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Abstract

The PRAME gene family belongs to the group of cancer/testis genes whose expression is restricted primarily to the testis
and a variety of cancers. The expansion of this gene family as a result of gene duplication has been observed in primates
and rodents. We analyzed the PRAME gene family in Eutheria and discovered a novel Y-linked PRAME gene family in bovine,
PRAMEY, which underwent amplification after a lineage-specific, autosome-to-Y transposition. Phylogenetic analyses
revealed two major evolutionary clades. Clade I containing the amplified PRAMEYs and the unamplified autosomal
homologs in cattle and other eutherians is under stronger functional constraints; whereas, Clade II containing the amplified
autosomal PRAMEs is under positive selection. Deep-sequencing analysis indicated that eight of the identified 16 PRAMEY
loci are active transcriptionally. Compared to the bovine autosomal PRAME that is expressed predominantly in testis, the
PRAMEY gene family is expressed exclusively in testis and is up-regulated during testicular maturation. Furthermore, the
sense RNA of PRAMEY is expressed specifically whereas the antisense RNA is expressed predominantly in spermatids. This
study revealed that the expansion of the PRAME family occurred in both autosomes and sex chromosomes in a lineage-
dependent manner. Differential selection forces have shaped the evolution and function of the PRAME family. The positive
selection observed on the autosomal PRAMEs (Clade II) may result in their functional diversification in immunity and
reproduction. Conversely, selective constraints have operated on the expanded PRAMEYs to preserve their essential function
in spermatogenesis.
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Introduction

Cancer/testis (CT) genes comprise a group of genes involved

primarily in immunity and reproduction. They are expressed in

various types of cancers when abnormally activated, whereas, the

normal expression of CT genes is restricted mainly to the testis,

but it has been detected also in other tissues such as fetal ovary [1–

3]. CT genes have more than 240 members from 70 families.

Twenty-four of these families are located on the human X-

chromosome (CT-X) and two families, the TSPY (testis-specific

protein Y-linked) gene family and the Y-linked TPTE (transmembrane

phosphatase with tensin homology) pseudogene family, are on the Y-

chromosome (Y-chr) [4]. Interestingly, many amplified CT gene

families are located within direct or inverted repeats on the sex

chromosomes (chrs) [1,4]. The autosomal CT genes were

conserved during evolution and play roles in spermatogenesis,

fertilization, and apoptosis in malignant cells [5–7]. However,

knowledge about the CT genes on the sex chrs is still limited. A

comparative study suggested that the CT-X genes were subject to

positive selection and evolved faster than the autosomal CT genes

[4]. The Y-linked TSPY gene family is conserved among most

mammalian species, and has 30–60 copies on the human Y-chr [8]

and 50–200 copies on the bovine Y-chr (BTAY) [8,9]. This family

has a typical CT tissue-restricted expression pattern with functions

in immunity and spermatogenesis [10]. In this study, we identified

a novel Y-linked CT gene family, preferentially expressed antigen in

melanoma, Y-linked (PRAMEY), and examined its evolution in

Eutheria.

PRAME, as one of the CT genes, first identified as an antigen-

encoding gene related to immunity in a melanoma cell line [2], is

expressed predominantly in normal testis and melanoma, lung

squamous cell carcinoma, and acute leukemia, and at much lower

levels in the ovary and other tissues [2,11]. The human PRAME

gene, located on chromosome 22 (HSA22), encodes a protein with

seven leucine-rich (LXXLL) motifs through which PRAME

interferes with the retinoic acid receptor (RAR) pathway, and

leads to the inhibition of RA-induced differentiation, growth

arrest, and apoptosis [12]. Thus, PRAME functions as a

transcriptional repressor in the signaling cascade, and the over-

expression of PRAME results in tumorigenesis [12]. Similar to the

other multi-copy CT genes, PRAME went through expansion and

constituted a large gene family in most mammalian species

[13,14]. A previous phylogenetic analysis of the primate PRAME

family has revealed that the expansion of the human paralogs is
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hominin-specific and occurred within the past three million years

[13]. Several potential surface-accessible sites of the human

PRAME protein have been identified under positive selection

during evolution [13]. Even though the evolutionary pattern and

oncogenic roles of the PRAME family have been studied in the

human and rodent [2,11–13,15–17], the phylogeny of the PRAME

orthologs in other mammalian species and the function of PRAME

in normal tissues, such as testis, remain unclear.

To delineate the macro-evolution of PRAME, we analyzed the

PRAME gene family in Eutheria. We discovered a bovine Y-linked

PRAME family, namely PRAMEY, which was derived from an

autosome-to-Y transposition and underwent amplification after

the transposition. A phylogenetic analysis of PRAME/PRAMEY

orthologs in Eutheria identified two major clades, which were

subject to diverse selection pressures. The origination of the

PRAMEY family and its unique expression patterns in spermatids

suggest that it plays an important role in spermatogenesis.

Results

Discovery of the PRAMEY Family
Two PRAMEY transcripts (PRAMEY1 and PRAMEY2) were

identified through a large-scale direct testis cDNA selection using a

micro-dissected, PCR amplified BTAY probe. PRAMEY1 is 99%

identical to a predicted mRNA (GenBank acc. no. XM_

001253165.1) located in a non-annotated bovine bacterial artificial

chromosome (BAC) (GenBank acc. no. AC234911.1). This clone

was validated as a Y-linked BAC by a male-specific PCR (Fig. 1).

PRAMEY2 is 99% identical to an mRNA (GenBank acc. no.

NM_001077979) located in a bovine Y-BAC (GenBank acc. no.

AC234853.4). Full-length mRNAs of both transcripts were obtained

by RACE (rapid amplification of cDNA ends) (Fig. 2). The mRNA of

PRAMEY1 (GenBank acc. no. GU144301) is 2747 bp, with an open

reading frame (ORF) from nucleotide (nt) 895 to 2436, and it

encodes a peptide of 513 amino acids (aa). The mRNA of PRAMEY2

(GenBank acc. no. GU144302) is shorter (1888 bp), with an ORF

from nt 104 to 1639, encoding a peptide of 511 aa (Fig. 2). The

similarity between the coding regions of PRAMEY1 and PRAMEY2 is

88% at the nucleotide level and 90% at the protein level.

To address the question whether more loci of PRAMEY are

present on BTAY, we searched PRAMEY1/2 against the bovine Y-

BACs (available in NCBI) and identified a total of 10 potentially

active PRAMEY paralogs (named PRAMEY1-10, Table S1) and 6

pseudogenes. The active- and pseudo-genes were mapped to a total

of 11 Y-BACs, each containing one or two copies (Table S1). The

pairwise similarity of the 10 active PRAMEY loci was .86%, with a

100% similarity between PRAMEY2 and PRAMEY3 in AC234853.4

(Table S2). PRAMEY1 contains 4 exons whereas PRAMEY2

contains 5 exons because the first exon of PRAMEY1 reads through

the second exon, resulting in a single, larger exon (Fig. 2). The first

two introns in the coding regions are conserved across all the

PRAMEY loci, with a slight difference in length (1289–1371 bp and

274–284 bp) (Fig. 2). A major difference is present in the last intron

(Fig. 2): the size is 758 bp in PRAMEY2/3/8, compared to 1161–

1212 bp in the remaining PRAMEYs. This difference is the result of

an indel of 403–454 bp that is specific to BTAY.

The putative PRAMEY protein isoforms share an identity of

$82%. Seven important leucine-rich motifs have been identified

in the human PRAME protein [12]. The alignment of the bovine

PRAMEY/PRAME with the human PRAME on HSA22

revealed that these motifs are highly conserved (Fig. S1).

In addition, we found a predicted gene (GenBank acc. no.

XR_082974.1) located on BTA17. This gene shares ,87%

similarity with the identified Y-linked PRAMEYs (Table S2). Gene-

specific PCR and sequencing (Table S3) confirmed the predicted

PRAME on BTA17. This autosomal gene encodes a putative

peptide of 410 aa and is located at 74.35 Mb close to two zinc-

finger genes, ZNF280A (also known as SUHW1) and ZNF280B

(SUHW2).

Expression analysis of the bovine PRAMEY
Expression of the putative PRAMEY loci was investigated by

deep-sequencing of the selected testis cDNAs using the Illumina

GAIIx (see methods) and aligning the short sequence reads (pair-

ends, 2636 bp) against unique coding regions of the PRAMEY

genes (Table S2). Seven of the 10 PRAMEY loci are active at the

transcription level (PRAMEY2/3/6-10), and six of the seven loci

have exactly matched read-pairs (Fig. 1B); in contrast, PRAMEY1/

4/5 have no matched reads. Further, PRAMEY2/3/6 have more

uniquely matched reads (.20), suggesting a higher expression level

at these loci. Taken together with the RACE result, at least eight of

the 10 loci on BTAY have been confirmed to be active at the

transcription level.

RT-PCR analysis (Table S3) across nine tissues revealed that

PRAMEY2 was expressed specifically in the testis. In contrast, the

autosomal PRAME gene on BTA17 was expressed highly in the

testis, and low in the kidney, brain and muscle (Fig. 1A). In situ

hybridization (ISH) of PRAMEY2 cRNA probes (Table S4)

revealed that both sense and antisense transcripts of PRAMEY2

were expressed in adult testis (Fig. 3). The sense RNA of

PRAMEY2 was expressed specifically in spermatids (Fig. 3A),

whereas the antisense RNA was expressed in all cell types in the

seminiferous tubules, with the highest expression occurring in

spermatids (Fig. 3B). Quantitative (q) RT-PCR analysis of

PRAMEY2 indicated that the expression of the sense RNA was

low in 5-11-day and 3-month-old testes, but up-regulated in 8-

month- and 24-month-old testes (Fig. 3E); the expression of

antisense PRAMEY2 RNA increased slightly with age.

Phylogenetic tree of the PRAME/PRAMEY family
To investigate the evolution of PRAME/PRAMEY, the sequenc-

es of multiple PRAME loci in the human, chimpanzee, orangutan,

mouse, rat and cattle were retrieved from NCBI (Table S2) [18]. A

single autosomal ortholog was found in dog and horse. Multiple

PRAME loci were detected on the pig chr 6 (SSC6), similar to the

expansions observed in primates (HSA1, PTR1 and MMUL1) and

rodents (MMU4 and RNO5/14) [13]. Since SSC6 has not been

well-annotated, the corresponding matched regions were collected

and aligned with the HSA22 ortholog by Splign [19] to confirm

gene structures and splicing signals/sites, which gave rise to 10

swine orthologs containing long ORFs (ranging from 470 to 528

aa) with corresponding splicing sites (Table S2). In addition to the

autosomal copies, we found X-linked PRAME (PRAMEX) in

rodents and horses. However, we did not identify any ortholog of

PRAME in the non-eutherian lineages examined, including

opossum, platypus, chicken, frog and zebrafish, all of which have

a genome sequence coverage of $6X, implying that the PRAME

gene family is present in eutherian mammals only.

The coding regions of the retrieved PRAME sequences were

used to establish phylogenetic trees using Maximum-likelihood

(ML), Bayesian-inference (BI) and Neighbor-joining (NJ) methods.

All the tree topologies were consistent and contained two major

clades (Fig. 4). The first clade (Clade I) included the syntenic

orthologs of the BTA17 PRAME on human (HSA22), macaque

(MMUL10), chimpanzee (PRT22), dog (CFA26), horse (ECA8)

and pig (SSC14). Interestingly, all the active bovine PRAMEY loci

and PRAME on BTA17 were clustered on the same branch with a

strong bootstrap support value (100%) (Fig. 4). This clade also

Expansion of PRAME Gene Family
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included the orthologs on the horse and mouse X-chrs (ECAX and

MMUX), which have a closer evolutionary distance to Clade I

(0.713) than Clade II (0.814) (Maximum-Composite-Likelihood

method) [20]. In Clade I, only the PRAMEY gene contains

multiple copies, whereas the other homologs are all single-copy

genes. Since no Y-linked ortholog was identified among the

available Y-chrs of the other eutherian mammals, we propose that

the bovine PRAMEY was derived by a lineage-specific, autosome-

to-Y transposition event.

Clade II included the remaining orthologs with three internal

clusters (Fig. 4). The first cluster (IIa) comprised the orthologs in

Artiodactyla, including those on BTA16 and SSC6. The second

cluster (IIb) included all the orthologs on chr 1 in primates, where

the human orthologs were intermingled with chimpanzee and

orangutan orthologs as demonstrated previously [13]. The

autosomal orthologs in Rodentia constituted the third cluster (IIc)

and the mouse and rat orthologs were intermingled within the

cluster. The X-linked orthologs in rats were also nested within this

cluster. The orthologs in Clade II were all located in a chromosomal

region syntenic to HSA1 except for the rat X-orthologs. The

PRAME gene tree was reconciled with a species tree to reveal

potential duplication and speciation events (Fig. 5) [21,22].

Figure 1. Expression patterns of PRAME/PRAMEY in cattle. A. RT-PCR results (lanes 2-10). PRAMEY is expressed specifically in the testis, whereas
the autosomal PRAME is expressed in the testis (predominantly), kidney, brain and the muscle tissues. Bovine male genomic DNA-specific PCR (lanes
11–12) confirmed that PRAMEY is Y-specific. Te, testis; Li, liver; Ki, kidney; Sp, spleen; Br, brain (cerebrum); Ad, adrenal gland; Mu, muscle; Ly, lymph
node; Ov, ovary; =, bovine male genomic DNA control; R, bovine female genomic DNA control; -, negative control (water); M, 1 kb DNA ladder. B. The
expression of the PRAMEY loci by deep-sequencing analysis. The alignment of reads derived from deep-sequencing of selected cDNAs against coding
regions of the PRAMEY loci (Table S2) reveals that seven of the 10 active PRAMEY genes are expressed differentially, six of which have significant
numbers of both read-pairs matching exactly to the specific loci.
doi:10.1371/journal.pone.0016867.g001

Figure 2. Genome structures of the bovine PRAMEY genes. Schematic representations of PRAMEY1 and PRAMEY2. Compared to the PRAMEY2
(GenBank acc. no. GU144302) that contains five exons, the first exon of the PRAMEY1 (GenBank acc. no. GU144301) reads through to the second exon
and forms a larger exon. The introns are drawn to scale. The open boxes represent UTR regions and the filled black boxes are coding segments (CDS).
The numbers denote the length of exons, introns and CDS in bp. The polyA [(A)n] sites are indicated.
doi:10.1371/journal.pone.0016867.g002
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Selection forces acting on the PRAME genes
The lineage-specific selection test using the PAML (Phyloge-

netic Analysis by Maximum Likelihood) package revealed that the

dN/dS ratios varied significantly among different lineages

(p,0.001, fixed ratio/free ratio branch model) [23]. We applied

the branch-site models (model A null/model A) to examine

whether any lineage is under positive selection [24]. In Clade I, we

observed two branches, leading to the primate homologs and the

bovine PRAME on BTA17, which were subject to positive

selection (Fig. 5). Three positively selected sites were found along

these two branches (probability .0.8, Table S5) [24]. We also

tested different pairs of site-specific models (see methods) in a

dataset containing only the homologs in Clade I (Table S2 and S6)

[23], and the results were all negative (p.0.1). It is noteworthy

that the homologs in Clade I had a significant lower median dN/

dS ratio when compared to the three clusters in Clade II

(p,0.001, Fig. 6A). Taken together, these data suggest that Clade

I was under stronger functional constraints.

In Clade II, we detected a total of 17 sites from 14 different

branches under positive selection (Fig. 5). Four sites and three

branches were observed in Artiodactyla (Clade IIa), five sites/five

branches in Primate (Clade IIb), and nine sites/six branches in

Rodentia (Clade IIc) (Fig. 5). Our findings support a previous

report that the primate and rodent PRAME homologs were subject

to positive selection [13]. In this study, we further examined the

potential selected sites in the homologs in Artiodactyla (Clade IIa)

using the site-specific models (see methods) and detected eight

more positively selected sites (model M8, probability .0.8, Table

S6 and S7). Therefore, 12 sites in total were found under positive

selection in Clade IIa. We built a PRAME protein homology

model using the PRAME gene on BTA16 (GenBank acc. no.

XM_001256020) as the template, and mapped the positively

selected sites on the model (Fig. 5). In contrast to the primate and

rodent PRAME, in which the positively selected sites were

clustered in the outer surface of the protein [13], the majority

(8/12) of the positively selected sites in the bovine PRAME were

located in the inner concave region (Fig. 6B). Furthermore, a DNA

binding site was predicted in this protein model. This could be

important as one of the positively selected sites (329M) and two of

the leucine-rich motifs were located in this region. In addition, we

also investigated whether or not the bovine paralogs, including the

pseudogenes, were subject to gene conversion during evolution

using the GENECONV program [25]. The results did not indicate

any gene conversion events.

Discussion

Lineage-specific amplification of PRAMEs
PRAME is one of the most amplified gene families in mammals

and is considered the third largest gene family in the mouse

genome [26]. In the present study, we found that the PRAME gene

family is present only in Eutheria, indicating that this family may

have originated de novo in the eutherian lineages [27]. The birth-

and-death model of gene duplication, instead of concerted

evolution, has been suggested to be the major evolutionary

mechanism accounting for the expansion of autosomal PRAME

and the resemblance between each copy [13]. Our analysis

revealed that: 1) during eutherian evolution, the expansion of

PRAME genes was not limited to autosomes, but also occurred in

sex chrs; 2) the expansion of PRAMEs is lineage-dependent. This

conclusion was based upon the finding that the PRAME gene was

transposed to and amplified on BTAY, but not on the other

mammalian Y-chrs; 3) the intra- (cis-) and inter- (trans-)

chromosomal duplications occurred during the expansion of the

PRAME gene family. The cis-duplications occurred mainly for the

syntenic PRAMEs in Clade II and the bovine PRAMEYs in Clade I

Figure 3. Spatial and temporal expression patterns of the sense and antisense RNA of the bovine PRAMEY2 in adult bovine testis. A.
The sense RNA of PRAMEY2 is expressed specifically in spermatids. B. The antisense RNA of PRAMEY2 is expressed broadly across seminiferous tubules
with a predominant expression in spermatids. Sense and antisense RNAs of PRAMEY2 were detected by DIG-labeled cRNA probes. C. The bovine
PRM1gene was used as positive control, and there is no antisense mRNA of PRM1 detected in the bovine testis [38]. D. Haematoxylin and Eosin (H&E)
staining is shown. Scale: bar = 200 mm. E. Temporal expression pattern of PRAMEY2. The relative expression levels of the PRAMEY2 sense and
antisense transcripts at different ages (X-axis), measured by the strand-specific qPCR, were normalized by the 18S rRNA (Y-axis). The PRAMEY2 sense
RNA is expressed very low in earlier stage, but up-regulated in the 8 months and 2 years-old testis. Similarly, antisense RNA of PRAMEY2 is detected in
the 8 months and 2 years-old testis. Values are means 6 SD of the three biological replicates.
doi:10.1371/journal.pone.0016867.g003
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(Fig.4, Table S2). The rat X-orthologs may be derived from the

trans-duplication of the autosomal paralogs on RNO14, but the

origin of the mouse X-ortholog is unclear (Fig. 4). It is noteworthy

that the PRAME genes appear to (cis-) duplicate largely only on

those chromosomal regions syntenic to HSA1 in Clade II. In

contrast, the orthologs clustered with the PRAME gene on HSA22

tend to be maintained as single-copy genes in the respective

genome, except for the bovine PRAMEY family, which could be a

consequence of abundant reorganization and duplication events

that occurred during the evolution of the Y-chr [28]. We observed

five BACs, each containing two PRAMEY loci (Table S1),

suggesting that the expansion of PRAMEY occurred in tandem

on BTAY and gene duplication was the predominant process

during the expansion. However, we cannot exclude the possibility

that concerted evolution may also have contributed to the

similarity between the PRAMEY genes because of potential Y-Y

gene conversions [29,30]. The mechanism behind the frequent cis-

duplications and limited trans-duplications of the PRAME gene

family in Eutheria may be related to genomic contexts on each

chromosome, including local gene density, repeat density, GC

content and recombination rate [31].

Selective pressures on PRAME(Y)
Positive selection tends to increase the frequency of advanta-

geous mutations; negative selection eliminates the deleterious

mutations resulting in less genetic variation. A previous study

found a large number of positively selected sites in both human

and mouse PRAME orthologs on HSA1 and MMU4 [13]. In the

present study, we found several branches leading to the orthologs

in primates, rodents and artiodactyls in Clade II under positive

selection (Fig. 5), which supports the previous report [13]. The

selection test for the homologs on BTA16 and SSC6 detected 12

sites that were subject to positive selection (Fig. 6B, Table S5 and

S7). Unlike the primate [13], the positively selected sites in

Artiodactyla were clustered in the inner concave region,

suggesting that the functional accommodations of PRAMEs are

lineage-dependent. The protein structure of the bovine PRAME

model (Fig. 6B) is close to the ribonuclease inhibitor (PDB:

1DFJ), which interacts with its substrate through a similar

concave region [32]. Thus, the modifications of PRAME in

Artiodactyla appear to occur along the regions essential for

protein interaction during evolution. Further, the difference in

the median dN/dS ratios between Clade I and Clade II (Fig. 6A)

Figure 4. Phylogenetic tree of the PRAME gene family. Two major PRAME/PRAMEY clades are shown in this tree. The PRAME locus on HSA22
and its syntenic orthologs in other species are clustered with the bovine PRAME and PRAMEY loci in Clade I (branches in red). The orthologs on the X-
chrs of horse and mouse are also clustered with Clade I. The PRAME orthologs syntenic to HSA1 are clustered in Clade II (branches in light blue), which
contains three sub-clusters, IIa (Artiodactyla), IIb (Primates) and IIc (Rodentia). The tree was built based on the ML method and bootstrap values (1000
replicates) are shown above the branches. The branches corresponding to partitions reproduced in less than 80% bootstrap replicates are collapsed.
doi:10.1371/journal.pone.0016867.g004

Expansion of PRAME Gene Family
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suggested differential selection pressures acting on the PRAME

gene family.

Origin of PRAMEY in cattle
Our recent study [29] in cattle has shown that a gene block

containing ZNF280BY and ZNF280AY was transposed from

BTA17 and duplicated on the Y-chr after the transposition. In

the present study, we found a PRAME on BTA17, which is linked

to ZNF280B/ZNF280A within a 60 kb region (74.30–74.36 Mb).

Meanwhile, the same gene order (ZNF280BY -ZNF280AY-

PRAMEY) was observed in two non-overlapping Y-BACs

(GenBank acc. no. AC234853.4 and AC233215.5), leading us to

hypothesize that the PRAMEYs were derived from the transposi-

tion of the block on BTA17. Unlike the human DAZ and feline

TETY1 and FLJ36031 genes, in which the translocation was

involved in a single autosomal gene, the bovine ZNF280B-

ZNF280A-PRAME was transposed to the Y-chr as a block.

However, the established phylogenetic tree of PRAME/PRAMEY

in this study was not clear because the BTA17 locus was nested

within the PRAMEY cluster (Fig. 3), raising an alternative but

Figure 5. Positive selection on the PRAME and PRAMEY orthologs. Two branches in Clade I and 14 branches in Clade II are under positive
selection (red) based on the branch-site model tests (Model A versus Model A null). The branches under positive selection are numbered and the
selected sites along each foreground lineage are detailed in Table S5. The nodes underwent duplication are marked with a yellow circle and
speciation with a blue circle.
doi:10.1371/journal.pone.0016867.g005

Expansion of PRAME Gene Family
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unlikely hypothesis that the PRAME on BTA17 was derived from

the loci on BTAY. If we assume a ‘‘Y-to-autosome’’ transposition

occurred during evolution, we would expect this gene block to be

conserved on the Y-chr of most, if not all, eutherians, but not

conserved on autosomes. However, this block is highly conserved

on autosomes (Fig. S2) instead of the Y, which apparently conflicts

with the alternative hypothesis. Thus, we proposed that the

PRAMEY genes in cattle were derived from the transposition of the

ZNF280B/ZNF280A/PRAME on BTA17 and duplicated sepa-

rately thereafter.

Furthermore, based on the tree topology (Fig. 3), it appears that

PRAMEYs were clustered into two subgroups and could be derived

from two transposition events. However, several observations led

us to postulate that PRAMEYs were derived from a single

transposition of the BTA17 gene block. First, all PRAMEYs are

highly similar (.86%) and amplify tandemly in a narrow genomic

region just like the PRAME expansion within 740 kb on HSA1

[13]. Several Y-BACs contain two copies of PRAMEY, such as

PRAMEY2 and PRAMEY3, which are identical and located in a

BAC with a distance of 22 kb. More importantly, PRAMEY6 and

PRAMEY7, falling into different subgroups, are also located in one

Y-BAC with a distance of 97 kb (Table S1). The narrow distance

and high similarity of each copy indicated that the gene

duplication is the major evolutionary mechanism of PRAMEYs

after transposition. Two separate transpositions occurring within a

narrow genomic region are implausible. Thus, we propose that the

distinct clusters of PRAMEYs are the synergic consequence of a

higher mutation rate on the non-recombining Y-chr [33] and Y-Y

gene conversions [29,30]. The diversity of the duplicated PRAMEY

sequences reflects a response of Y-chr to diverse selection

pressures.

Potential roles of PRAME/PRAMEY
Several lines of evidence have indicated a close relationship

between PRAME and tumorigenesis [12,13,15,16,34]. PRAME

acts as a ligand-dependent co-repressor in the important retinoic

acids receptor (RAR) pathway [12,34]. When PRAME is absent,

the activation of the RAR pathway by retinoids will lead to

proliferation arrest, cell differentiation and apoptosis [12].

Conversely, the RAR pathway is inhibited when PRAME is

abnormally present, resulting in incessant cell proliferation and

tumorigenesis.

In addition to tumor development, PRAME is implicated in germ

cell development. In the mouse, an autosomal Prame-like gene,

Oogenesin, is expressed in oocytes and early cleavage-stage embryos

with a role in oogenesis [13,35], suggesting that the duplicated

PRAME genes on autosomes are related to rapid cell mitosis. The

mouse X-linked Prame-like 3 (Pramel3) is expressed specifically in

spermatogonia and may function in early stage of spermatogenesis

[36]. Since maintaining and amplifying male fertility factors on the

Y-chr may provide selection advantages during evolution [37], the

origin and retention of these Y-linked copies are expected to be

crucial for spermatogenesis. The exclusive expression of PRAMEY

(Fig. 1 and 3) in spermatids provides a strong support for this

hypothesis. We validated that at least eight of the 10 predicted

PRAMEY loci are active at the transcription level, and differentially

expressed in the testis (Fig. 1B). Future research is needed to

investigate the biological meanings behind this differential expres-

sion. It is worth noting that the predominant expression of the

bovine PRAMEY2 antisense transcript in spermatid may be essential

biologically (Fig. 3E). Our previous works demonstrated that the

antisense RNAs of three other Y-related and testis-expressed genes

(ZNF280BY, DDX3Y and CDYL) in cattle all appear to be expressed

in late stage spermatocytes and/or spermatids, indicating that

antisense RNA is crucial in the regulation of bovine spermiogenesis

[29,38,39].

Recent and extensive duplications of PRAME and other CT

genes in human are consistently involved in adaptive functions

including reproduction and immunity [13,40]. PRAME and

neighboring ZNF280BY/ZNF280AY on HSA22 are reportedly

associated with immune responsiveness [41,42]. Thus, the

PRAME/PRAMEY gene family may also participate in auto-

immunity to sperm, which is prevented by the blood-testis barrier

in normal males [43]. Anti-sperm immunity is considered as one of

the causes of infertility in humans [44] and it is thus important to

clarify the immunological roles of PRAME in male-related functions.

In conclusion, we have identified a lineage-specific PRAMEY

gene family in bovine, which was derived from the transposition of

Figure 6. Selective pressures on the PRAME family. A. The dN/dS ratio distributions in different clades. Clade I has the lowest mean and
median dN/dS ratios. The vertical axis represents the dN/dS ratio. The asterisk (*) represents the outliers of the data. B. Map of the positively selected
sites detected in Clade IIa to the PRAME protein model. The selected sites derived from PAML analyses are mapped to the protein homology model.
Eight of the 12 selected sites (red) are clustered in the inner concave region of the protein model. The model was built based on the PRAME gene
(GenBank acc. no. XM_001256020.1) on BTA16. The predicted DNA binding site is highlighted in orange. The LXXLL motifs are highlighted in pink.
doi:10.1371/journal.pone.0016867.g006
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a gene block, ZNF280B-ZNF280A-PRAME, on BTA17, and

duplicated afterwards. The expansion of PRAME genes occurred

not only in Primates and Rodentia, but also in Artiodactyla. The

phylogenetic analysis revealed two distinct clades of PRAME that

evolved under different selection forces. The largely amplified

autosomal PRAMEs are under positive selection, whereas the

PRAMEYs are under stronger functional constraints. The PRA-

MEY gene family is expected to be important in spermatogenesis.

We anticipate that future research on the roles of PRAME and

PRAMEY in the crosstalk between the spermatogenesis and

immunoresponse will facilitate understanding of both spermato-

genesis and tumor developments.

Materials and Methods

RNA extraction and cDNA synthesis
Total RNA was extracted from bovine testicular tissue at 4 days,

20 days, 3–4 months, 8 months, and 2 years of age with TrizolH
reagent (Invitrogen, Carlsbad, CA, USA). Equal amounts of total

RNA from different ages of testes were pooled and treated with

DNase I twice (before and after mRNA purification) (Ambion,

Austin, Texas, USA). Messenger RNAs were purified from the

pooled total RNA (Oligotex; Qiagen, Valencia, CA, USA). First

strand cDNAs were synthesized with random hexamers and oligo-

T primers using SuperscriptIII reverse transcriptase (Invitrogen,

Carlsbad, CA, USA); blunt-ended double-stranded cDNAs were

generated as described [45]. Adaptors [phosphorylated oligonu-

cleotides 1 (59-CTGAGCGGAATTCGTGAGACC-39) and 2 (59-

CCAGAGTGCTTAAGGCGAGTCAA-39)] were attached to

cDNAs using T4 polynucleotide kinase (NEB, Ipswich, MA,

USA)[46]. Adaptor-ligated cDNA products were used for direct

testis cDNA selection.

Direct testis cDNA selection and sequencing
The entire BTAY DNA was isolated by a micro-dissection

approach [47]. The DNA fragments were PCR amplified and

labeled with biotin-16-dUTP (Roche, Indianapolis, IN, USA) by

nick translation (Roche, Indianapolis, IN, USA). Direct testis

cDNA selection was detailed in Yang et al. (2011) [29] and Del

Mastro and Lovett (1997) [46]. The selected cDNAs were PCR-

amplified using the adaptor oligo 1 as the primer. Selection

efficiency was assessed by qPCR with Y-linked genes, SRY and

DDX3Y, as positive controls and b-Actin and CDYL as negative

controls. PCR products were cloned using a TOPO-TA cloning

kit (Invitrogen, Carlsbad, CA, USA). Randomly selected clones

(n = 2208) were grown overnight at 37uC in 2 ml, 96-deep-well

culture plates. All clones were dot-blotted on nylon transfer

membranes and hybridized with 32P-dCTP labeled BTAY

fragments and PCR fragments of four genes (HSFY, UBE2D3,

RPL23A, and ZNF280B) that were highly redundant in our test

sequencing result. After dot-blot and elimination of the most likely

repetitive clones, 753 clones were selected for sequencing. Plasmid

DNA was purified by alkaline lysis (Qiagen, Valencia, CA, USA),

and sequenced on an ABI-3730XL DNA analyzer at the

Pennsylvania State University Genomics Core Facility.

RT-PCR
Total RNAs were extracted from nine different tissues (testis,

liver, kidney, spleen, cerebellum, adrenal gland, longissimus

muscle, lymph node, and spinal cord) of a 2-years old bull and

ovarian tissue from a mature cow, then treated with DNase I

(Ambion, Austin, TX, USA) and reverse transcribed using

SuperscriptTM III First-Strand Synthesis System (Invitrogen,

Carlsbad, CA, USA). RT-PCR was performed in 20 ml containing

10 ng cDNA, 200 mM dNTPs, 1.5 mM MgCl2, 2.5 mM of each

primer, 1 unit Taq DNA polymerase (Bioline, Taunton, MA,

USA). The PCR conditions were: 94uC for 7 min followed by 35

cycles each of 95uC for 40 sec, 55uC–65uC for 40 sec, 72uC for

40 sec, with a final extension at 72uC for 7 min. Products were

resolved on 1.5% agarose gels with ethidium bromide in 16TAE

buffer.

RACE
Total RNAs from bovine testis (5–11 days, 3 months, 8 months

and 2 years of age) were used for 59 and 39 rapid amplification of

cDNA ends (RACE). The RACE experiment was conducted

essentially as described in Yang et al. [29].

Short-read sequencing for locus-specific expression
The selected cDNAs were sequenced at the National Center for

Genome Resources using an Illumina GAIIx. Library construction

and sequence methods were described previously [29]. A total of

6,710,574 high-quality paired end reads of 2636 bp were

generated. These reads were aligned to nine unique PRAMEY

sequences identified through BlastClust [48] with 100% similarity

and 100% coverage as the criteria. For aligning the short-reads,

the software GSNAP [49] was used as part of the Alpheus pipeline

[50]. Two mismatches were allowed during the alignment step and

only the reads that hit the reference uniquely were considered for

counting towards locus-specific expression. Since the reads were

paired end, only the reads where both ends hit the same reference

were considered. These counts were further sub-grouped under

two categories: (A) both reads are unique hits with at least one of

them being exact match and (B) both reads are unique hits & both

are exact matches. The read counts in these two categories were

considered a measure of expression pertaining to the specific locus.

Testis tissue section in situ hybridization (ISH)
The bovine testis was fixed [51], embedded in paraffin and

sectioned (4 mm). Sense and antisense RNA probes of PRAMEY

were selected (Table S4) using G-PROBE (Genetyx Co., Tokyo,

Japan) and the 120-bp probes were subjected to in vitro

transcription to produce digoxigenin (DIG)-labeled cRNA with

the AmpliScribe T7-Flash Transcription Kit (Epicentre, Madison,

WI, USA). Uniform labeling of DIG-labeling was confirmed using

the NBT/BCIP detection system (Roche Diagnostics, Indianap-

olis, IN, USA). ISH was performed as described previously

[38,39]. Serial tissue sections were used for sense and antisense

probe hybridizations. The spermatid-specific gene Protamine 1

(PRM1) served as the positive control, while LNE120 staining was

used as the negative control.

Strand-specific qPCR
First strand sense and antisense cDNAs were developed with

strand-specific reverse transcript primers (Table S3) (Super-

ScriptTM III First-Strand Synthesis System, Invitrogen, Carlsbad,

CA, USA) from 5–11 day, 3 month, 8 month and .24-month

bovine testis total RNA and used as templates for qPCR with gene

specific primer sets (Table S3). All qPCRs were performed in the

Power SYBR Green PCR Master Mix (Applied Biosystems, CA,

USA) and Applied Biosystems 7500 real-time PCR system

following the manufacturer’s instructions. Amplification conditions

were 2 min at 50uC; 10 min at 95uC; followed by 40 cycles of

20 sec at 95uC, 20 sec at 57uC and 30 sec at 72uC. Cycle

threshold acquisition used default parameters with CT values for

PRAMEY sense/antisense RNAs normalized to 18S rRNA in each

sample. RNA samples without a reverse transcript served as the
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negative control. Each qPCR was conducted in duplicate on three

independent RNA samples (biological replicates). Significance was

evaluated by one-way ANOVA using SAS (SAS Institute Inc., NC,

USA).

Sequence alignment, gene prediction and phylogenetic
tree construction

For the identification of bovine PRAME paralogs, we used the

two identified transcripts (GenBank acc. no. GU144301 and

GU144302) to blast against ,600 bovine Y-BACs that are

available in GenBank to retrieve all potential paralogous regions

on BTAY. The redundant regions were removed by detecting the

overlaps between Y-BACs using purpose-designed scripts. The

paralogs with inferred splicing sites/signals and comparable

coding regions were considered as active PRAMEY genes; in

contrast, the others were pseudogenes due to either frameshift

mutations or premature stop codons.

Using the human PRAME sequences on HSA22 (GenBank acc.

no. NM_206956.1) and HSA1 (GenBank acc. no. NM_023013.1)

to blast [48] against the nucleotide databases in NCBI [18], we

were able to retrieve the annotated PRAME homologs in humans,

chimpanzees, orangutans, horses, cats and cattle (e-value ,1E-50

and coverage .40%, Table S1 and S2). For the swine orthologs,

the blast search was against the swine HTGS database as the swine

genome sequence was not well annotated. The retrieved porcine

BAC sequences were annotated for PRAME in this study using

Splign [19] and the getorf program in EMBOSS [52]. The

redundant porcine paralogs were removed. The identified

homologs were used to construct the phylogenetic trees using the

ML, BI and NJ methods (substitution model: TrNef + I + G)

implemented in the TOPALi program [53]. The alignment gaps

were trimmed using Gblocks [54,55]. The branches with a

bootstrap value ,80% were collapsed (Fig. 4). We further

investigated the duplication and speciation events by reconciling

the PRAME gene tree with a species tree obtained from NCBI

taxonomy database [56] using Notung 2.6 [22] (Fig. 5). No

PRAME ortholog was identified from the lineages beyond

Eutheria, including opossum (6.8x genome coverage), platypus

(6x), chicken (6.6x), frog (7.5x) and zebrafish (6.5x).

Lineage- and site-specific selection test
We conducted a pairwise dN and dS analysis (Dnasp version 5.0)

[57] for the orthologs located on the same chromosome across

species studied. The sequences with a pairwise dS value of ,0.02

were removed, and the resulted 78 sequences were used for lineage-

specific positive selection test [23] (Table S1). The median dN/dS

ratio was calculated for different clades and compared by the Mann-

Whitney test [58]. The 78 sequences were aligned by ClustalW [59]

and the gaps were trimmed by Gblocks. The aligned segments

included 912 positions of the original 2677 positions. We used the

codeml program implemented in PAML package for the selection

test. A simple model assuming a single dN/dS ratio for branches

was compared with another model assuming free dN/dS ratio for all

the branches (branch models). The likelihood ratio test (LRT)

indicates that the dN/dS ratios are significantly varied among

lineages (p,0.001, 2Dl~309:20wX 2
0:001,df ~152~211:62). We con-

ducted LRT for each branch using the branch-site models, model A

null and model A [24]. The sites under positive selection detected by

Bayes Empirical Bayes (BEB) analyses were retrieved when the

LRTs were significant.

For the site-specific positive selection test [23,60], we focused on

investigating the Clade I and Clade IIa, which were newly

identified in this study. We established two datasets, one with the

12 sequences in Clade I and the other with the 12 sequences in

Clade IIa (Table S1). The Clade I dataset included 1290 aligned

positions of the original 1677 positions; The Clade IIa dataset

included 1065 bases of the original 1902 positions. PAML [23]

and HyPhy [60] packages were used to detect the selection. We

compared four different model pairs, M0 (one-ratio)/M3 (dis-

crete), M1a (nearly neutral)/M2a (positive selection), M7 (beta)/

M8 (beta and v.1), and M8a (beta and vs = 1)/M8 in PAML.

Three methods, SLAC (Single Likelihood Ancestor Counting),

FEL (Fixed Effects Likelihood) and REL (Random Effects

Likelihood), implemented in HyPhy (Hypothesis Testing Using

Phylogenies) package [60] were also used to detect the positive

selection sites (Table S7). The protein model of the PRAME gene

on BTA16 (GenBank acc. no. XM_001256020) was built by I-

TASSER [61].

Supporting Information

Figure S1 Motif alignment between the bovine PRAMEY
and the human PRAME on HSA22. The aliphatic sites of

LXXLL motifs observed on the human PRAME on HSA22

[16,12] are conserved in the bovine PRAME(Y). These motif

modifications are restricted to the aliphatic group, including the

leucine to valine in the third and seventh motifs and leucine to

isoleucine in the fourth motif. An exception is that the first

leucine in the fifth motif was modified to the non-aliphatic

phenylalanine. The colors in the alignment indicated different

types of amino acids (White: Aliphatic sites; Red: Acidic sites;

Cyan: Basic sites; Purple: Aromatic sites; Yellow: Cystenine).

* The aliphatic site positions were annotated based on the

PRAME on HSA22.

(TIF)

Figure S2 Alignment of the ZNF280B/ZNF280A/PRAME
gene block across 17 species. The ZNF280B/ZNF280A/

PRAME gene blocks are conserved in the syntenic regions in most

mammals except the rodents where the block was rearranged in

two different chromosomes (MMU4/10 and RNO5/20). This plot

was generated based on the HSA22 assembly (hg19, Feb. 2009).

The boxes represent ungapped alignments; the lines represent

gaps. This plot was generated using blastz alignment from the

UCSC genome browser (http://genome.ucsc.edu/).

(TIF)

Table S1 A list of BACs containing homologous PRA-
MEY.

(DOC)

Table S2 PRAME/PRAMEY homologs in the phyloge-
netic tree.

(DOC)

Table S3 Primers for (RT-) PCR and strand-specific
qRT-PCR.

(DOC)

Table S4 Probes for in situ hybridization.

(DOC)

Table S5 Positively selected sites detected from branch-
site model tests.

(DOC)

Table S6 Site-specific selection tests on the homologs in
Clade I and Clade IIa.

(DOC)
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Table S7 The integrative analysis of positively selected
sites in Clade IIa.
(DOC)
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21. Durand D, Halldórsson BV, Vernot B (2006) A hybrid micro-macroevolutionary

approach to gene tree reconstruction. J. Comput. Biol 13: 320–335.

22. Vernot B, Stolzer M, Goldman A, Durand D (2008) Reconciliation with non-
binary species trees. J. Comput. Biol 15: 981–1006.

23. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol.
Biol. Evol 24: 1586–1591.

24. Zhang J, Nielsen R, Yang Z (2005) Evaluation of an Improved Branch-Site

Likelihood Method for Detecting Positive Selection at the Molecular Level.
Molecular Biology and Evolution 22: 2472–2479.

25. Sawyer S (1999) GENECONV: A computer package for the statistical detection
of gene conversion. Distributed by the author, Department of Mathematics,

Washington University in St. Louis. Available at: http://www.math.wustl.edu/
,sawyer.

26. Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, et al. (2009)

Lineage-specific biology revealed by a finished genome assembly of the mouse.

PLoS Biol 7: e1000112.

27. Long M, Betran E, Thornton K, Wang W (2003) The origin of new genes:
glimpses from the young and old. Nat Rev Genet 4: 865–875.

28. Hughes JF, Skaletsky H, Pyntikova T, Graves TA, van Daalen SKM, et al.
(2010) Chimpanzee and human Y chromosomes are remarkably divergent in

structure and gene content. Nature Available at: http://www.ncbi.nlm.nih.gov/
pubmed/20072128. Accessed 26 January 2010.

29. Yang Y, Chang T, Yasue H, Bharti AK, Retzel EF, et al. (2011) ZNF280BY and
ZNF280AY: autosome derived Y-chromosome gene families in Bovidae. BMC

Genomics 12: 13.

30. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, et al.

(2003) The male-specific region of the human Y chromosome is a mosaic of
discrete sequence classes. Nature 423: 825–37.

31. Zhang L, Lu HHS, Chung W, Yang J, Li W (2005) Patterns of Segmental
Duplication in the Human Genome. Mol Biol Evol 22: 135–141.

32. Kobe B, Deisenhofer J (1995) A structural basis of the interactions between
leucine-rich repeats and protein ligands. Nature 374: 183–186.

33. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, et al. (2005)

Genome sequence, comparative analysis and haplotype structure of the domestic

dog. Nature 438: 803–819.

34. Epping MT, Bernards R (2006) A causal role for the human tumor antigen
preferentially expressed antigen of melanoma in cancer. Cancer Res 66:

10639–10642.

35. Minami N, Aizawa A, Ihara R, Miyamoto M, Ohashi A, et al. (2003) Oogenesin

is a novel mouse protein expressed in oocytes and early cleavage-stage embryos.
Biol. Reprod 69: 1736–1742.

36. Wang PJ, McCarrey JR, Yang F, Page DC (2001) An abundance of X-linked
genes expressed in spermatogonia. Nat. Genet 27: 422–426.

37. Lahn BT, Page DC (1997) Functional coherence of the human Y chromosome.
Science 278: 675–680.

38. Wang A, Yasue H, Li L, Takashima M, de León FAP, et al. (2008) Molecular

characterization of the bovine chromodomain Y-like genes. Anim. Genet 39:

207–216.

39. Liu W-S, Wang A, Yang Y, Chang T, Landrito E, et al. (2009) Molecular
characterization of the DDX3Y gene and its homologs in cattle. Cytogenet.

Genome Res 126: 318–328.

40. Emes RD, Goodstadt L, Winter EE, Ponting CP (2003) Comparison of the

genomes of human and mouse lays the foundation of genome zoology. Hum.
Mol. Genet. 12: 701–709.

41. Isahakia MA (1988) Characterization of baboon testicular antigens using
monoclonal anti-sperm antibodies. Biol. Reprod 39: 889–899.

42. Gunn SR, Bolla AR, Barron LL, Gorre ME, Mohammed MS, et al. (2009)
Array CGH analysis of chronic lymphocytic leukemia reveals frequent cryptic

monoallelic and biallelic deletions of chromosome 22q11 that include the
PRAME gene. Leuk. Res 33: 1276–1281.

43. Bronson RA (1999) Antisperm antibodies: a critical evaluation and clinical
guidelines. J. Reprod. Immunol 45: 159–183.

44. Lu J, Huang Y, Lu N (2008) Antisperm immunity and infertility. Expert Review
of Clinical Immunology 4: 113–126.

45. Sambrook J, Russell D (2001) Molecular Cloning. Cold Spring Harbor

Laboratory Press.

46. Del Mastro RG, Lovett M (1997) Isolation of coding sequences from genomic

regions using direct selection. Methods Mol. Biol 68: 183–199.

47. Liu W-S, Mariani P, Beattie CW, Alexander LJ, Ponce De León FA (2002) A

radiation hybrid map for the bovine Y Chromosome. Mamm. Genome 13:
320–326.
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