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Abstract: Drought stress causes recurrent damage to a healthy ecosystem because it has major ad-
verse effects on the growth and productivity of plants. However, plants have developed drought
avoidance and resilience for survival through many strategies, such as increasing water absorption
and conduction, reducing water loss and conversing growth stages. Understanding how plants re-
spond and regulate drought stress would be important for creating and breeding better plants to help
maintain a sound ecosystem. Epigenetic marks are a group of regulators affecting drought response
and resilience in plants through modification of chromatin structure to control the transcription of
pertinent genes. Histone acetylation is an ubiquitous epigenetic mark. The level of histone acety-
lation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs),
determines whether the chromatin is open or closed, thereby controlling access of DNA-binding
proteins for transcriptional activation. In this review, we summarize histone acetylation changes in
plant response to drought stress, and review the functions of HATs and HDACs in drought response
and resistance.

Keywords: drought stress; histone acetylation; histone acetyltransferases (HATs); histone deacety-
lases (HDACs)

1. Drought Response Physiology and Strategies

Drought is a major concern for agriculture and forestry productivity, and it is predicted
to increase in duration and severity due to the global climate change [1]. Drought is often
accompanied by productivity loss; long-term severe drought stress may even lead to plant
mortality [2,3]. Because of the sessile nature, plants have evolved sophisticated strategies to
develop drought resistance for survival [4–9]. Increasing water absorption and conduction,
reducing water loss, conversing growth stages are effective ways for plants to survive
under drought conditions [3,4].

Roots are key tissues of plants that absorb and uptake water from the soil to above-
ground organs. Under drought conditions, plants develop a better root system by adjusting
the depth and density of their roots to increase water absorption from the soil [4,6,7]. For
example, because deep roots are effective at enhancing water capture and increasing the
water uptake range under drought stress, plants tend to develop more lateral roots in the
wet soil side than the dry soil side [4,6,7].

The stem of plants is an important aboveground tissue for water conduction. Plants
also change cell morphology of the stem to enhance water conduction [4]. The charac-
teristics of vascular cells in the stem of plants are the most important factors to resist
embolism and maintain water conduction [10,11]. Small changes in size, quantity, distri-
bution, spacer and other characteristics of the vascular cells can greatly affect the water
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conduction efficiency [12]. For example, a larger vascular cell aperture increases the ef-
ficiency of water conduction, but also increases the production of cavitation [13]. Under
drought stress, plants balance water conduction efficiency and cavitation risks to create
optimal characteristics of vascular cells for drought resistance [2,13].

Plant leaves are the main tissues of water loss [4]. The morphological and physiological
characteristics of leaves are crucial to reducing water loss. Upright and rolling leaves
are effective mechanisms of drought resistance for receiving less radiation and therefore
reducing water loss [4]. Leaves with traits such as thicker wax layer, smaller and denser
stomata are always a benefit to support water conservation. Stomata are the vital organs
for exchanging gas and water between the plant and the external environment. Under
drought conditions, plants often reduce water loss through rapid stomatal closure [4].

In addition, the conversion between vegetative growth and reproductive growth is
also an important drought resistance strategy [4]. For example, it is a good strategy for
plants to complete their life cycles before severe drought stress, so early flowering may
take place to prevent the plants from abortion [3,4].

2. Molecular Response to Drought: The ABA Drought Response Pathways

The drought response in plants is frequently initiated by signal pathways, such as
abscisic acid (ABA), acetic acid, jasmonic acid (JA) pathways, etc. [14–19]. ABA biosyn-
thesis and signaling pathway is the most important biochemical and molecular triggering
response and resistance to drought in plants. When plants sense water deficiency in soil,
ABA is synthesized in roots and released into aboveground organs to trigger plant drought
response [18]. There are two pathways, ABA-dependent and ABA-independent, that are as-
sociated with the regulation of drought-responsive genes [15,16]. In the ABA-independent
pathway, dehydration-responsive element binding protein 2A (DREB2A) is a key transcrip-
tion factor which plays pivotal roles in drought response [20,21]. In this review, we focus
on the ABA-dependent signaling pathway.

In the ABA signal pathway, pyrabactin resistance/pyrabactin resistance-like/regulatory
component of ABA receptors (PYR/PYL/RCARs), SNF1 (sucrose non-fermenting 1)-related
protein kinase 2 (SnRK2) and protein phosphatase 2C (PP2C) are the three core components.
PYR/PYL/RCARs are ABA receptors that have the ability to recognize and bind ABA
directly. SnRK2 is a positive regulator of downstream proteins, such as transcription factors,
through phosphorylation of the protein. Under normal conditions, ABA is absent, and
PP2C associates with SnRK2 to prevent SnRK2-mediated phosphorylation of downstream
drought response genes, thereby deterring the initiation of drought responses [14,15]. Un-
der drought conditions, ABA is accumulated rapidly, PYR/PYL/RCAR receptors recognize
and bind to ABA and interact with PP2C. This process leads to the release and activation
of SnRK2 [14,15]. The activated SnRK2 phosphorylates downstream drought response
genes, such as abscisic acid-responsive element binding protein/ABRE binding factor
(AREB/ABF), are the best characterized drought-responsive transcription factors [14,22].
AREB/ABF bind to ABRE (ABA-responsive element) containing ABA-responsive genes
and activate their expression to initiate drought responses (Figure 1) [13,14,23].

It is well described that drought response in plants is associated with the regulation
of drought response genes, such as ABA-responsive genes [16,24]. These processes rely
on complex transcriptional regulation. An increasing amount of evidence indicates that
epigenetic modifications also play significant roles in drought response regulation [25–29].
However, there has long been a missing link between transcriptional and epigenetic
regulation mechanisms.
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Figure 1. ABA-mediated signal pathway in plants for drought responses.

3. Regulation of Histone Acetylation in Drought Response

Plants respond and adapt to drought stress through a series of transcriptional acti-
vations or repressions [24,30]. These transcriptional activations or repressions rely on the
complex chromatin structure changes caused by epigenetic modifications [25,26,31,32].
Epigenetic mechanisms regulate or modify gene expression without changes in the under-
lying DNA sequence. These mechanisms include DNA methylation, histone modifications,
histone variants, and chromatin remodeling, which modify chromatin structure and affect
gene transcription [25,26]. Chromatin is a highly ordered structure composed of DNA,
histones and other chromosomal proteins. The basic unit of chromatin is the nucleosome,
which consists of 147 bp of DNA wrapped 1.7 times around an octamer protein core of
histones containing two copies of H2A, H2B, H3 and H4 (Figure 2) [25,33]. There are 14
contact points between histones and DNA, contributing to the compactness and stability of
chromatin [34]. The N-terminal tails of the histone proteins protrude from the nucleosome
core and are subjected to post-translational modifications (PTMs), such as acetylation,
methylation, and phosphorylation [35]. There are at least eight types of histone N-tail
modifications, termed “epigenetic marks” or “histone code” [26]. Histone tails have also
been considered as sites of integration of signals transduced from transacting stimuli,
such as stresses. Signaling events may act directly on histone N-terminal tails to modify
chromatin, such as acetylation of histone lysines, and thus regulate chromatin structure
and gene expression [36].

Acetylation and methylation at histone lysine residues are two of the most studied
marks [25,26,37]. The levels of acetylated histones are dynamic and depend on the com-
bined action processes catalyzed by two groups of enzymes, histone acetyltransferases
(HATs) and histone deacetylases (HDACs) (Figure 3) [37]. HATs catalyze the transfer of the
acetyl group from acetyl coenzyme-A onto the ε-amino acid group of lysine residues, mak-
ing histones less positively charged and therefore less attracted to the negatively charged
DNA resulting in an “open” chromatin [33,38,39]. HDACs do the opposite—removing the
acetyl group from the lysine residues to “close” chromatin [33,40]. At any given time and
place, the quantity of the acetylated histones, quantifiable by ChIP (Chromatin immuno-
precipitation), represents the net action of histone acetylation [13]. The quantity of the net
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acetylation determines whether the chromatin is open or closed, thereby controlling access
of DNA-binding proteins, such as transcription factors, for transcriptional activation [13].
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Modification-specific antibody-based ChIP coupled with sequencing (ChIP-seq) is
highly reliable for the genome-wide analysis of histone modification patterns and has been
used for plants, which include Arabidopsis, rice, maize, and Populus trichocarpa [13,41–43].
These studies revealed some common features regarding genome-wide modification pat-
terns. Acetylation is enriched at sites in the promoter and at the 5’ end surrounding the
transcription start site and that promoter regions of active genes have reduced nucleo-
some occupancy.

4. HATs and HDACs in Plants

The level of histone acetylation is determined by the regulation of histone acetyltrans-
ferases (HATs) and histone deacetylases (HDACs), and the antagonism between HATs and
HDACs leads to dynamic control of chromatin structure [39,44]. HATs are responsible
for adding acetyl groups to histones causing increasing histone acetylation; this process
results in gene activation [33,38]. HDACs are responsible for removing acetyl groups added
by HATs to reduce histone acetylation, and HDACs always associate with gene repres-
sion [33,40,45]. Evidence in previous research indicates that HATs and HDACs always
target the lysine residues of H3 and H4, such as H3K9, H3K14, H3K18, H3K23, H3K27,
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H3K36, H4K5, H4K8, H4K12 and H4K16 to maintain the dynamic balance of histone
acetylation in plants [33]. HATs have been identified in many plants (Table 1). According
to their sequence characterization, HATs have been divided into four distinct families,
such as GNAT (GNAT: GCN5-related N-terminal acetyltransferases), MYST (MYST: MOZ-
YBF2/SAS3-SAS2/TIP60), CPB (p300/CREB binding protein) and TAFII250 (TATA-binding
protein associated factor) [46]. HDACs have also been identified in plants (Table 1) and
have been divided into three sub-families, i.e., Reduced Potassium Dependency 3/histone
deacetylase 1 (RPD3/HDA1), Silent Information Regulator 2 (SIR2) and the plant-specific
histone deacetylase 2 (HD2) [46]. Different families of HATs and HDACs have distinct
protein domains that are responsible for regulating levels of acetylation and, thus, gene
expression in many biological processes, including drought response and resistance [46].

Table 1. Identification of HATs and HDACs in different plants.

Plant
HATs HDACs

Number Reference Number Reference

Arabidopsis thaliana 12 [46] 18 [46]
Brachypodium distachyon 8 [47] - -

Chinese Cabbage (Brassica rapa) 15 [48] 20 [49]
Cotton (Gossypium raimondi
and Gossypium arboretum) 9 [50] - -

Cotton (Gossypium hirsutum) 18 [50] 30 [51]
Dendrobium officinale - - 14 [52]
Grape (Vitis vinifera) 7 [53] 13 [53]

Litchi (Litchi chinensis Sonn. cv. Feizixiao) 6 [54] 11 [54]
Maize (Zea mays) - - 18 [55]

Marchantia polymorpha 7 [56] 12 [56]
Rice (Oryza sativa) 8 [57] 18 [58]

7 Gramineae genomes (Oryza sativa) 37 [59] 110 [59]
Soybean (Glycine max) - - 28 [60]

Sweet orange (Citrus sinensis) 50 [61] 16 [61]
Tea (Camellia sinensis L. O. Kuntze) - - 18 [62]

Tomato (Solanum lycopersicum) 32 [63] 15 [63]
Wheat (Triticum aestivum) 30 [64] 53 [64]
Wheat (Triticum aestivum) 31 [65] 49 [66]

5. Histone Acetylation Level in Drought Responses

Histone acetylation always acts as an active regulator cooperating with other factors,
such as transcription factors and other proteins [67,68]. The levels of histone acetyla-
tion are dynamic and associate with the combined action processes catalyzed by HATs
and HDACs [39]. Drought stress often induces histone acetylation changes in “drought-
responsive” genes and other genes, causing genome-wide histone acetylation alterations
in plants.

5.1. HATs

HATs are responsible for increasing histone acetylation and associate with gene acti-
vation. Recent evidence shows that drought stress induces different expression patterns of
HAT genes, resulting in changes in the levels of histone acetylation of drought response
genes. In rice, the expression of OsHAG702, OsHAG703 and OsHAM701 was significantly
increased after drought treatment [59]. In Chinese cabbage, the expression of BraHAC1,
BraHAC2, BraHAC3, BraHAC4, BraHAC7, BraHAG2, BraHAG5, BraHAG7 and BraHAF1 was
increased after drought treatment [48]. In Brachypodium distachyon, the expression of five
BdHAT genes, i.e., BdHAG1, BdHAG3, BdHAC1, BdHAC4 and BdHAF1 was increased after
drought treatment [47].

Up- or down-expression of HAT genes can easily lead to different expression of
drought response genes and variations of drought-resistant characteristics in plants. TaHAG2,
TaHAG3 and TaHAC2 of HAT genes were up-regulated under drought stress in a higher
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drought resistance wheat variety called BN207, but not in other drought-sensitive va-
rieties. This result suggests that the differential expression of these HAT genes might
be responsible for the higher drought resistance of BN207 [64]. In P. trichocarpa, RNA
interference-mediated downregulation of the HAT gene PtrGCN5-1 resulted in reduced
expression of drought response genes and highly drought-sensitive plants [13].

The above studies describe types of expression alterations of HAT genes in plants
under drought stress. A recent work uncovered a detailed mechanism of a HAT complex
which is recruited by a transcription factor to enhance enrichment of H3K9ac and RNA
polymerase II specifically at related genes for drought response [13]. H3K9ac, a general
chromatin marker of gene activation, is one of the most extensively studied histone acetyla-
tion marks in vascular plants [13,67,69,70]. Hyperacetylation of H3K9 is almost associated
with the activation of transcription, whereas hypoacetylated histones are accompanied
by transcriptional repression [13,70–72]. The HAT family gene GCN5 is a well-known
enzymatic protein responsible for the lysine acetylation of histone H3 and H4 [73]. In
P. trichocarpa, drought stress results in histone acetylation changes at the whole genome
level. Consistent with H3K9ac being a gene activation mark, most up-regulated genes
induced by 5 days (D5) or 7 days (D7) of drought treatment exerted increased H3K9ac level
at their promoter regions, and decreased H3K9ac level at promoters of down-regulated
genes. The authors identified nearly 4000 (3994, D5; 3498, D7) up-regulated genes with
increased H3K9ac level and down-regulated genes with decreased H3K9ac level. Motif
analysis of these differentially expressed genes (DEGs) revealed that the ABRE motif for
the ABA-Responsive Element Binding protein (AREB1) was most significantly enriched
within the H3K9ac-associated promoters [14,23]. A series of molecular biology techniques
demonstrated that the AREB1 transcription factor interacts with the GCN5-ADA2b histone
acetyltransferase complex and recruits the complex to drought-responsive genes, such as
PtrNAC006, 007 and 120 genes, through binding to ABRE motifs, resulting in enhanced
H3K9ac and RNA polymerase II enrichment for activating expression of the PtrNAC006,
007 and 120 genes, thereby allowing P. trichocarpa for adaptation to drought stress. This
research suggests that transcription factors interplay and coordinate with H3K9ac in re-
sponse to drought stress, demonstrating a link between transcriptional and epigenetic
regulations in controlling drought response and resilience [13].

5.2. HDACs

Studies have reported that drought stress induces different expression patterns of
HDAC genes to influence levels of histone acetylation at drought-related genes and change
the drought resistance of plants. Yang et al. revealed that the expression levels of nine
examined GmHDACs (GmHDA6, GmHDA8, GmHDA13, GmHDA14, GmHDA16, GmSRT2,
GmSRT4, GmHDT2, GmHDT4) were decreased by drought treatment in soybean [60].
In rice, the transcriptional levels of two HDAC genes (OsHDA703, OsHDA710) were
significantly decreased, while OsHDA704, OsHDA705, OsHDA706, OsHDA711, OsHDA712,
OsHDA713, OsHDT701 and OsSRT702 were significantly increased [59]. In Dendrobium
officinale, HDAC genes displayed different expression patterns in different tissues. HDAC
genes also displayed different transcriptional level to respond to drought. For example,
DoHDA10 and DoHDT4 were highly up-regulated after PEG-mediated drought treatment,
while other HDAC genes were not changed [52]. Wei et al. studied the roles of six HDACs
in response to drought stress in kenaf and found up-regulation of all these HDACs after
PEG treatments [74]. In addition, high acetylation levels of H3K and low acetylation
levels of H3K27 and H4K5 were observed following a lower PEG treatment. Meanwhile,
acetylation levels of H3K9, H3K27 and H4K5 were all reduced in response to a higher PEG
treatment [74].

As drought stress induces different expression patterns of HDACs, disturbed expres-
sion of HDACs always leads to drought-resistant characteristics changes. A tomato HDAC
gene, SlHDA5, a gene expressed ubiquitously in different tissues and development stages,
is induced by ABA. SlHDA5-RNAi transgenic plants were more sensitive to drought stress
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than wild type plants [75]. In Arabidopsis, mutants of HDA19 were more drought-resistant
than wild type plants [76]. Additionally, overexpression plants of another HDAC gene,
AtHD2D, exhibited higher degrees of tolerance to abiotic stresses, including drought [77].
In addition, a drought-responsive gene in 84 K poplar (Populus alba × Populus glandulosa),
named 84KHDA903, was transformed into tobacco for understanding its function in stress
responses. The 84KHDA903-expressing tobacco were more drought-tolerant and showed
strong capacity to recover after drought stress [78]. In Brachypodium distachyon, overexpres-
sion plants of a HDAC gene BdHD1 displayed a hypersensitive phenotype to ABA and
exhibited better survival under drought conditions. Consistently, the BdHD1-RNAi plants
were insensitive to ABA with low survival under drought treatment [79]. ChIP-seq analysis
showed that overexpression of BdHD1 led to lower H3K9 acetylation at the transcriptional
start sites of 230 drought-specific genes, and expression of these genes was repressed. The
study concluded that BdHD1 changes the level of histone acetylation at drought-responsive
genes to influence drought resistance of Brachypodium distachyon [79].

In addition to the work described above, some detailed mechanisms of HDACs
responding to drought stress have been revealed, for HDA6, HDA9 and HDA15. In
Arabidopsis, HDA6 works as an ON/OFF switch of a complex drought-responsive path-
way [19]. HDA6 triggers a dynamic metabolic flux conversion from glycolysis to acetate
synthesis to stimulate the jasmonate (JA) signaling pathway to develop drought tolerance
(Figure 4) [19]. In plants, the acetic acid biosynthesis pathway is considered the conver-
sion from pyruvate to acetic acid. Pyruvate decarboxylase PDC1 initiates the first step to
redirect the metabolic flux from pyruvate in glycolysis to acetaldehyde. Additionally, ac-
etaldehyade dehydrogenase ALDH2B7 converts acetaldehyde to acetate subsequently [80].
Under normal conditions, HDA6 binds to PDC1 and ALDH2B7 to repress the expression of
them by reducing histone H4 acetylation (H4Ac) enrichment at their transcribed gene body
regions. Under drought conditions, HDA6 dissociates from PDC1 and ALDH2B7 to trigger
increased H4Ac enrichment and transcriptional upregulation of these two genes. As a
result, the acetic acid biosynthesis pathway is initiated, pyruvate in glycolysis is converted
to acetaldehyde by PDC1, and acetaldehyde is converted to acetate by ALDH2B7. The
accumulation of acetate is essential for drought tolerance improvement. Evidence suggests
that the drought tolerance of Arabidopsis pretreated with exogenous acetic acid exhibited
striking improvement [19]. In the study, 357 genes were induced under drought, specif-
ically in the acetic acid-pretreated plants, and JA response genes were enriched among
these genes [19]. In acetic acid-treated plants, both the expression of the JA biosynthetic
enzyme AOC3 and the biosynthesis of JA and jasmonoyl–isoleucine (JA-Ile) were greatly
induced [19]. This means that HDA6 triggers the acetic acid biosynthesis, accumulation
of acetic acid stimulates the JA signaling pathway initiation to enhance plant drought
tolerance. In this process, the JA receptor COI1 is essential. The interaction between HDA6
and COI1 suggests that HDA6 regulates JA signaling pathways cooperatively with COI1.
Additionally, the chromatin status of COI1 target genes might be influenced by histone
acetylation [19].

The Arabidopsis HDA9, a RPD3-type histone deacetylase, is involved in modulating
plant responses to drought stress by regulating histone acetylation levels of many stress-
responsive genes [81]. The loss-of-function mutants of HDA9 were sensitive to drought
stress, but insensitive to ABA [82,83]. HDA9 can work together with Powerdress (PWR)
protein to induce expression of ABA-responsive genes, including RD29A, RD29B, and
COR15A for plant ABA response and drought tolerance [82]. On the other hand, the ABA
INSENSITIVE 4 (ABI4) transcription factor, associated with regulation of plant sensitivity
to ABA, interacts with PWR and HDA9 to influence the accumulation of ABA and plant
drought response [82,83]. CYP707A1 is key enzyme which is responsible for converting
active ABA to inactive ABA [83]. Under normal conditions, CYP707A1 expresses to keep a
low level of ABA in plants. Under drought conditions, PWR-HDA9-ABI4 complex binds
to the promoter of CYP707A1 and reduces the histone acetylation levels for transcriptional
repression, which results in accumulation of ABA to initiate drought response [82,83].
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drought response [82,83]. CYP707A1 is key enzyme which is responsible for converting 
active ABA to inactive ABA [83]. Under normal conditions, CYP707A1 expresses to keep 
a low level of ABA in plants. Under drought conditions, PWR-HDA9-ABI4 complex binds 
to the promoter of CYP707A1 and reduces the histone acetylation levels for transcriptional 
repression, which results in accumulation of ABA to initiate drought response [82,83]. 

Based on another study, HDAC gene HDA15 is recruited by a transcription factor to 
influence ABA signaling response in Arabidopsis [84]. MYB96, an ABA-inducible tran-
scription factor, can bind to the promoters of many ABA-responsive genes for expression 
regulation to optimize stress tolerance [85–87]. In the presence of moderate ABA, MYB96 
works as a transcriptional activator to promote expression of ABA-induced genes, such as 
RD29A. However, under high concentrations of ABA, MYB96 interacts with HDA15 and 
presents as a transcriptional repressor. In the presence of high ABA, MYB96 specifically 
binds to promoters of RHO GTPASE OF PLANTS (ROP) genes, negative regulators of 
ABA responses, and recruits the HDA15 protein to remove acetyl groups of histone H3 

Figure 4. A model of HDA6-mediated glycolysis-acetic acid-JA drought response signaling pathway.

Based on another study, HDAC gene HDA15 is recruited by a transcription factor to
influence ABA signaling response in Arabidopsis [84]. MYB96, an ABA-inducible tran-
scription factor, can bind to the promoters of many ABA-responsive genes for expression
regulation to optimize stress tolerance [85–87]. In the presence of moderate ABA, MYB96
works as a transcriptional activator to promote expression of ABA-induced genes, such as
RD29A. However, under high concentrations of ABA, MYB96 interacts with HDA15 and
presents as a transcriptional repressor. In the presence of high ABA, MYB96 specifically
binds to promoters of RHO GTPASE OF PLANTS (ROP) genes, negative regulators of ABA
responses, and recruits the HDA15 protein to remove acetyl groups of histone H3 and H4
from the cognate regions. For this reason, the expression of ROP genes is repressed and the
ABA signaling response is enhanced [84].

6. Conclusions

Drought stress often induces histone acetylation changes for many drought-responsive
genes to trigger transcriptional activations or repressions for drought response/resistance
in plants. The changes in histone acetylation are dynamic and determined by HATs
and HDACs. HATs are responsible for increasing histone acetylation at related genes to
activate transcription. HDACs are responsible for reducing histone acetylation to repress
transcription. Both HATs and HDACs have been identified in many plants. HATs and
HDACs work in many drought response signal pathways, including ABA, acetic acid
and JA pathways, by changing the level of histone acetylation at targeted pathway genes.
Other regulatory factors, such as transcription factors and protein, work cooperatively with
HATs and HDACs to influence the levels of histone acetylation. While histone acetylation
affecting the expression of many genes has been revealed, knowledge of detailed molecular
and genetic mechanisms underlying such affects is still lacking. Crosstalk between histone
acetylation and other epigenetic marks is worthy of being explored.
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