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Small cell carcinoma (SCC) of the uterine cervix is a rare and aggressive

form of neuroendocrine carcinoma, which resembles small cell lung cancer

(SCLC) in its histology and poor survival rate. Here, we sought to define

the genetic underpinning of SCCs of the uterine cervix and compare their

mutational profiles with those of human papillomavirus (HPV)-positive head

and neck squamous cell carcinomas, HPV-positive cervical carcinomas, and

SCLCs using publicly available data. Using a combination of whole-exome

and targeted massively parallel sequencing, we found that the nine uterine

cervix SCCs, which were HPV18-positive (n = 8) or HPV16-positive (n = 1),

harbored a low mutation burden, few copy number alterations, and other

than TP53 in two cases no recurrently mutated genes. The majority of muta-

tions were likely passenger missense mutations, and only few affected previ-

ously described cancer-related genes. Using RNA-sequencing, we identified

putative viral integration sites on 18q12.3 and on 8p22 in two SCCs of the

uterine cervix. The overall nonsilent mutation rate of uterine cervix SCCs

was significantly lower than that of SCLCs, HPV-driven cervical adeno- and

squamous cell carcinomas, or HPV-positive head and neck squamous cell

carcinomas. Unlike SCLCs, which are reported to harbor almost universal

TP53 and RB1 mutations and a dominant tobacco smoke-related signature

4, uterine cervix SCCs rarely harbored mutations affecting these genes (2/9,

22% TP53; 0% RB1) and displayed a dominant aging (67%) or APOBEC

mutational signature (17%), akin to HPV-driven cancers, including cervical

adeno- and squamous cell carcinomas and head and neck squamous cell car-

cinomas. Taken together, in contrast to SCLCs, which are characterized by

highly recurrent TP53 and RB1 alterations, uterine cervix SCCs were posi-

tive for HPV leading to inactivation of the suppressors p53 and RB, suggest-

ing that these SCCs are convergent phenotypes.

Abbreviations

HPV, human papillomavirus; SCC, small cell carcinoma; SCLC, small cell lung cancer; UCSCC, uterine cervix small cell carcinoma; WES,

whole-exome sequencing.
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1. Introduction

Cervical cancer is the second leading cause of cancer-

related deaths among women worldwide resulting in

> 4000 deaths annually in the United States alone [1].

The most frequent histologic subtypes are squamous

cell carcinomas and adenocarcinomas [2]. Although

accounting for only 0.9% of invasive cervical carcino-

mas, uterine cervix small cell carcinomas (UCSCCs)

are responsible for ~ 2.8% of the deaths in patients

with cervical disease [3,4].

The term small cell carcinoma (SCC) encompasses a

set of highly aggressive neuroendocrine carcinomas,

which preferentially not only affect the lung (95% of

all SCCs) [5,6] but may also be found in nearly any

organ of the human body [7], in either pure or mixed

forms. Irrespective of organ site, SCCs share distinct

histologic features and clinical behavior. Histologi-

cally, SCCs are composed of small cells (up to three

times the size of a resting lymphocyte) displaying little

cytoplasm, oval- to spindle-shaped nuclei with finely

granular chromatin, and inconspicuous or absent

nuclei and numerous mitotic figures. Areas of necrosis

are frequently encountered [7]. For all SCCs, regard-

less of the anatomic site of origin, prognosis is poor.

The reported median survival rates for patients with

SCC range from 34 months in limited disease to

2 months for patients with extensive disease; most

patients, however, present with advanced-stage disease

[8]. Given the biologic resemblance with small cell lung

cancer (SCLC), treatment for patients with UCSCC is

based on platinum-containing regimens with optional

radiation therapy [8,9]. Akin to SCLC, despite good

initial response rates, most patients with UCSCC

relapse shortly after an initial response; hence, addi-

tional treatment options are urgently needed for these

patients.

Pulmonary SCLCs have a highly characteristic

molecular fingerprint, with almost universal TP53- and

RB1-inactivating mutations [10], which are shared by

SCCs of other anatomic sites such as the gastrointesti-

nal (GI) tract and pancreas. Although UCSCCs are

etiologically linked to infection with high-risk human

papillomaviruses (HPVs) [11–13], akin to other forms

of cervical cancers, the molecular underpinning of

UCSCCs remains to be fully elucidated. To date, loss

of heterozygosity at specific gene/chromosomal regions

using polymorphic microsatellite markers has revealed

recurrent allelic imbalances affecting chromosomes 3q

and 17p13, encompassing the TP53 locus, but loss of

heterozygosity of the RB1 gene locus (13q14) was

found to be rare [13,14]. As for the repertoire of

somatic mutations in UCSCCs, studies focusing on

specific genes revealed recurrent TP53 but no KRAS

mutations [14], and targeted sequencing analyses found

recurrent somatic mutations in TP53, PIK3CA, and

KRAS [15,16].

To date, it is unclear whether UCSCCs would have

genetic features that recapitulate those of other com-

mon tumors of the uterine cervix (adenocarcinoma/

squamous cell carcinomas) or HPV-driven cancers

(e.g., head and neck carcinomas), or whether these

tumors are more similar to SCCs of other anatomic

sites such as SCLC. To address this question, we

sought to define the constellation of somatic muta-

tions, copy number alterations, and mutational signa-

tures of UCSCCs using a combination of whole-

exome, targeted, and RNA-sequencing. The muta-

tional profiles of UCSCCs were compared with those

from HPV-positive head and neck squamous cell carci-

nomas and cervical carcinomas, and SCLCs.

2. Materials and methods

2.1. Case selection

The pathology files of University Hospital Cologne,

Germany; University Hospital Muenster, Germany;

Institute of Pathology Duisburg, Bethesda Hospital,

Germany; and Memorial Sloan Kettering Cancer Cen-

ter (MSK), New York, USA, were searched over a 20-

year period using the term ‘small cell’ and ‘neuroen-

docrine carcinoma’. Cases with origin in the lung were

excluded after extensive chart review. For selected

cases, data including tumor location, patient demo-

graphics, and information about prior treatment regi-

mens were collected. In each case, the original

hematoxylin-and-eosin (H&E)-stained slide and

immunohistochemistry (IHC) slides, if available, were

reviewed. Cases lacking detailed clinical information

or any doubt about being metastatic deposits from the

lung were excluded. Cases were reviewed by four

pathologists with an interest and expertise in neuroen-

docrine neoplasms (A.M.S., M.v.P., K.J.P., and

D.S.K.). Diagnosis of SCC required the identification

of tumors with cohesive round-to-ovoid cells, sparse

cytoplasm, finely granulated nuclei, nuclear molding,

and inconspicuous nucleoli. Cases were considered to

be UCSCC if immunohistochemical expression of at

least one neuroendocrine marker was detected and a

high proliferation index (≥ 50%), assessed using Ki67,

was observed. Sections from representative blocks of

cases confirmed as UCSCCs were cut and H&E-
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stained, and the block with the greatest tumor cell per-

centage was chosen for downstream analyses. A total

number of nine UCSCCs were selected. All samples

were anonymized prior to the analysis, and the

approval by the institutional review boards (IRBs) of

the respective contributing authors’ institutions was

obtained. Informed consent was obtained from the

patients following the requirements of the IRB-ap-

proved protocols. This study is in compliance with the

Declaration of Helsinki.

2.2. Immunohistochemistry

Representative 4-lm-thick formalin-fixed paraffin-em-

bedded (FFPE) sections of each case were cut and sub-

jected to ancillary immunohistochemical assessment

using antibodies against cytokeratin (CK) AE1/E3,

Ki67, chromogranin A and/or synaptophysin, and p16

(see Table S1 for details).

2.3. Nucleic acid extraction

For each of the nine cases included in this study, ten

8-lm-thick tumor and matched normal tissue sections

(n = 2 frozen, n = 7 formalin-fixed, paraffin-embedded)

were stained using nuclear fast red and subjected to

microdissection by a pathologist (A.M.S.) using a ster-

ile needle under a stereomicroscope (Olympus SZ61,

Center Valley, PA, USA) to ensure a percentage of

tumor cells greater than 80% and that the normal tis-

sue was devoid of any tumor cells as previously

described [17]. DNA was extracted using the DNeasy

Blood and Tissue kit (Qiagen, Germantown, MD,

USA), and RNA was extracted using TRIzol (Invitro-

gen, Thermo Fisher Scientific, Waltham, MA, USA),

as previously described [18].

2.4. HPV detection

Type-specific primers for the most commonly found

HPV subtypes in cervical cancer (HPV16 and HPV18)

were designed using Primer3. Standard PCR was per-

formed using the AmpliTaq Gold 360 DNA Poly-

merase (Applied Biosystems, Thermo Fisher Scientific)

following the manufacturers’ protocol. The forward

and reverse primers (HPV16 Forward 50-GTACTG-

CAAGCAACAGTTACTGCGACGT, Reverse 50-
CGACCGGTCCACCGACCCCT; HPV18 Forward

50-AACCTGTGTATATTGCAAGACAGTATTGGA

ACTTACA, Reverse 50-GATTCAACGGTTTCTGG

CACCGC) were used for amplification of 312- and

251-bp products, respectively, in the stable domain of

the HPV. DNA samples from the HPV16-positive

CaSKi and HPV18-positive HeLa cell lines were

employed as positive controls [19].

2.5. Whole-exome sequencing (WES) and

targeted MSK-IMPACT sequencing analysis

Microdissected tumor and matched normal DNA sam-

ples were subjected to WES (n = 6) or MSK-IMPACT

sequencing targeting 505 cancer-related genes (n = 3)

at MSK’s Integrated Genomics Operations (IGO), as

previously described [20–22]. In brief, somatic single

nucleotide variants (SNVs) were identified using

MuTect [23], and small insertions and deletions

(indels) were identified using a combination of Strelka,

VarScan 2, Lancet, Platypus, and Scalpel [24–28], as

previously described [20]. The potential functional

effect of each SNV was investigated in silico using a

combination of mutation prediction algorithms, as pre-

viously described [20,21,29]. copy number alterations

and loss of heterozygosity were defined using FACETS

[20,21,30], and the cancer cell fraction of each muta-

tion (i.e., the bioinformatically inferred percentage of

cancer cells harboring a given mutation) was inferred

using ABSOLUTE (v1.0.6) [31]. Mutation hot spots

were annotated according to Chang et al. [32]. Muta-

tional signatures were defined for the six cases sub-

jected to WES using deconstructSigs [33], as previously

described [34].

2.6. Validation of mutations identified by WES

A subset of the somatic nonsynonymous mutations

(n = 65) identified by WES was subjected to orthogo-

nal validation using Sanger sequencing, as previously

described [35] (Table S2). The validation rate was 62/

65 (95.4%; Tables S3,S4). In addition, we subjected

SCC1 and SCC4, initially analyzed by WES, to tar-

geted MSK-IMPACT sequencing (depth of sequenc-

ing: 5959 SCC1T, 4779 SCC4T); the somatic

nonsynonymous mutations identified by WES sequenc-

ing affecting genes, which are also part of the MSK-

IMPACT sequencing panel, were all identified, and no

additional somatic nonsynonymous mutations were

detected (Fig. S1). These data support the robustness

of our bioinformatics algorithms employed for the

analysis of the samples included in this study.

2.7. Comparison with HPV-positive head and

neck, cervical, and SCLC

The frequencies of somatic mutations identified in

UCSCCs studied here were compared with those of

HPV-positive head and neck squamous cell carcinomas
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(The Cancer Genome Atlas, TCGA, n = 29) [36],

HPV-positive cervical cancers (TCGA, n = 281) [37],

and SCLC (n = 42 [38], n = 110 [10]). Publicly avail-

able whole-exome sequencing (WES)-derived muta-

tional data were obtained from the NIH Genomic

Data Commons (MC3 data; https://gdc.cancer.gov/ab

out-data/publications/pancanatlas) [39,40] and/or the

respective supplementary datasets. Frequencies of

somatic mutations were compared using Fisher’s exact

test; two-tailed corrected P values < 0.05 were consid-

ered statistically significant. Statistical analyses were

performed using R v3.1.2 and PRISM 7 (GraphPad Soft-

ware, San Diego, CA, USA).

2.8. RNA-sequencing

RNA of sufficient quality and quantity for RNA-se-

quencing was obtained from the two frozen cases

(SSC1 and SCC2); paired-end massively parallel RNA-

sequencing was performed at MSK’s IGO using vali-

dated protocols, as previously described [18,20]. The

RNA-sequencing data were used in three ways: First,

TopHat (v2.0.13) [41] was employed for alignment,

and deFuse (v0.6.1) [42] and ChimeraScan (v0.4.5) [43]

for fusion detection. The oncogenic potential of each

transcript was assessed with Oncofuse [44]. Second,

viral integration sites were determined by aligning the

RNA sequences against a combined reference of

GRCh37 and the corresponding HPV as previously

described [45]. A putative integration region is in

between the pairs aligning to both genomes. Third,

mutations identified by WES in cases SCC1 and SCC2

were validated in the RNA-sequencing data using the

SAMtools mpileup tool [46].

3. Results

3.1. Clinicopathologic features of UCSCCs

The median age at diagnosis of the nine UCSCC

patients was 40 years (range 27–55 years; Table 1).

None of the patients had a history of prior malig-

nancy, and all patients were investigated for the pres-

ence of cancers in other anatomic sites. All UCSCCs

included in this study had the typical histologic fea-

tures of SCCs in other anatomic locations, expressed

at least one neuroendocrine marker and displayed

numerous mitotic figures and high levels of prolifera-

tion as assessed by Ki67 immunohistochemistry

(Fig. 1, Table 1). None had elements of adenocarci-

noma or squamous cell carcinoma or a preinvasive

neoplastic lesion. All cases were found to be positive

for the presence of HPV, with eight UCSCCs being

HPV18-positive and one UCSCC being HPV16-posi-

tive (Fig. S1), and expressed diffuse strong (block-like)

p16 (Table 1).

3.2. The repertoire of somatic genetic alterations

in UCSCCs

Six cases were subjected to WES and three cases to

MSK-IMPACT sequencing, with a median depth of

WES sequencing coverage of 1919 (range 1399–3369)

for tumor and 1469 (range 889–1819) for normal

samples, and of MSK-IMPACT sequencing coverage

of 4059 (range 2789–4089) for tumor and 1229

(range 1159–2029) for normal samples (Table S3).

The UCSCCs subjected to WES harbored a median of

37.5 somatic mutations (range 21–84), of which a med-

ian of 25 (range 12–57) were nonsynonymous, and

UCSCCs subjected to MSK-IMPACT sequencing har-

bored a median of 10 somatic mutations (range 0–10),
of which a median of 6 (range 0–8) were nonsynony-

mous (Table S3,S4). The repertoire of genetic alter-

ations was heterogeneous in the nine UCSCCs studied.

Two cases harbored TP53 mutations (SCC2T and

SCC9T); however, no other recurrent nonsynonymous

somatic mutations were identified across the nine

UCSCCs (Fig. 2, Table S4). SCC8T did not harbor

any somatic mutations in the 505 cancer-related genes

tested. We found few mutations in previously

described cancer-related genes including PIK3CA,

TP53, NF1, IDH1, NOTCH2, and FGFR3 [39,47–49].
The majority of mutations were likely passenger mis-

sense mutations, and few hot spot mutations were

detected in the UCSCCs studied [32], including TP53

R175H (SCC2T), TP53 R248Q (SCC9T), PIK3CA

E545K (SCC2T), and GNAS R844H (SCC4T), as well

as some truncating mutations, including PMS2 Q727*
(SCC3T), KDM6A Y890* (SCC4T), and NF1 Q357*
(SCC9T; Fig. 2, Table S4). No RB1 mutations were

found.

Copy number analysis revealed that akin to other

virus-induced cancers [50], UCSCCs displayed few

gene copy number alterations. We only detected one

MYC amplification in SCC9T, and SSC5T harbored a

FOXO3 homozygous deletion (Fig. 3). Analysis of the

cancer cell fraction of the nonsynonymous somatic

mutations identified in the eight UCSCCs harboring

mutations (SCC8T had no mutations) using ABSO-

LUTE [31] revealed intratumor genetic heterogeneity,

with a median of 41% (range 8–83%) of mutations in

a given case being subclonal (Fig. 2, Table S4).

We obtained RNA of sufficient quality and quantity

for RNA-sequencing for two UCSCCs (SSC1 and
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Table 1. Clinicopathologic information of small cell carcinomas of the uterine cervix included in this study. FF, flash-frozen; NP, not

performed.

ID Ki67

Chromogranin

A Synaptophysin

CK

AE1/3 p63 p16 HPV

Age at diagnosis

(years) Tissue

WES/ MSK-

IMPACT

SCC1T 70% Negative Positive Dot-like Negative Positive HPV18 44 FF WESa

SCC2T 85% Positive NP Dot-like Negative Positive HPV18 28 FF WES

SCC3T 50% Positive NP Dot-like Negative Positive HPV18 49 FFPE MSK-IMPACT

SCC4T 50% Positive NP Dot-like Negative Positive HPV18 35 FFPE WESa

SCC5T 75% Positive Positive Dot-like Negative Positive HPV18 55 FFPE WES

SCC6T 80% Positive Positive Dot-like Negative Positive HPV18 34 FFPE WES

SCC7T 99% Positive NP Focally

dot-like

Negative Positive HPV16 27 FFPE WES

SCC8T 90% Positive Positive Dot-like Negative Positive HPV18 43 FFPE MSK-IMPACT

SCC9T 70% Positive NP Dot-like Negative Positive HPV18 40 FFPE MSK-IMPACT

a

For validation also subjected to targeted MSK-IMPACT sequencing.

A B

C D

E

Fig. 1. Histologic and immunohistochemical features of small cell carcinomas of the uterine cervix. Representative micrographs of a

UCSCCs (case SCC6T). (A) Low-power magnification of a H&E-stained section showing the overall growth pattern of small cell carcinomas

as dense tumor masses. (B) Higher-power magnification of an H&E-stained section highlighting the morphology of small cells, showing

scant cytoplasm and small nuclei with finely granulated chromatin. Small cell carcinomas of the uterine cervix generally express (C)

cytokeratin, (D) Ki67 and (E) chromogranin A. Scale bars (A, B) 500 µm and (C-E) 100 µm.
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Fig. 2. Somatic mutations identified and cancer cell fractions in small cell carcinomas of the uterine cervix using whole-exome or targeted

MSK-IMPACT sequencing. Nonsynonymous somatic mutations (left) and cancer cell fractions of somatic mutations identified in the eight

small cell carcinomas of the uterine cervix subjected to WES or MSK-IMPACT sequencing targeting 505 cancer-related genes. No

nonsynonymous somatic mutations were identified in SCC8. Mutation type and cancer cell fractions (CCFs) are color-coded according to the

legend, with clonal mutations highlighted by an orange box. Loss of heterozygosity is depicted by a diagonal bar.
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SSC2), which did not reveal predicted in-frame fusion

transcripts/ read-throughs with high driver probability

(Oncofuse, > 0.9) and with adequate encompassing

and spanning reads (> 5) (Table S5). We did, however,

identify putative viral integration sites, which are

paired reads that have one mate aligning to the human

reference and the other mate to HPV18. We identified

such sites for SCC1 on 18q12.3 at the non-annotated

positions of 39411292, 39497187, and 39401088 with

the mate aligning to HPV18 at positions 882 (E7),

2280 (E1), and 3669 (E2), respectively. For SCC2, the

viral integration sites were located on 8p22 in RP11-

89M16.1-002, a lncRNA, at the positions 129517175,

129518183, 129517009, and 129509523 with the mate

Fig. 3. Copy number alterations in small cell carcinomas of the uterine cervix. Chromosome plots of the nine small cell carcinomas of the

uterine cervix subjected to WES or MSK-IMPACT sequencing targeting 505 cancer-related genes. copy number log2 ratios are depicted on

the y-axis with the chromosome location on the x-axis. Black arrows, amplification and homozygous deletion identified.
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in HPV18 at 2603 (E1), 4908 (L2), 5996 (L1), and

5998 (L1), respectively (Table S6).

3.3. UCSCCs display somatic genetic alterations

distinct from those of SCLCs

The overall mutation rate of UCSCCs subjected to

WES was 0.72 mutations/Mb with an average rate for

nonsilent mutations of 0.49/Mb, which is significantly

lower (P < 0.001, Benjamini–Hochberg test) than the

mutation rates described for SCLCs (overall mutation

rate 7.37/Mb), HPV-driven cervical adeno- and squa-

mous cell carcinomas (nonsilent mutation rate 3.7/

Mb), or HPV-positive head and neck cancers (overall

mutation rate 2.28/Mb) [38,51–53]. TP53 mutations

are present in the vast majority of SCLCs (up to 98%)

[10,38,40], whereas HPV-driven cancers, including pre-

viously reported cervical adeno- and squamous cell

carcinomas [37], head and neck squamous cell carcino-

mas [36], and the UCSCCs from this study, displayed

lower TP53 mutation frequencies (3–22%; Fig. 4A). In

addition, RB1 somatic mutations have been reported

to be frequent in the SCLCs (up to 98%) [10,38,40]

but were found to be rare in the HPV-positive

UCSCCs analyzed here (0%), and in previously

reported HPV-positive cervical adeno- and squamous

cell carcinomas (7%) or HPV-positive head and neck

squamous cell carcinomas (3%) [36,37] (Fig. 4A). Con-

versely, a higher frequency of PIK3CA mutations

occurred in previously reported HPV-positive cervical

adeno- and squamous cell carcinomas, head and neck

cancers [36,37], and the UCSCC analyzed here (17–
34%) as compared to previously described SCLCs (3–
5%; Fig. 4A). Mutations in the chromatin remodeling

genes KMT2C and KMT2D were reported in cervical

adeno- and squamous cell carcinomas (19% and 15%,

Fig. 4. Comparison of the mutational profiles and mutational signatures of small cell carcinomas of the uterine cervix with SCLCs, HPV-

positive head and neck carcinomas, and HPV-positive cervical carcinomas. (A) Comparison of somatic nonsynonymous mutations in small

cell carcinomas of the uterine cervix (this study) with those of SCLCs and HPV-driven head and neck and HPV-driven cervical cancers

(adenocarcinoma/ squamous cell carcinomas), showing the top 15 recurrently mutated genes across all studies. (B) Mutational signatures in

small cell carcinomas of the uterine cervix subjected to WES (n = 6; this study), SCLCs, and HPV-driven head and neck and HPV-driven

cervical cancers (adenocarcinoma/ squamous cell carcinomas). HNSC, head and neck squamous cell cancer; CESC, cervical

adenocarcinoma/ squamous cell carcinomas.
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respectively), but were absent in previously reported

SCLCs and in the UCSCCs analyzed here (Fig. 4A).

We next defined the mutational signatures of the

UCSCCs subjected to WES using all somatic SNVs

identified. Four of the cases studied here displayed a

dominant aging signature (i.e., signature 1), while

SCC7, the only case that tested positive for HPV16,

displayed an APOBEC signature (i.e., signature 2;

Fig. 4B) [54]. APOBEC3A has been suggested to pos-

sess antiviral effects by inhibition of HPV E6 and E7

expression through cytidine deaminase [55]. Consistent

with the repertoire of somatic mutations, we observed

that like UCSCCs, HPV-positive cervical adeno- and

squamous cell carcinomas and HPV-positive head and

neck cancers preferentially displayed a dominant muta-

tional signature 1 associated with aging and the APO-

BEC-related signatures 2 and 13. In contrast, the

majority of SCLCs displayed a dominant signature 4

associated with tobacco smoke, and only a few cases

harbored a dominant aging-related mutational signa-

ture (Fig. 4B).

4. Discussion

Massively parallel sequencing studies have focused on

the characterization of the genetic landscape of many

tumors of different organ sites, which revealed that

cancers from different organs sites often share genetic

features, whereas, conversely, different cancer types

from the same organ can be quite distinct at the

genetic level [39,56]. For example, TP53 mutations and

high levels of gene copy number alterations have been

found in high-grade serous ovarian, serous endome-

trial, and basal-like breast carcinomas [48,57,58]. Con-

versely, there are alterations in genes, whose effects

may differ depending on the organ site/ cell of origin.

A prime example is provided by the NOTCH gene

family, which is inactivated in some squamous cell

cancers of the lung, head and neck [53], skin [59], and

cervix [60] but is activated by mutation in leukemias

[61].

Small cell neuroendocrine carcinomas, irrespective

of their site of origin, share the same histologic fea-

tures. Other than recurrent TP53 and RB1 mutations

in small cell neuroendocrine carcinomas of the GI

tract and pancreas [62,63], little is known about the

genetic commonalities or differences in these tumors

originating outside of the lung. Due to morphologic

and biologic similarities between SCCs of the uterine

cervix and SCLCs, it has long been hypothesized that

these tumors might be genetically similar and that they

may share affected genes and/or pathways [7]. Another

hypothesis that has been brought forward is that

adenocarcinomas and/or squamous cell carcinomas

may progress to SCCs [64], suggesting that they would

harbor a similar mutational repertoire plus additional

mutations characteristic for SCCs.

Here, we characterized nine UCSCCs at the histo-

logic and the molecular level to assess whether these

tumors are genetically related to their morphologic

and biologic counterparts in the lung, other common

types of cervical cancer, or whether these tumors are

genetically more similar to other HPV-driven carcino-

mas, such as carcinomas of the head and neck. Our

analyses demonstrated that UCSCCs harbor a low

overall mutation burden, few copy number alterations,

and no highly recurrently mutated genes. Only 2 of 9

UCSCCs studied here harbored TP53 mutations and

1/9 a PIK3CA mutation, whereas other targeted

sequencing studies reported 4 of 10 and 5 of 44

UCSCCs to harbor TP53 mutations, and 3 of 10 and

8 of 44 to have PIK3CA mutations [15,16]. Another

study on five UCSCCs found alterations in the AKT/

mTOR pathway, including PTEN and TSC1/2 muta-

tions [65]. Further studies are warranted to capture the

entire genetic complexity/ heterogeneity of UCSCCs.

Virus-negative tumors require several genetic events to

induce malignant transformation, whereas the viral

integration is a strong oncogenic event in virus-positive

tumors. Notably, we found that UCSCCs harbor even

fewer genetic alterations than HPV-positive head and

neck cancers or HPV-positive adeno- and squamous

cell carcinomas of the uterine cervix. We further

observed that like other HPV-driven tumors, however,

UCSCCs lacked RB1 mutations and had a low fre-

quency of TP53 mutations (2/9) and displayed muta-

tional signatures associated with aging or the activity

of the APOBEC family of deaminases, whereas SCLCs

generally displayed tobacco smoke-related mutational

signatures.

All but one UCSCC studied here were HPV18-pos-

itive, in contrast to common-type cervical cancers,

which most commonly are HPV16-positive [37,66].

High-risk HPVs are double-stranded DNA viruses

that infect epithelial cells [11,67]. Tumorigenesis by

high-risk HPVs is driven by their two main viral

oncogenes, E6 and E7, which inactivate p53 and

pRb, respectively, leading to cell-cycle deregulation

and inhibition of p53-mediated apoptosis [11,67]. E7

binds pRb, targeting it toward proteasomal degrada-

tion, in turn releasing the E2F transcription factor,

resulting in CDKN2A (or p16) overexpression and

cell-cycle progression [11,67]. SCLCs harbor recurrent

genetic alterations affecting the p53 and the pRB

pathways [10], with biallelic inactivation of TP53 and

RB1 being found in the vast majority of cases. Given
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that the UCSCCs analyzed here harbored HPV18 or

HPV16 and that the viral oncogenes E6 and E7 inac-

tivate p53 and pRB, we anticipated that these tumors

would display wild-type TP53 and RB1 but would

harbor functional loss of these tumor suppressor

genes. Consistent with this notion, only SCC2T and

SCC9T harbored TP53 hotspot mutations. Hence,

despite the lack of TP53 and RB1 somatic mutations

in the UCSCCs analyzed here, they likely display

inactivation of the protein products of these genes

akin to SCLCs.

This study has several limitations. UCSCCs are

aggressive tumors, which are only rarely resected, and

the availability of clinical samples for research is there-

fore limited; hence, the sample size of the current

study is small. The genetic analysis of nine cases per-

formed here, however, provided us with novel insights

on their landscape of mutations, gene copy number

alterations, and mutational signatures. In addition, we

only performed whole-exome and targeted sequencing

analyses of the UCSCCs and RNA-sequencing for two

cases; we therefore cannot rule out that noncoding

alterations and/or changes at the epigenetic level may

play a role in UCSCCs.

5. Conclusions

In summary, we demonstrate here that UCSCCs are

characterized by few nonrecurrent mutations and few

copy number alterations, and display aging and APO-

BEC-related mutational signatures, akin to other

forms of HPV-related malignancies. In contrast to

SCLCs, which are characterized by TP53 and RB1

alterations, UCSCCs were found to be positive for the

presence of HPV, which targets and inactivates the

suppressors p53 and RB.
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