saturation in each image is also shown with an error bar, where the longer the
error bar becomes, the more various saturation values the enhanced image contains.

Table 2 summarizes the mean saturation of the images in Figures 13 and 14 obtained
by the compared methods, where the proposed method achieves the maximum values
among the compared methods for both HE and HS.

Table 2. Mean saturation, where the maximum value in each row is indicated in boldface.

Naik and Murthy [2] Yang and Lee [9] Proposed

Histogram equalization 9.94 22.93 32.55
Histogram specification 11.91 31.74 46.81

Similarly, Table 3 summarizes the standard deviation of saturation for all compared
methods, where the proposed method achieves the maximum values among the compared
methods for both HE and HS.

In Figure 15, we find that the standard deviation of saturation in an image can be larger
than the mean saturation. For example, we show the histogram of saturation of image
No. 3 enhanced by the proposed method with HE in Figure 16, where the mean saturation
is 42.1 and the standard deviation is 50.8. All values of the saturation are included in the
range [0, 195.2].
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(a) Histogram equalization (b) Histogram specification

Figure 15. Mean saturation of enhanced images in Figures 13a and 14b, where the vertical axes
denote the mean saturation, and the horizontal axes denote the image ID numbered in Figure 12.
The yellow, orange and red bars denote Naik and Murthy’s method, Yang and Lee’s method and the
proposed method, respectively. The error bars denote the standard deviation of saturation.

Table 3. Standard deviation of saturation, where the maximum value in each row is indicated
in boldface.

Naik and Murthy [2] Yang and Lee [9] Proposed

Histogram equalization 7.31 21.30 29.52
Histogram specification 8.03 22.20 30.93

Figure 16. Saturation histogram of image No. 3 enhanced by the proposed method with HE.

We also evaluated the performance with the color colorfulness index (CCI) defined in
(10) in [4] as shown in Figure 17, where the vertical and horizontal axes denote the CCI
value and image numbers, respectively. The value of CCI varies from 0 (achromatic image)
to the maximum (most colorful image) [4]. For both HE (a) and HS (b), the proposed
method denoted by red bars achieves the highest values among the compared methods.

Finally, Figure 18 shows an assembled result for browsing the performance of com-
pared methods, where five original images in row (a) are enhanced by six different combi-
nations of compared methods to obtain enhanced images listed in rows, (b) to (g). These
results also support the effectiveness of the proposed method visually. The rows (b), (c) and
(d) show the enhanced images by Naik and Murthy’s method, Yang and Lee’s method and
the proposed method with HE; the rows (e), (f) and (g) show that with HS. These results
exemplify that HE enhances the contrast strongly, and HS used in this paper enhances the
saturation dominantly.



J. Imaging 2021, 7, 150 17 of 19

(a) Histogram equalization (b) Histogram specification

Figure 17. Color colorfulness index (CCI) [4]: the intensities are transformed by histogram equaliza-
tion (a) and histogram specification (b).

(a)

(b)

(c)

(d)

(e)

Figure 18. Cont.
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(f)

(g)

Figure 18. Assembled result: (a) original images, (b) Naik and Murthy’s method + HE, (c) Yang and
Lee’s method + HE, (d) proposed method + HE, (e) Naik and Murthy’s method + HS, (f) Yang and
Lee’s method + HS, (g) proposed method + HS.

5. Discussion

The above experimental results demonstrate the validity of the theoretical properties
of the compared methods, i.e., Naik and Murthy’s method gives faded colors, Yang and
Lee’s method recovers the weak point of Naik and Murthy’s method, and the proposed
method improves the color saturation further than that of Yang and Lee by eliminating the
middle part of their method where they directly use Naik and Murthy’s method, which
generates faded colors almost every time.

For generating the target intensity image required for color image enhancement, we
compared HE and HS in the above experiments, where we observed that HE frequently
enhanced the contrast excessively. On the other hand, the adopted RGB color cube-based
HS achieved moderate enhancement results in a parameter-free manner as well as the
conventional HE. Therefore, we would like to recommend its adoption as an alternative to
HE for contrast enhancement.

In this paper, we used a conventional method for HE and HS that is based on the
cumulative histograms. On the other hand, Nikolova and Steidl have proposed a more
sophisticated method for exact HS [19,20], which can be substituted for the conventional
one to produce better results of color image enhancement in the proposed method.

6. Conclusions

In this paper, we proposed a method for hue-preserving color image enhancement in
an RGB color cube, and compared it with two representative methods in this context: those
of Naik and Murthy, and Yang and Lee. It is theoretically confirmed that the proposed
method can improve the saturation better than those methods. The experimental results
also demonstrated the effectiveness of the proposed method, compared with them, visually
and numerically.
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