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Constitutive activity of the immune surveillance system detects and kills cancerous cells,
although many cancers have developed strategies to avoid detection and to resist their
destruction. Cancer immunotherapy entails the manipulation of components of the
endogenous immune system as targeted approaches to control and destroy cancer
cells. Since one of the major limitations for the antitumor activity of immune cells is the
immunosuppressive tumor microenvironment (TME), boosting the immune system to
overcome the inhibition provided by the TME is a critical component of oncotherapeutics.
In this article, we discuss the main effects of the TME on the metabolism and function of
immune cells, and review emerging strategies to potentiate immune cell metabolism to
promote antitumor effects either as monotherapeutics or in combination with conventional
chemotherapy to optimize cancer management.
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INTRODUCTION

Cancer is a highly heterogeneous disease that constitutes a major worldwide health problem. Cancer
cell presents the following main hallmarks: self-sufficiency in growth signals, insensitivity to anti-
growth signals, evading apoptosis, limitless replicative potential, sustained angiogenesis,
reprogramming of energy metabolism, evading immune destruction and tissue invasion and
metastasis (1). An additional and important characteristic of cancer cells is that they recruit a
repertoire of healthy cells that contribute to tumorigenesis, such as fibroblasts (the predominant cell
type), pericytes, endothelial cells, mesenchymal stem cells, macrophages and lymphocytes (2). This
review deals with two of those important hallmarks: reprogramming of energy metabolism and
evasion of immune destruction.

Quiescent cells in the human body typically display a catabolic metabolism that mainly relies on
oxidative phosphorylation, utilizing glucose, fatty acids or amino acids as substrates. In contrast,
proliferating cells, such as rapidly dividing immune cells, switch to an anabolic metabolism, rely on
glycolysis for energy generation and utilize large amounts of glucose and glutamine as building
blocks for lipids, nucleic acids and amino acids for proliferation. Immunometabolism is an
emerging concept that studies metabolic changes that occur in immune cells to support their
functions. These changes are critical for the appropriate immune response, as they control
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downstream transcriptional and posttranscriptional events, and
their dysregulation may compromise growth, proliferation and
effector functions. As a general overview, in an inflammatory
context immune cells will upregulate aerobic glycolysis (such is
the case in B cells, effector Th1 and Th17 T cells, M1
macrophages, dendritic cells and Natural Killer cells), while a
metabolism relying more on the oxidative phosphorylation
usually supports an anti-inflammatory phenotype (as is the
case in M2 macrophages and regulatory T (Treg) cells).

Cancer cells also undergo changes in metabolism that are
required to support their bioenergetic needs and biosynthesis
requirements for fast growth and invasiveness, and in fact,
metabolic reprogramming is now considered one of the
hallmarks of the cancer cell (3). Metabolic changes in pro-
inflammatory immune and cancer cells mirror each other,
which leads to competition for nutrients and oxygen in the
tumor microenvironment (TME). In addition, cancer cells and
other cells embedded in the tumor secrete metabolites and
inhibitory cytokines that interfere with the targeting of
immune cells to eliminate tumor cells. These characteristics
represent the way tumoral cells have evolved to create a
favorable environment for their growth and development while
evading and suppressing the immune response. The aim of
immunotherapy is to modulate the host immune system to
attack cancer cells with tools such as immune checkpoint
blockade, T cell therapy or cancer vaccines, and it has been
shown to be effective (4). The alteration of metabolic pathways
involved in cancer-induced immune failure seem to be a suitable
target to enhance existing immunotherapies.
OVERVIEW OF CELLULAR METABOLISM
AND CANCER CELL METABOLISM

Cells utilize a number of substrates, including glucose, fatty acids
and amino acids (such as glutamine), to obtain energy in the
form of adenosine triphosphate (ATP), precursors for
biosynthesis and redox equivalents. A key pathway is
glycolysis, which consists on the catabolism of glucose to
generate pyruvate and 2 molecules of ATP. Pyruvate can in
turn be transformed into lactate (anaerobic glycolysis) or
preferentially (under normoxic conditions) transferred to the
mitochondria where it is transformed into acetyl coenzyme A
(acetyl-CoA), which is then metabolized by the tricarboxylic acid
(TCA) cycle to produce ATP, CO2 and reduced nicotinamide
adenine dinucleotide (NADH). NADH is oxidized by the
electron transport chain (ETC) of the inner mitochondrial
membrane, which transfers its electrons sequentially via redox
reactions to several respiratory complexes (I, III and IV), and
finally to O2 as final acceptor. Electron transport is an exergonic
process and is coupled to the pumping of protons (H+) by those
complexes to the intermembrane space, generating an
electrochemical gradient that is used by the ATP synthase to
generate ATP, a process called oxidative phosphorylation
(OxPhos). Cells can also burn fatty acids in the mitochondria
in a process called fatty acid b-oxidation (FAO). This process
Frontiers in Immunology | www.frontiersin.org 2
yields large amounts of acetyl-CoA and redox equivalents that
can be oxidized by the ETC.

The main metabolic differences between normal cells and
cancer cells are described in Figure 1. Cancer cells display a
metabolic switch that supports their rapid proliferation. In these
cells, even in the presence of oxygen, pyruvate is not used by the
TCA cycle, but instead converted to lactate by lactate
dehydrogenase A (LDHA). This phenomenon is called
Warburg effect or aerobic glycolysis (5). The excess lactate
produced by the proliferating cancer cells is exported by
monocarboxylate transporters (MCTs) and increases the
acidity of the TME. Cancer cells also divert significant
amounts of glycolytic intermediates into the pentose phosphate
pathway (PPP) to generate NADPH (used for reductive
anabolism and to reduce the disulfide form of glutathione,
GSSG, to the sulfhydryl form, GSH, which is an antioxidant)
and pentoses, including ribose-5-phosphate (for nucleic acid
synthesis). Glutamine is also a major nutrient in cancer cells,
which in fact display glutamine addiction, and is utilized as a
source of nitrogen for biosynthetic pathways, including the
synthesis of non-essential amino acids and nucleotides (by
participating in nitrogen-donating reactions), and to replenish
the TCA cycle (anaplerosis) which is used to synthesize large
amounts of lipids from citrate (6). Glutamine is initially
converted to glutamate by the enzyme Glutaminase, and then
to alpha-ketoglutarate, by Glutamate Dehydrogenase (GDH),
which fuels the TCA cycle. Cancer cells also display a lipogenic
phenotype, showing increased de novo synthesis of fatty acids.
Remarkably, the highly active metabolic activity of the tumor cell
depletes nutrients and O2 in the TME and renders it hostile to
immune cells.

Cellular metabolism has been proved a key factor to regulate
cellular responses. In the field of immune cells, immunometabolism
has become a new target to control and modulate immune
responses, with special relevance in the fields of immunotherapy
and cancer.
OVERVIEW OF IMMUNOMETABOLISM

Most resting immune cells are relatively metabolically inactive.
The concept of immunometabolism illustrates the changes in
metabolism and special needs that immune cells undergo to be
able to fulfill their specific functions. Immunometabolism has
been most extensively studied in the modulation of macrophage
polarization and of CD4+ T cell activation. The metabolic
changes that occur in macrophages, CD4+ T cells and Natural
Killer (NK) cells after activation are schematized in Figure 2. The
characterization of immunometabolism is being extended to
other immune cells such as dendritic cells (7, 8), neutrophils,
myeloid-derived suppressor cells (MDSC), innate lymphoid cells
(ILC) (9), B cells (10) and plasma cells (11).

Immunometabolism of Macrophages
Macrophages are a multifunctional type of leukocyte that plays a
role in innate immunity, but also collaborate in the initiation of
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adaptive immunity, as they are antigen presenting cells (APCs)
to helper T cells. They are terminally differentiated cells and
perform functions related to tissue homeostasis, repair,
phagocytosis and development.

There are distinct varieties of macrophages in several tissues,
including Kupffer cells, alveolar macrophages, osteoclasts,
peritoneal macrophages, microglia, and others. Macrophages
either derive from circulating monocytes or are established in
tissues before birth and then maintained during adult life
independently of monocytes (12).

After activation using in vitro stimuli, macrophages can be
broadly divided into two subgroups: M1, classically activated or
proinflammatory macrophages, generated in vitro by incubation
with bacterial-derived products such as lipopolysaccharide (LPS)
that bind to Toll-like receptors (TLRs), and signals associated
with infection such as interferon g (IFN-g); and M2, alternatively
activated or reparative macrophages, generated in vitro by
incubation with interleukin (IL)-4, IL-10 or IL-13. It is
probable that macrophage polarity in vivo is much more
complex and cells display a spectrum of functional phenotypes
between M1 and M2 subtypes.

In solid tumors there is a population of macrophages called
tumor-associated macrophages (TAMs) that typically resembles
M2 macrophages and exert immunosuppressive and pro-
tumorigenic functions (13), including stimulation of
Frontiers in Immunology | www.frontiersin.org 3
angiogenesis, which contributes to nutritional support of the
tumor, and remodeling of the extracellular matrix. TAMs
constitute the largest population of myeloid cells that infiltrate
solid tumors.

M1 Macrophages
M1 macrophage secrete proinflammatory cytokines such as IL-
1b, tumor necrosis factor (TNF-a), IL-6 or IL-12 that initiate the
immune response, perform phagocytosis of microbes and
generate reactive oxygen species (ROS), and metabolize
arginine using inducible nitric oxide synthase (iNOS) to
generate nitric oxide (NO).

Early Metabolic Changes in M1 Activation
During early activation of the M1 phenotype, the Toll-like
receptor 4 (TLR4) agonist LPS induces a rapid induction in
both glycolysis and mitochondrial oxygen consumption, as well
as an increases in glucose uptake and the levels of TCA cycle
metabolic intermediates (14). Metabolites typical of M1
macrophages such as lactate, itaconate or succinate do not
reach high levels until after 24 hours. Glucose-derived pyruvate
is taken up by the mitochondria and oxidized. Increased citrate is
exported to the cytosol through the mitochondrial citrate carrier
(CIC) and converted to acetyl-CoA by the ATP-citrate lyase
enzyme (ACLY), which is then utilized not only for fatty acid and
A B

FIGURE 1 | Metabolic differences between normal cells (A) and cancer cells (B). Normal/quiescent cells in aerobiosis metabolize glucose mainly to pyruvate, which
is then oxidized in the mitochondria to CO2 using the TCA cycle and OxPhos for the generation of ATP. ATP synthesis takes places preferentially in the mitochondria.
In anaerobiosis, pyruvate is metabolized to lactate instead. Cancer cells in aerobiosis or anaerobiosis convert most glucose to lactate (which is exported to the TME),
while diverting some glycolytic intermediates to the PPP, which generates NADPH and pentoses for the synthesis of nucleic acids. ATP synthesis is largely cytosolic.
Glutaminolysis generates glutamate, which is converted to a-ketoglutarate, a major substrate to refuel the TCA cycle. The TCA cycle intermediate citrate is exported
to the cytosol, where it is converted to acetyl-CoA, used for the synthesis of lipids.
May 2021 | Volume 12 | Article 657293
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cholesterol synthesis, but also for acetylation reactions. Thus,
LPS stimulates glucose-dependent histone acetylation and pro-
inflammatory gene expression at early time points after
M1 activation.

Late Changes in M1 Activation
The late metabolism of the M1 cell is mainly glycolytic, and they
also display increased fatty acid synthesis and increased flux
though the PPP, involved in the synthesis of NADPH which is in
turn required for fatty acid synthesis, ROS generation (by
NADPH oxidase), and NO synthesis. The TCA cycle becomes
incomplete, as two breaks occur (15), which leads to the
accumulation of specific metabolites: the first break is caused
by a decrease in the expression of isocitrate dehydrogenase
(IDH), and leads to citrate accumulation, which is required for
lipids, prostaglandins and itaconate synthesis. Itaconic acid is
formed from cis-aconitate by the inducible Immune-Responsive
Gene 1 (IRG1), and is an anti-microbial compound. Because of
the first brake in the cycle, alpha-ketoglutarate in M1
Frontiers in Immunology | www.frontiersin.org 4
macrophages is derived from glutamine rather than from
glucose. The second break occurs at succinate dehydrogenase,
with accumulation of succinate, required for hypoxia-inducible
factor 1 alpha (HIF-1a) stabilization, a key transcription factor
for pro-inflammatory genes such as IL-1b (16). Because of the
second break in the cycle, malate in M1 cells is thus generated via
the arginosuccinate shunt. The increased generation of ATP by
glycolysis in the cytosol of M1 cells decreases significantly the
requirement for mitochondrial OxPhos to supply ATP to the cell.
As a consequence, M1 cells do not synthesize significant
amounts of ATP in the mitochondria, and perform instead
reverse electron transport (RET), which is the flow of electrons
from ubiquinol back to respiratory complex I for the generation
of ROS in the mitochondrial matrix (17, 18). These electrons
typically come from succinate oxidation by respiratory complex
II, succinate dehydrogenase.

Other late metabolic changes in M1 cells include: increased
expression of acetyl-CoA carboxylase (ACC), which leads to
increased levels of malonyl-Coenzyme A in the cytosol and
FIGURE 2 | Overview of metabolic changes in some immune cell types upon activation. Macrophages, CD4+ T cells and NK cells are shown. Resting or naïve cells
typically display a low metabolic rate (low glycolysis, low OxPhos). M0 macrophages differentiate into M1 and M2 macrophages, naïve CD4+ T cells differentiate into
Teffs or Tregs, and resting NK cells become activated. Each cell subtype displays different metabolic requirements and repertoire of cytokines to function.
May 2021 | Volume 12 | Article 657293
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increased protein malonylation (19). One of the substrates of this
modification is the glycolytic enzyme glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), which converts glyceraldehyde 3-
phosphate into 1,3-bisphosphoglycerate. GAPDH binds to the
3’ UTR region of the mRNA of TNF-a and blocks its translation.
After its malonylation, GAPDH detaches from the mRNA and
allows the synthesis of TNF-a protein. M1 differentiation also
leads to an increase in succinylation of proteins (16), possibly
because of elevated succinate levels, although its consequences
have not been explored in detail.

M1 polarization is irreversible (20), as subsequent incubation
of M1 cells with IL-4 or IL-10 does not turn the cells into M2.
The main reason for this is that the mitochondrial respiratory
chain is permanently damaged by NO after M1 differentiation,
and accordingly, inducible NO synthase (iNOS) inhibition allows
M1 cells to repolarize to M2.

Regulation of Cytokine Production by Glycolysis
In macrophages and monocytes glucose availability controls the
expression of proinflammatory cytokines by several mechanisms.
The first involves regulation of mRNA translation: in situations
of low glycolysis the glycolytic enzyme GAPDH binds, as
explained above, to the TNF-a mRNAs and blocks its
translation (21). However, during active glycolysis GAPDH
detaches from the mRNA which allows high production of the
cytokine. A second mechanisms deal with the transcription of
the mRNA for IL-1b. After activation of the macrophage,
glycolysis drives an increase in the levels of succinate (derived
from glutamine) (16), which in turn control the stability of HIF-
1a. Under basal conditions, HIF-1a is hydroxylated by prolyl-
hydroxylases (PDHs) and targeted for degradation by the
proteasome. However, under limited oxygen or under high
ROS levels, the activity of PHD is impaired and this leads to
HIF-1a accumulation. The model that emerges from these
studies is that glycolytic ATP drives M1 macrophage activation
by providing an increase in mitochondrial membrane potential
that is absolutely required for succinate oxidation-dependent
RET to occur, leading to a large increase in mitochondrial ROS
levels that facilitate HIF-1a accumulation, which binds directly
to the promoter of the IL1B gene and favors expression of pro-
inflammatory genes (17). This process reciprocally decreases
anti-inflammatory cytokines, such as IL-10.

M2 Macrophages
Alternatively-activated macrophages do not secrete pro-
inflammatory cytokines and are involved in tissue recovery,
remodeling of the extracellular matrix or immunosupression.
Another signature of these cells is highly N-glycosylated lectin
and mannose receptors and thus there is an increase in the
metabolism of nucleotide sugars such as uridine diphosphate N-
acetylglucosamine (UDP-GlcNAc), UDP-glucose, and UDP-
glucuronate (15). They are also characterized by utilization of
arginine via Arginase 1 (Arg1), which catalyzes its conversion to
L-ornithine, and by the secretion of TFG-b and IL-10.

In contrast to M1 cells, M2 cells use OxPhos (including FAO)
to support ATP synthesis. Strikingly, high glycolysis is also
required for M2 polarization, since its blockade blunts
Frontiers in Immunology | www.frontiersin.org 5
expression of M2 markers such as Arg1 or resistin-like
molecule alpha (Retnla) (22, 23), which suggests that glycolysis
probably provides pyruvate for the TCA cycle, and recent studies
suggest that FAO is largely not essential for M2 polarization (23,
24). Knockdown of pyruvate dehydrogenase kinase 1 (PDK1), an
enzyme that drives inhibitory phosphorylation on the pyruvate
dehydrogenase complex, increases conversion of glucose-derived
pyruvate to acetyl-CoA and enhances M2 differentiation while
preventing M1 differentiation (23).

IL-4 addition to macrophages increased glucose uptake and
oxygen consumption, and this depended on Akt and mTOR1,
which regulate ACLY phosphorylation to control cytosolic/nuclear
acetyl-CoA levels for acetylation of histones on some M2 genes
(22). IL-4 also induces phosphorylation and activation of the
transcription factor signal transducer and activator of
transcription 6 (STAT6), which induces expression of protein
peroxisome proliferator-activated receptor gamma (PPARg)
coactivator-1b (PGC-1b), which in turn stimulates mitochondrial
biogenesis and OxPhos (25). PGC-1b also coactivates STAT6-
responsive genes, such as Arg1. Interestingly, overexpression of
PGC-1b strongly stimulates FAO and potentiates M2
differentiation without altering STAT6 phosphorylation, while it
prevents M1 differentiation (25). Similarly to PGC-1b, PPARg is
required for M2 activation, mitochondrial biogenesis and
stimulation of fatty acid metabolism as well (26).

Immunometabolism of T Cells
T cells are leukocytes involved in adaptive immunity. T cells are
largely divided into two subtypes: T helper (Th) cells, also known
as CD4+ cells, that participate in the activation of other immune
cell types (B cells, cytotoxic cells and macrophages) by the release
of cytokines; and T cytotoxic (Tc) cells, also known as CD8+ cells
or cytotoxic T lymphocytes (CTLs), that kill cancer and virus-
infected cells.

CD4+ T Cells
Naïve CD4+ T cells have a very low metabolic rate that depends
mainly on OxPhos using pyruvate and FAO. Stimulated CD4+ T
cells can differentiate into effector T cells (Teff), including T
helper 1 (Th1), T helper 2 (Th2) and T helper 17 (Th17) subsets,
which switch to an anabolic state that is orchestrated by mTOR,
and inducible regulatory T cells (Treg), which do not depend on
mTOR, but on 5’ adenosine monophosphate-activated protein
kinase (AMPK). Th1 cells are involved in Type 1 or cell-
mediated immunity, which includes neutrophils, natural killer
cells, CD8+ cytotoxic T cells and classically activated
macrophages (M1), and responds to intracellular pathogens,
bacteria and viruses (27). Th2 cells are involved in Type 2
immunity, which includes eosinophils, mast cells, basophils
and alternatively activated macrophages (M2), and typically
regulates tissue repair and regeneration, but also responds to
extracellular parasites and helminths (28). Th17 are involved in
Type 3 immunity, which responds to extracellular bacteria and
fungi, and are characterized by the capacity to release IL-17 (and
IL-22). Other minor subsets of T helper cells include T helper 9
(Th9) cells, which secrete IL-9. Type 1 and 3 immunity largely
mediate autoimmune diseases, with Th17 cells playing an
May 2021 | Volume 12 | Article 657293
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important role in the pathogenesis of diseases such as psoriasis,
rheumatoid arthritis or asthma (27), whereas type 2 immunity
can cause allergic diseases. All 3 types of immune responses
display substantial cross−regulation.

Effector T Cells
Upon in vitro activation of the T cell receptor (TCR) with anti-
CD3 and -CD28 antibodies, there is a dramatic increase in
glycolysis and OxPhos in order to support their proliferation
and biosynthesis, and the oxygen consumption/glycolysis ratio
greatly decreases. Fatty acid and pyruvate oxidation decrease
compared to resting T cells, while the increase in OxPhos is likely
fueled by glutamine oxidation in the TCA cycle (29).
Interestingly, OxPhos, but not glycolysis, is required during the
initial activation of the cell that is accompanied by cell growth
but not proliferation (29, 30). However, once the T cell has been
activated for at least 48 hours, either glycolysis or OxPhos are
enough to sustain survival or proliferation (30), while glycolysis
remains essential for some effector functions (see below).

The increase in glycolysis is mainly driven by an increase in the
glucose transporter GLUT1 and the glycolytic enzymes
hexokinase 2 (HK2), pyruvate kinase M2 (PKM2) and LDHA
(29), while the increase in OxPhos comes from a large activation of
mitochondrial biogenesis, with increasing levels of mitochondrial
DNA andmitochondrial proteins (31). Interestingly, while there is
a gradual increase in GLUT1 along several days after activation,
mitochondrial biogenesis largely occurs during the first 24 hours
(31). There is a concomitant elevation in ROS levels, which is
important as a second signal (32). Additionally, the expression of
glutaminolysis-associated genes such as glutaminase 2 (GLS2) is
upregulated, including transporters of glutamine and amino acids,
and there is an increase in the flux though the PPP, involved in the
biosynthesis of ribose-5-phosphate for nucleic acids and NADPH,
required for lipid synthesis. This extensive metabolic remodeling
requires mTOR and NO (31), and is accompanied by upregulation
of transcription factors and signaling pathways, including the
proto-oncogene Myc that regulates and supports the anabolic
needs of proliferating T cells. Deletion of Myc prevents activation-
induced increases in glycolysis and glutaminolysis in T cells (29).
Th17 cells also utilize the transcription factor HIF-1a, which binds
to the promoter of retinoid-related orphan receptor-g (RORgt), a
lineage-specific marker of Th17 cells (33).

The energy sensor 5’ adenosine monophosphate-activated
protein kinase (AMPK), which is activated by an increased ratio
of AMP to ATP, is required for metabolic adaptation and flexibility
under conditions of limited nutrient availability. Indeed, energy
depletion by reduced glucose concentration or nutrient limitation is
sensed by AMPK, which is phosphorylated in threonine 172 of its
alpha subunit, and drives the expression of genes involved in
glutamine metabolism such as glutamine transporters or
glutaminase (34), which fuel mitochondrial metabolism under
these conditions. This leads to a decrease in glycolysis, while
oxygen consumption and cellular ATP levels are largely maintained.

Regulation of Cytokine Production by Glycolysis
T cell activation leads to an increase in IFN-g production by at
least three mechanisms: the first mechanism is epigenetic and
Frontiers in Immunology | www.frontiersin.org 6
involves increased expression LDHA by Myc and HIF-1a, which
promotes aerobic glycolysis and generation of ATP in the cytosol.
As a result, in the presence of glucose, citrate is not required by
the TCA for mitochondrial ATP generation and can rather be
exported to the cytosol and converted to acetyl-CoA by ACLY,
where it is used as a substrate by histone acetyltransferases for
regulation of gene expression, including IFN-g gene transcription
(35). The second mechanism is similar to the regulation of TNF-
a expression in macrophages and involves regulation of mRNA
translation: in situations of low glycolysis the glycolytic enzyme
GAPDH binds to the 3’ UTR regions of IL-2 and IFN-g mRNAs
and blocks their translation. On the other hand, during active
glycolysis GAPDH detaches from mRNAs which allows high
production of cytokines (30). AMPK seems to be involved in this
translational mechanism of regulation as well: AMPK activators
such as 5-aminoimidazole-4-carboxamide ribonucleotide
(AICAR) decrease IFN-g production (34), possibly by
inhibition of mTOR. AMPKa-1 deficiency leads to increase
production of IFN-g, which becomes resistant to AICAR
inhibition (34), and to increased translation of the IFN-g
mRNA. The third mechanism involves regulation of Ca2+

signaling by the glycolytic metabolite phosphoenolpyruvate
(PEP), which accumulates in activated T cells, as they express
the M2 isoform of pyruvate kinase (PKM2) (29, 36) which is
preferentially a dimer and enzymatically less active in the
conversion of PEP to pyruvate than the tetrameric PKM1
isoform. PEP accumulates in the presence of glucose and
inhibits the sarco/endoplasmic reticulum Ca2+ (SERCA)-
ATPase (a P-type ATPase whose function is to pump and
sequester Ca2+ into the endoplasmic reticulum), thus increasing
cytosolic Ca2+ transients after TCR signaling and activation of the
nuclear factor of activated T cells (NFAT) transcription factor
(37). Accordingly, glucose depletion in T cells prevents
accumulation of PEP after TCR signaling, and active SERCA
limits cytosolic Ca2+ transients, which leads to cytoplasmatic
localization of NFAT and decreased expression of IFN-g.

Regulatory T Cells
In contrast to effector cells, Tregs express low levels of GLUT1,
utilize mainly FAO and depend on the expression of the
transcription factor Forkhead box P3 (Foxp3). Tregs do not
use mTOR or HIF-1a, but constitutively show high levels of
phosphorylated AMPK, which positively regulates FAO and
blocks mTORC1 activity.

Consistent with their dependence on FAO rather than
glycolysis, the deletion of HIF-1a promotes rather than
inhibits Treg differentiation, likely due to the ability of HIF-1a
to bind to and degrade Foxp3. Rather, Tregs shows high levels of
phosphorylated AMP-activated protein kinase (AMPK), which
regulates FAO by phosphorylating and inhibiting acetyl-CoA
carboxylase (ACC) thereby activating carnitine palmitoyl
transferase 1a (CPT1a), the rate-limiting step in FAO (38).

Interestingly, glycolysis and mTORC1 are essential to support
the migration of Tregs (38). Tumor-infiltrating Tregs, which may
constitute up to 20–30% of the total CD4+ population of the
tumor (39), are strongly associated with advanced cancer stage
and poor prognosis.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Traba et al. Cancer Immunometabolism
CD8+ T Cells
Naïve CD8+ T cells have a similar metabolism to naïve CD4+ T
cells. Stimulated CD8+ T cells differentiate into effector cells. The
best characterized effector CD8+ T cell subpopulation are Tc1
cells, which are promoted by IL-12 and IFN-g, secrete cytokines
such as IFN-g and TNF-a and have high cytolytic potential
against cells infected with intracellular pathogens by releasing
cytotoxic molecules, such as granzymes and perforin. In contrast,
Tc2 cells secrete IL-4, IL-5 and IL-13, but not IFN-g, and display
reduced cytotoxic activity compared to Tc1 cells. Other subsets
of effector CD8+ T cells include Tc9 and Tc17. Activation of
CD8+ T, as in CD4+ T cells, also induces cell growth and
proliferation, and a metabolic switch to aerobic glycolysis that
depends on Glut1, mTOR and Myc.

During resolution of an immune response, surviving T cells
convert to memory T cells. Interestingly, while effector CD8+ T
cells are highly glycolytic, CD8+ T memory cells rely on OxPhos
again. OxPhos and FAO are essential for these cells to respond
upon re-exposure to the antigen and for longevity.

Immunometabolism of NK Cells
NK cells are cytotoxic lymphocytes involved in anti-tumor and
anti-viral innate immunity. NK cells do not express polymorphic
germline-encoded receptors, such as TCR or BCR, nor require
prior sensitization (40), and the activation of their cytolytic
functions is prompted by the engagement of receptors that
recognize invariable ligands on the surface of a target cell (41,
42). The balance of the signal coming from activating and
inhibitory receptors will dictate the activating or inhibitory fate
of the NK cell response. If they get activated, NK cells will kill
target cells by releasing lytic granules (which contain perforin
and granzyme) or activating cell death receptors on their targets.
NK cell activation response also induces secretion of cytokines,
such as IFNg or TNFa.

Resting NK cells have very low basal metabolic rates and
utilize OxPhos primarily. While short times of cytokine
stimulation or receptor signaling does not alter metabolic
parameters significantly (43), overnight incubations with IL-2
or IL-15 induce an increase in OxPhos and especially glycolysis
(44, 45). Activated NK cells metabolize pyruvate into acetyl-CoA
and then engage the citrate–malate shuttle, which consists of the
export of citrate (generated by condensation of acetyl-CoA and
oxaloacetate by citrate synthase) into the cytosol via CIC in
exchange for malate, its breakdown by Acly into acetyl-CoA and
oxaloacetate, which is metabolized by malate dehydrogenase 1
(MDH1), consuming cytosolic NADH and yielding cytosolic
malate that is exchanged for citrate though CIC, and then
oxidized in the mitochondria to oxaloacetate by malate
dehydrogenase 2 (MDH2) with the generation of NADH.
Thus, this process bypasses the TCA cycle, and generates both
mitochondrial NADH to support OxPhos and cytosolic acetyl-
CoA to support acetylation reactions and fatty acid synthesis
(46). NK cell activation is also associated with increased
mitochondrial mass (46) and increased mitochondrial
membrane potential (47). Interestingly, unlike in other types of
lymphocytes, glutamine is not metabolized through
glutaminolysis or the TCA cycle in activated NK cells (48).
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There are different pathologies that can alter NK cells
metabolism, including cancer (49), obesity (50) and viral
infections (51). As many other immune cells, NK cell
metabolism regulation depends on mTORC1 (52). Upon
cytokine stimulation, mTORC1 activity increases and enhances
glycolysis rate. mTORC1 inhibitors, such as rapamycin, results in
inhibition of glycolysis but not OxPhos (52, 53). mTORC2 is
closely related to mTORC1, and they share the kinase core
subunit, but differ in some specific subunits (which makes
mTORC2 insensitive to inhibition with rapamycin). mTORC2
inhibits mTORC1 activity, which results in an inhibition of NK
cell functions (54).

Other regulators of NK cells metabolism are transcriptional
factor cMyc, controlled by the availability of glutamine and other
amino acids (55), and the sterol regulatory element binding
protein (SREBP), driven by mTORC1 signaling, essential for
glycolysis and OxPhos regulation (46).

Fibroblasts
Fibroblasts are not immune cells, but cells that have a role in
synthesizing extracellular matrix proteins. They are however the
predominant cell type in some tumors and contribute to
tumorigenesis. Interestingly, transplantation of tumor cells
together with cancer-associated fibroblast (CAFs) leads to
more malignant cancers compared to tumor cells alone or with
normal fibroblasts. From the immunometabolic perspective,
oxygen depletion in the TME promotes, via epigenetic
reprogramming, a metabolic switch in CAFs leading to a
glycolytic metabolism that fuels biosynthetic pathways of
cancer cells, including the PPP and nucleic acid metabolism
(56, 57). Metabolites secreted by CAFs and taken up by tumors
include lactate (58), glutamine (59, 60) and lipids (61), among
others. CAFs also promote the recruitment of monocytes
towards a tumor, their differentiation into macrophages, and
their polarization to an M2 phenotype (62, 63). Interestingly,
there is reciprocal crosstalk between CAFs and TAMs (64), as
TAMs are able to activate normal fibroblasts into CAFs (62).
TUMOR MICROENVIRONMENT (TME)
AND METABOLIC REPROGRAMING OF
IMMUNE CELLS

The cancer metabolic phenotype generates a milieu that is hostile
to proinflammatory immune cells. This TME exerts
immunosuppressive effects in immune cells by several
mechanisms, including competition for nutrients, and secretion
of metabolites and cytokines (Figure 3). In addition, the TME
may alter dysfunctional immune cells to make them transition
into tumor-supporting cells. These effects onmacrophages, T cells
and NK cells are reviewed below.

Metabolic Competition for Nutrients
Tumor cells are known to be highly glycolytic and solid tumors
consume large amounts of glucose and other nutrients, which
results in low extracellular levels of glucose, glutamine and other
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amino acids, including arginine and tryptophan (65), and this
blunts antitumor responses through multiple mechanisms.

A mouse sarcoma model shows that tumor-mediated glucose
depletion in the TME skews the differentiation of macrophages
toward the M2 phenotype (66). Unlike M1 macrophages, M2
macrophages do not compete for glucose with the tumor cells, as
they preferentially employ OxPhos.

Intratumoral CD4+ T cells in Braf/Pten melanoma-bearing
mice express a glucose-deprivation transcriptional signature,
suggesting that they experience glucose deprivation in vivo and
that their glycolysis is indeed restricted (37). Although glucose
depletion does not lead to defects in proliferation or survival in T
cells, it leads to decreased synthesis of cytokines, suppresses
activation and may limit antitumor responses. Inhibition of
glycolysis also decreases the expression of perforin and
granzymes, and blocks cytolytic activity in CD8+ cells (67).
Indeed, it has been shown in a mouse sarcoma model that
tumor-mediated glucose depletion in the TME inhibits mTOR
activity and glycolysis in CD8+ T cells and dampens their ability
to produce cytokines (66). Glutamine depletion leads to defects
in T cell proliferation and synthesis of IL-2 and IFN-g (68).

In NK cells, limited glucose directly reduces glycolysis and
OxPhos, but will also affect the activity of regulators of the
activation such as mTORC1 (44). Consequently, glucose
depletion significantly impairs IFN-g production (69),
proliferation and cytotoxicity (51). NK cells express several
glucose transporters (GLUT1, GLUT3 and GLUT4) and it has
Frontiers in Immunology | www.frontiersin.org 8
been shown that cytokine stimulation increases expression of
GLUT1, needed to increase the uptake of glucose essential to fuel
the augmented glycolysis rate that will support the activating
functions of NK cells. Interestingly, glutaminolysis does not
sustain OxPhos in activated NK cells, that rely on the citrate–
malate shuttle instead of a full TCA cycle, but supports cMyc
expression (48). Accordingly, glutamine depletion leads to a
rapid loss of c-myc protein and loss of effector functions.

Hypoxia
Due to their high metabolic profile and sometimes poor
vascularization, tumors also contain areas of hypoxia.

During hypoxia, NK cells upregulate HIF-1a, but lose their
ability to upregulate the surface expression activating receptors
in response to IL‐2 or IL‐15, including NKp46, NKp30, NKp44,
and NKG2D, as well as their capacity to kill target cells (70). It
has also been shown that hypoxia modifies the NK cell
transcriptome and reduces release of some cytokines including
IFN-g and TNF-a in response to several stimuli or soluble
cytokines, although it sustains the expression of chemokine
receptors, including CCR7 and CXCR4 (71).

TAMs in oxygen-rich regions of the tumor, such as those close
to blood vessels, display features of M1 macrophages, whereas
TAMs in hypoxic regions of the tumor display M2-like features
(72). Hypoxia stimulates the expression of HIF-1a in TAMs,
which controls the levels of proteins involved in angiogenesis, such
as vascular endothelial growth factor (VEGF), or metastasis, such
FIGURE 3 | Characteristics of the TME. Tumor cells (and other cells in the tumor) deplete nutrient levels (glucose, glutamine, amino acids, O2, etc.) in the TME,
increase the levels of some metabolites, such as lactic acid or L-kynurenine, and secrete cytokines (including TGF-b and IL-10), which inhibit the metabolism, effector
function and proliferation in immune cell, and may cause apoptosis.
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as regulated in development and DNA damage response 1
(REDD1) (72, 73). Interestingly, REDD1 is an mTOR inhibitor,
which decreases glycolysis in the hypoxic TAM, leading to more
glucose available for endothelial cells and an excessive angiogenic
response, which in turn leads to aberrant and dysfunctional blood
vessel formation and increased metastasis. When REDD1 is
depleted, an mTOR-mediated glycolytic enhancement in the
TAM leads to glucose competition with blood vessels and their
normalization (73).

Metabolites Secreted by Tumor Cells
Lactic Acid
Due to their glycolytic metabolism, tumor cells secrete large
amounts of lactic acid that can reach up to 30–40 mM, which
generates regions of high acidity in the TME. In fact, a negative
correlation between tumor LDHA expression and patient
survival has been found in melanoma (74). In CD8+ T cells
lactic acid, but not its sodium salt, inhibits the expression of IFN-
g and IL-2, suppresses proliferation and cytotoxic activity, and
may induced cell death (74, 75).

In NK cells, lactic acid also inhibits the expression of IFN-g
and induces apoptosis in a mitochondrial ROS-dependent
fashion (74, 76, 77). Interestingly, lactate suppresses IFN-g
expression even at physiologic pH in NK cells (77).

Lactate also inhibits the release of proinflammatory cytokines
in macrophages (78) and induces M2 macrophage polarization
(79). Conditioned medium from lactate-treated macrophages
stimulates angiogenesis, and proliferation and migration of
cancer cells in vitro (79). Lactic acid induces expression of
VEGF, Arg1 and other M2 genes in TAMs via HIF-1a
stabilization, and this is critical for tumor growth, as Arg1-
deficient macrophages impair tumor progression in vivo in a
mouse model (80).

l-kynurenine
l-kynurenine, a tryptophan-derived catabolite resulting from the
activity of indoleamine 2,3-dioxygenase (IDO), an enzyme that is
often expressed in tumor cells or tumor-associated cells (TAMs,
dendritic cells, etc.) (81, 82), interferes with NK cells by regulating
the surface expression of activating receptors and thus their
antitumor function (83). In additional studies, IDO is also
shown to inhibit NK cell proliferation via l-kynurenine (84, 85).

l-kynurenine also inhibits proliferation of CD4+ and CD8+ T
effector cells (86) and induces the generation of Tregs by
interacting with the aryl hydrocarbon receptor (AHR) (87).
Furthermore, a blockade of IDO leads to conversion of Tregs
to Th17 cells (88), which highlights the role of IDO in the choice
between immunosuppression and immune activation.
Importantly, increased IDO expression correlates with poor
prognosis in some cancers (89). IDO causes inhibition of
effector T cells also by an additional mechanisms: it leads to
tryptophan depletion in the TME, which activates the protein
general control nonderepressible 2 (GCN2) in T cells, a stress-
response kinase that is activated by elevations in uncharged
tRNA. GCN2 function is to phosphorylate eukaryotic Initiation
Factor 2 alpha (eIF2a) to activate the integrated stress response,
which leads to a decrease in global protein synthesis and the
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induction of selected genes, which leads to CD8+ T cell anergy
(90). Strikingly, in a mouse model of skin carcinogenesis, the
absence of GCN2 does not phenocopy the absence of IDO, which
promotes resistance against tumor development, suggesting the
existence of additional pathways that operate downstream of
IDO (91). This additional pathway is mTOR, which senses
tryptophan depletion.

Cytokines Present in the TME
TGF-b
TGF-b inhibits cytokine-induced metabolic changes and effector
functions in NK cells, including expression of CD71 (transferrin
receptor), granzyme B, IFN-g and the stimulatory receptor
CD69, via mTORC1-dependent and independent pathways
(92, 93). It has been suggested that upregulation of the
gluconeogenic enzyme Fructose-1,6-bisphosphatase 1 (FBP1)
in NK cells of lung cancer, which inhibits their glycolytic
metabolism, is caused by high levels of TGF-b in the TME
(94). TGF-b also supports the induction of Tregs in tumors (95).

IL-10
This cytokine is frequently upregulated in cancers and has been
shown to directly affect the function of APCs by inhibiting the
expression of major histocompatibility complex (MHC) class II
and costimulatory molecules CD80/B7-1 and CD86/B7.2, which
in turn induces immune suppression or tolerance (96). The role
IL-10 in macrophage immunometabolism is well stablished. This
cytokine opposes the switch to the M1 metabolic program in
macrophages by inducing mitochondrial oxygen consumption
and increasing mitochondrial integrity viamTOR, by decreasing
mitochondrial ROS levels, by decreasing the cell surface
expression of GLUT1 and thus by inhibiting glycolysis (97).

On the other hand, IL-10 downregulates the expression of
Th1 cytokines (TNF-a, IFN-g), inhibits CD4+ and CD8+ T cell
proliferation and production of IFN-g and IL-2 (98), and induces
T-regulatory responses. IL-10 deficiency also impairs Treg
function and enhances Th1 and Th17 immunity to inhibit
tumor growth (99).

Finally, IL-10 suppresses production of IFN-g by NK cells
without altering cytotoxicity (100).
TARGETING IMMUNOMETABOLISM FOR
IMMUNOTHERAPY

Immunotherapy involves the use of the immune system as
therapy to treat cancer. Current therapies include blockade of
immune checkpoint receptors (which maintain self-tolerance and
prevent uncontrolled inflammation) and adoptive cell transfer.
However, these techniques have their limitations, including T and
NK cell exhaustion, possibly because of the effects of the TME.
This section describes some immunotherapies in T cells, NK cells
and macrophages and briefly describes some strategies used to
modulate the metabolism of the tumor cell or the immune cell
that can be combined with other therapies to boost the immune
response to cancer.
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Targeting T Cells
T cells have been successfully used for immunotherapy in a
number of ways, including immune checkpoint blockade, which
uses monoclonal antibodies to bind and inactivate inhibitory
receptors such as cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) and programmed cell death-1 (PD-1) or its ligand
programmed cell death ligand 1 (PD-L1) (101), or adoptive cell
transfer, which involves the isolation of T cells, improving their
anti-tumor capacity in vitro, expanding them in culture, and
transferring them back to the patient (102). Adoptive cell
transfer was improved by generation of T cells that express
engineered TCRs that target a specific antigen and lately by the
generation of chimeric antigen receptor (CAR) T cells, which
express an artificial chimeric antigen-binding receptor that
combines both antigen-binding and T-cell activating functions
into a single molecule (103). Some strategies to indirectly or
directly target the metabolism of T cells and improve
immunotherapy are described here.

Pharmacological inhibition of the lactate transporters MCT1
and MCT4 using diclofenac restores T cell function, slows tumor
growth and improves the efficacy of checkpoint inhibition
therapies (104). Knockdown of LDHA in tumor cells using
RNAi nanoparticles neutralized the pH of the TME, increased
infiltration with CD8+ T and NK cells, decreased the number of
Tregs, significantly inhibited the growth of tumors and
potentiated checkpoint inhibition therapy (105).

Removal of extracellular kynurenine in the TME by
administration of bacterial kynureninase linked to polyethylene
glycol (for prolonged systemic retention) increases the frequency
of effector CD8+ T cells in the tumor (but not in the periphery),
reduces tumor growth, increases survival in a CD8+ cell-
dependent manner and potentiates checkpoint inhibition
therapy (106). In a mouse model of melanoma, the
combination of the tryptophan analog 1-methyl-D-tryptophan
plus an antitumor vaccine caused conversion of Tregs to the
Th17, with marked enhancement of CD8+ T cell activation and
antitumor efficacy (88). It is interesting to remark that the IDO
inhibitor 1-methyl-tryptophan exists in two stereoisomers, and it
has been shown that the L isomer (1-methyl-L-tryptophan) is the
more potent inhibitor of IDO activity. Remarkably, the D isomer
(Indoximod), although it does not bind to, or biochemically
inhibit IDO, nor prevents the production of kynurenine, is much
more effective in reversing the suppression of T cells and has
stronger therapeutic effects (107). This probably happens via
direct restoration of mTOR activity, which is suppressed due to
tryptophan deprivation (91, 108). Several small-molecule IDO
inhibitors, including Indoximod, Navoximod, Epacadostat or
BMS-986205, are currently being used in several clinical
trials (108)

JHU083, a pro-drug of 6-diazo-5-oxo-L-norleucine (DON), a
glutamine antagonist which inhibits glutaminase and other
glutamine-requiring enzymes, impairs tumor cell metabolism,
which in turn increases the availability of nutrients and oxygen in
the TME. Remarkably, in the presence of JHU083, tumor
infiltrating CD8+ T cells display increased glycolysis and
mitochondrial oxygen consumption and regain their effector
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functions and proliferation. This is probably because of the
plasticity of T cells, which in the absence of glutamine
metabolism undergo a metabolic reprogram and are able to
replenish the TCA using glucose anaplerosis via pyruvate
carboxylase and acetate metabolism, while tumor cells do not
possess that plasticity (109).

Overexpression of phosphoenolpyruvate carboxykinase 1
(PCK1), which converts oxaloacetate into PEP and CO2,
increases PEP levels in T cells even in glucose depleted
conditions and consequently restores cytosolic Ca2+ transients,
nuclear localization of NFAT and IFN-g expression (37).
Furthermore, after adoptive transfer of PCK1-overexpressing
CD4+ or CD8+ T cells into a melanoma-bearing mice, there
was a decrease in tumor growth which prolonged survival of the
mice (37).

Targeting NK Cells
NK cells are also being used for immune checkpoint blockade
therapies: blocking of NKG2A, an inhibitory receptor, by the use
of antibodies improves NK-mediated cytotoxicity and this is
currently being used in ongoing clinical trials (110). Adoptive cell
transfer with NK cells is also a promising therapy: NK cells may
be treated with IL-15, other cytokines or drugs prior to their
transfer back to the patient (111). Antibody blockade of PD-1 or
CTLA-4 in combination with IL-15 has also been used (112)
Some strategies to target the metabolism of NK cells and improve
immunotherapy are described here.

Adoptive transfer of NK cells treated with MB05032, an FBP1
inhibitor that restores NK cell glycolysis and effector functions,
slows tumor growth in a lung cancer model in mouse (94).

In mice, systemic pH buffering of the tissue milieu by
supplementing drinking water with sodium bicarbonate
normalizes IFN-g expression but not cytotoxic capacity in NK
cells, and delays tumor growth (77).

Blockade of glutaminase should not affect NK cells effector
functions, since they do not metabolize glutamine to glutamate,
but use it for the import of other amino acids in order to sustain
mTOR function and cMyc expression (48). Since MYC in NK
cells is degraded by glycogen synthase kinase 3 (GSK3),
inhibitors of this enzyme should also activate effector functions
in these cells. Indeed, increased antitumor activity in NK cells has
been shown after ex vivo pharmacologic inhibition of GSK with
CHIR99021 or other compounds followed by adoptive transfer
(113, 114), although it appears that GSK3 inhibition leads to
activation of the NF-aB pathway and increased expression of
TNF-a, and only to a modest increase in IFN-g, and whether the
metabolism of the NK cells or MYC levels were altered was not
explored in those studies.

Targeting Macrophages
Therapies that deal with macrophages mainly consists of two
approaches, those that deplete TAMs in an effort to prevent their
tumor supporting functions (chemokine (C-C motif) ligand 2
(CCL2) or CC‐chemokine receptor 2 (CCR2) blockade, which
prevents their recruitment into tumors, for example), and those
that try to repolarize them towards an M1-like antitumor
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phenotype (115). Some strategies to target the metabolism of
macrophages and improve immunotherapy are described here.

Pharmacologic or genetic blockade of glutamine synthetase,
the enzyme that converts glutamate into glutamine, alters the
metabolism of macrophages and skews their differentiation from
the M2 phenotype to M1 in an HIF-1a-dependent fashion,
which leads to decreased T cell suppression, decreased
angiogenesis and prevention of metastasis in a Lewis lung
carcinoma mouse model (116).

TAMs express high levels of the T cell checkpoint receptor
PD1, and these PD1-containing TAMs are preferentially M2
macrophages (117). Strikingly, the frequency of M2 PD-1
containing TAMs increased with disease stage in human
cancer patients. PD-1 expression in TAMs correlates negatively
with phagocytic potency against tumor cells, and blockade of
PD-1 or PD-L1 in vivo increases macrophage phagocytosis,
reduces tumor growth and increases the survival of mice in
mouse models of cancer in a macrophage-dependent fashion, as
depletion of TAMs abrogates these effects (117). Remarkably,
TAMs (and even mouse bone marrow-derived macrophages or
human monocyte-derived macrophages) express PD-L1 as well
(118). Blockade of PD-L1 with antibodies induces macrophage
activation, release of proinflammatory cytokines and an
activation of mTOR, suggesting that PD-L1 constitutively
provides a negative signal to these macrophages (118). In
addition, blockade of PD-L1 in macrophages alters the
transcriptome to resemble that of M1 proinflammatory cells
(118). In a mouse model of melanoma, in vivo treatment of
RAG-/- mice (which lack functional T cells) with PD-L1
antibodies triggers TAM activation to a proinflammatory state
and a significant slowing of tumor growth which is independent
of T cells, the main target for immune checkpoint blockers (118).

Respiratory complex I inhibitor metformin (an anti-diabetic
drug) inhibits M2 polarization of macrophages and blocks the
migration-promoting and angiogenesis-promoting properties of
conditioned media from M2 cells (119). Metformin also inhibits
metastasis in a Lewis lung carcinoma model, and this effect is
abolished when TAMs are depleted, which suggests that
metformin indeed targets macrophages in this model (119).

Nutrient Restriction as Therapy
Because of a strong competition at the TME, it might be argued
that dietary interventions that limit nutrient availability in an
attempt to prevent the growth of cancer cells may also deprive
immune cells of those very same nutrients, thus raising concerns
about the possible detrimental effect of suppressing anti-cancer
immunity. Despite this, fasting, long-term fasting, fasting-
mimicking diets, and ketogenic diets are currently under
investigation in trials for several cancer types. Fasting has been
shown not only to be useful as therapy against cancer by several
mechanisms, but also to increase tolerance to chemotherapy,
with reduction of many side effects (120), as it protects normal
cells, but not cancer cells, from high doses of chemotherapy by a
mechanism that involves a reduction in the levels of circulating
insulin-like growth factor-I (121, 122).

From the immunometabolic perspective, fasting suppresses
the polarization of TAMs towards the M2 phenotype, possibly
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because of decreased presence of adenosine in the TME (123), a
metabolite that directly restricts antitumor responses by
activating the adenosine A2A receptor (A2AR) in T-cells (124).
Low-protein diet also shifts the polarization of TAMs toward the
inflammatory M1 phenotype and increases the response to
immunotherapies (125). Nutrient restriction is also able to
increase mitochondrial ROS, including superoxide levels, in
several cancer cell types, which increases the efficacy of
chemotherapy (126, 127). However, since fasting and caloric
restriction are hard to implement in the clinical setting, especially
in cancer patients that are struggling with cachexia or loss of
appetite, the use of caloric restriction mimetics such as
resveratrol or anti-hyperglycemic agents such as metformin,
which might provide the same effect without the need to fast,
is increasingly being used in the field (128). In fact, the caloric
restriction mimetic hydroxycitrate improves antitumor
immunity by depleting Tregs in the tumor, and enhances
immunotherapy (129).
OTHER FACTORS THAT INFLUENCE
CANCER IMMUNOMETABOLISM
AND IMMUNOTHERAPY

Obesity
Obesity is a disease characterized by the excessive accumulation
of fat tissue and lipids along the body. The accumulation of lipids
occurs inside immune cells as well, reprograming their
metabolism and affecting their function. Obesity is
characterized by the activation of mTOR signaling because of
nutrients excess. The contribution of obesity to cancer is two-
fold: it drives a low-grade sistemic chronic inflammatory state
but it also blocks cancer immune surveillance by metabolically
reprogramming immune cells and affecting their function (130).

In NK cells, obesity downregulates the transcription of genes
involved in NK-cell mediated cytotoxicity, resulting in an
impairment of killing function and less production of IFN- g.
NK cells from obese individuals display an impaired ability to
increase glycolysis and OXPHOS after stimulation with
cytokines, and this effect depends on PPARa/d (50). The
number of circulating NK cells is reduced in obese people
compared to control individuals and lipid treated NK cells fail
to control tumor growth in vivo.

In the case of T cells, lipid accumulation supports Treg
function, which relies on FAO to fuel OxPhos (131). On the
other hand, the chronic inflammatory environment present in
obesity suppresses Teff, which show an exhausted phenotype
with impaired cytokine secretion (132, 133). Consistent with this,
high fat diet in mice accelerates tumor growth, and the
mechanism involves depletion of intratumoral T cells and an
increase in MDSCs and TAMs (134). Interestingly, tumor cells
and T cells adapt differently to lipid accumulation and undergo
opposing metabolic changes: while tumor cells increase fatty acid
utilization, CD8+ T cells do not (134). The increase in TAMs is
consistent with lipid accumulation, since FAO is associated with
the M2 suppressor phenotype (25, 135).
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Regarding immunotherapy, and taking into account the
multiple suppressor effects of obesity in the immune system, it
could be assumed that obesity might contribute negatively to the
efficacy of immunotherapies, but this is not always the case. In
obese individuals there is an increased expression of PD-1, an
inhibitory checkpoint molecule, likely due to increased levels of
leptin, an hormone produced by adipose tissue. High expression
of PD-1 has been generally linked to T-cell exhaustion, but it also
means that therapies targeting PD-1 might have more efficacy
(136, 137). When PD-1 is upregulated in T cells, the interaction
with its ligand PD-L1 (on tumor cells) will inhibit the anti-tumor
T-cell activity. Anti PD-1-PD-1L therapy will block this
interaction and allow T cells to better fulfill their tumor killing
function. Some studies show and association between obesity
and immune checkpoint blockade immunotherapy, being this
therapy more successful in patients with higher expression of
PD-L1 (138).

Sex-Related Differences
There are fundamental metabolic aspects that are different
between males and females. For instance, sex differences are
apparent in adipose tissue distribution and, as discussed
previously, fat tissue and lipids may influence immune cells
and metabolism. Also, there are sex differences in immune
responses: males are more prone to developing certain
infections and cancer types whereas females experience higher
risk to developing autoimmune diseases (139). Factors that
could potentially contribute to these differences are steroid
hormones, sex chromosomes (overall the genes that escape to
X-chromosome inactivation), mitochondrial function and
environmental factors (139).

As adult females display stronger innate and adaptive
immune responses than males, they present increased
susceptibility to inflammatory and autoimmune diseases, but
lower risk for cancer. Interestingly, neutrophils in females
display an activated neutrophil profile characterized by an
upregulation of the pathway for type I interferons, enhanced
proinflammatory responses, and distinct bioenergetics, which are
driven by the sex hormone estradiol (140). We have not covered
neutrophils in this review, but there is growing evidence that
suggests an important role of this leukocytes, especially tumor-
associated neutrophils (TANs), in cancer progression (141).
There is currently a debate and conflicting results on whether
there are differences in the efficacy of immunotherapy between
men and women (142), and this is probably because of sampling
bias in clinical trials.

Aging
Age is a risk factor a number of pathologies. It is associated with
metabolic disease, autoimmunity, higher risk of infections, and
cancer. There are plenty of metabolic changes associated with
aging: a decline in mitochondrial activity (143), decreases in
NAD levels (144) and low grade chronic inflammation (145).

Aging is a strong risk factor for cancer. In fact, subcutaneously
injected tumors grow faster in old mice compared to young mice
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(146). It is known that Treg cells accumulate in spleens and
lymph nodes of old mice, and depletion of those cells induces a
strong cytotoxic response and protects old mice against some
tumors (147). M2 macrophages are also increased in tissues of
old mice, and these macrophages appear to be hypersensitive
to tumor-derived stimuli, as they secrete higher amounts of
immunosuppressive cytokines, including IL-4 and TGF-b
(148). Interestingly, several immunotherapies are less effective
in aged animals, while others such as immune checkpoint
blockade remain useful (149). Older human adults are under-
represented in clinical trials in general, although they seem
to benefit similarly to younger patients from checkpoint
blockade (150).
CONCLUDING REMARKS

Immunotherapy is becoming increasingly successful for many
cancers, especially against hematological malignancies. However,
immunotherapy still fails for a substantial numbers of patients,
especially in those with solid tumors, and one of the reasons for
that failure is that the TME limits the killing capacity of these cells
and makes the patients refractory to such therapy. Strategies to
bypass the inhibitory effect of the TME in proinflammatory cells
are currently being developed. They are key for the success of
immunotherapies, and the study of immunometabolism is thus a
critical field for cancer research. Targeting immunometabolism
during immunotherapy is proving to be challenging, as tumor
cells and inflammatory immune cells utilize similar metabolic
pathways, and thus targeting a given pathway, such as tumor
glucose metabolism to reverse the Warburg phenotype by use of
glycolysis inhibitors, may concurrently disrupt the tumor lytic
effect of immune cells. Subtle differences between the cancer cell
and the immune cell and or TME and/or immune cell targeted
metabolic modulation strategies should be investigated as
alternate strategies to enhance the cancer disease spectrum
for immunotherapy.
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