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Controlling for Participants’ 
Viewing Distance in Large-Scale, 
Psychophysical Online Experiments 
Using a Virtual Chinrest
Qisheng Li   1*, Sung Jun Joo   3*, Jason D. Yeatman2,4,5 & Katharina Reinecke1

While online experiments have shown tremendous potential to study larger and more diverse 
participant samples than is possible in the lab, the uncontrolled online environment has prohibited 
many types of psychophysical studies due to difficulties controlling the viewing distance and 
stimulus size. We introduce the Virtual Chinrest, a method that measures a participant’s viewing 
distance in the web browser by detecting a participant’s blind spot location. This makes it possible to 
automatically adjust stimulus configurations based on an individual’s viewing distance. We validated 
the Virtual Chinrest in two laboratory studies in which we varied the viewing distance and display 
size, showing that our method estimates participants’ viewing distance with an average error of 
3.25 cm. We additionally show that by using the Virtual Chinrest we can reliably replicate measures 
of visual crowding, which depends on a precise calculation of visual angle, in an uncontrolled online 
environment. An online experiment with 1153 participants further replicated the findings of prior 
laboratory work, demonstrating how visual crowding increases with eccentricity and extending this 
finding by showing that young children, older adults and people with dyslexia all exhibit increased 
visual crowding, compared to adults without dyslexia. Our method provides a promising pathway to 
web-based psychophysical research requiring controlled stimulus geometry.

Psychophysical methodologies have been extensively applied to study human perception and performance in 
healthy adults, and to study individual differences across participants and in relation to a variety of clinical condi-
tions. Yet most psychophysical studies are constrained to the laboratory because of the need to rigorously control 
visual stimulus presentation with the help of a physical chinrest. Given the difficulty of bringing participants into 
a lab, these studies generally rely on small samples and can risk generalizability to the larger population.

To conduct studies with larger and more diverse samples, researchers have developed and evaluated alter-
native ways to recruit participants, such as through the online labor market Amazon Mechanical Turk (MTurk) 
(e.g.1,2) or through volunteer-based online experiment platforms such as LabintheWild3. Compared to traditional 
laboratory experiments, such online studies offer faster and more effortless participant recruitment4–7 and have 
resulted in large-scale studies comparing multiple demographic groups, ages, languages, and countries3,8–11. A 
growing body of literature has explored methodologies for conducting a broad range of experiments, and shown 
that online experiments yield results comparable to those obtained in conventional laboratory settings1,10,12–20.

For instance, online experiments have been shown to accurately replicate the findings from behavioral exper-
iments that rely on reaction time measurement1,14–18, rapid stimulus presentation1,12,13 and learning tasks with 
complex instructions1. De Leeuw and Motz conducted a visual search experiment with interleaved trials imple-
mented in both the Psychophysics Toolbox (in lab) and JavaScript (online) and showed that both software pack-
ages were equally sensitive to changes in response times19. Similarly, Reimers and Stewart demonstrated that two 
major ways of running experiments online, using Adobe Flash or JavaScript, can both be used to accurately detect 
differences in response times despite differences in browser types and system hardware (machines)20. Researchers 

1Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98195, USA. 
2Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, 98195, USA. 3Department of 
Psychology, Pusan National University, Busan, 46241, Republic of Korea. 4Graduate School of Education, Stanford 
University, Stanford, CA, 94305, USA. 5Division of Developmental-Behavioral Pediatrics, Stanford University School 
of Medicine, Stanford, CA, 95305, USA. *email: liqs@cs.washington.edu; sungjun@pusan.ac.kr

OPEN

https://doi.org/10.1038/s41598-019-57204-1
http://orcid.org/0000-0001-7609-8102
http://orcid.org/0000-0001-6915-6992
mailto:liqs@cs.washington.edu
mailto:sungjun@pusan.ac.kr


2Scientific Reports |          (2020) 10:904  | https://doi.org/10.1038/s41598-019-57204-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

have also investigated if web-based within-subjects experiments studying visual perception can accurately repli-
cate prior laboratory results2,21. These online experiments replicated prior laboratory results despite not being able 
to control for participants’ viewing distance and angle.

To the best of our knowledge, no prior work has investigated whether laboratory results of studies using a 
physical chinrest can be replicated online for between-subjects experiments in which metrics are being com-
pared across participants, and therefore require tight control of a participants’ viewing distance. To fill this gap, 
we developed the Virtual Chinrest, a novel method to accurately measure a person’s viewing distance through 
the web browser. To estimate an individual’s viewing distance, we measure the eccentricity of their blind spot 
location. We show that our method enables remote, web-based psychophysical experiments of human visual 
perception by making it possible to automatically adjust stimulus size and location to a participant’s individual 
viewing distance.

The Virtual Chinrest
Our approach includes two tasks, first estimating an individual’s screen resolution followed by their viewing 
distance:

Screen resolution.  One challenge for conducting psychophysical experiments in the web browser is that the 
resolution and size of the display are unknown, prohibiting control of the size and location of stimuli presented 
to participants. To estimate the screen resolution, we calculate the logical pixel density (LPD) (in pixels per mm) 
of a display using a card task. We adopted a method that is already commonly used on the internet to help people 
measure items on the screen: As shown in Fig. 1a, we ask participants to place a real-world object (in our case a 
credit card or a card of equal size, which are standardized in size and widely available) on a specific place on the 
screen. Participants can adjust a slider until the size of an image of the object on the screen matches the real-world 
object. We then calculate the ratio between the card image width in pixels and the physical card width in mm to 
obtain the LPD in pixel per mm: LPD = cardImageWidth/85.60 where cardImageWidth is the width of the card 
image in the web browser in pixels after the participant adjusted the slider and 85.60 mm is the width of the card 
in the real world. Knowing the LPD, we can present online participants with stimuli of a precise size in pixels 
(on-screen distance) independent of their individual display sizes and resolutions where:

=
‐px mm px

mm
LPD ( / ) On screen Distance ( )

Physical Distance ( ) (1)

We will use this ratio (LPD) to convert between the on-screen distance and physical distance in the following 
calculation of the viewing distance.

Viewing distance.  The most critical issue for web-based online psychophysical experiments is how to con-
trol stimulus geometry given unknown viewing distance. To tackle this issue, we devised a method in which we 
leverage the fact that the entry point of the optic nerve on the retina produces a blind spot where the human eye 
is insensitive to light. The center of the blind spot is located at a relatively consistent angle of α = 15° horizontally 
(14.33° ± 1.3° in Wang et al.22, 15.5° ± 1.1° in Rohrschneider23, 15.48° ± 0.95° in Safran et al.24, and 15.52° ± 0.57° 
in Ehinger et al.25). Given this, we can calculate an individual’s viewing distance from simple trigonometry, as 
shown in Fig. 2. More precisely, the LPD obtained from the card task lets us calculate the physical distance s by 
Eq. 1. Once we have detected the blind spot area, we can then calculate the viewing distance d.

Inspired by different educational blind spot animations existing online (e.g.26), we designed and developed 
a browser-based blind spot test to estimate the physical distance between one’s blind spot area and the center of 
display. Participants are asked to fixate on a static black square with their right eye closed while a red dot moves 
away from fixation (Fig. 1b). The red dot repeatedly sweeps from right to left. At a certain point on the display, 

Figure 1.  Card Task and Blind Spot Task procedures that are used to calculate the viewing distance using the 
Virtual Chinrest. (a) Card Task: Participants are asked to place a credit card or a card of equal size on the screen, 
and adjust the slider until the size of the image of the card on the screen matches the real-world card. We can 
therefore calculate the logical pixel density (LPD) of the display in pixels per inch to estimate distance s in Fig. 2. 
(b) Blind Spot Task: Participants are asked to fixate on the static black square with their right eye closed while 
the red dot repeatedly sweeps from right to left; they are asked to press the spacebar when they perceive the red 
dot as disappearing. We then calculate the distance between the center of the black square and the center of the 
red dot when it disappears from the eye sight.
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the participant will perceive the dot as if it were disappearing. The participant is instructed to press a button when 
the dot disappears. We then calculate the distance between the center of the black square and the center of the red 
dot (when it disappears from the eye sight). Instead of using α = 15° as the average horizontal blind spot location 
as found in previous work22–25, we use 13.5° as the average blind spot angle because (1) our method captures the 
entry point of blind spots (of which the angle should be smaller) instead of the blind spot center, and (2) we cal-
ibrated our method by conducting preliminary experiments with a few participants and found that using 13.5° 
provided us with the most accurate results. The complete formula to calculate the individual viewing distance is

α
=d sViewing Distance ( ) Physical Distance( )

tan( ) (2)

Results
Validation experiments in the lab.  We conducted two controlled lab experiments to verify that our 
Virtual Chinrest method is valid and accurate.

Exp. 1. Validation of the virtual chinrest with a physical chinrest.  The aim of our first experiment was to compare 
the accuracy of the viewing distance calculated with our Virtual Chinrest method to the viewing distance defined 
by a physical chinrest. Nineteen participants took part in the experiment with a physical chinrest, fixing their 
viewing distances at 53.0 cm. The experiment was implemented in JavaScript and run in the web browser; the two 
tasks of the experiment are schematized in Fig. 1a,b.

To our surprise, despite unavoidable sources of error such as variability of the blind spot location and of the 
response when the dot disappears, the viewing distance estimates were 53.0 ± 0.69 cm (mean ± standard error 
of the mean (sem)), which is very accurate given the physical viewing distance of 53.0 cm. The average absolute 
error was 2.36 cm.

Exp. 2. Distance calculation with different display sizes & viewing distances and no physical chinrest.  In Exp. 2, 
we tested the accuracy of the Virtual Chinrest method when systematically changing the display size and partic-
ipants’ viewing distances. Participants did not use a physical chinrest in this experiment; instead, we controlled 
for participants’ seating distances (defined by the distance between the center of the chair and the center of the 
display), but not for the exact viewing distances or potential head and upper body movements. This allowed us to 
validate the Virtual Chinrest in a more natural setting, with participants sitting in front of the computer as they 
would at home.

12 participants took part. We adopted a within-subjects experimental design with the seating distance and the 
display size as two factors. The seating distance had three levels, 43, 53, and 66 cm, and the display size had two 
levels of 13′′ and 23′′. Participants were instructed to complete the same experimental procedure as Exp. 1 in 6 
(3 × 2) conditions.

Our results show that the Virtual Chinrest detects users’ seating distance (as a proxy for viewing distance) with 
an average absolute error of 3.25 cm (sd = 2.40 cm). Table 1 and Fig. 3 present the results of the different condi-
tions: among the 3 distances, the viewing distance of 53 cm was predicted most accurately with an average abso-
lute error of 2.88 cm (mean ± sem = 54.7 ± 0.76 cm). The viewing distance of 43 cm was predicted least accurately 
with an average absolute error of 3.46 cm (mean ± sem = 45.8 ± 0.74 cm). We found that the viewing distances 
were over-estimated by 1.4 cm when the larger display (23′′) was used and underestimated by 0.86 cm when the 

Figure 2.  Trigonometric calculation of a participant’s viewing distance using the human eye’s blind spot. 
Knowing the distance between the center of display and the entry point of the blind spot area (s), and given that 
α is always around 13.5°, we can calculate the viewing distance (d).
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smaller display (13′′) was used. A paired t-test confirmed this difference is statistically significant (t(31) = 4.56, 
p < 001). However, despite the small amounts of bias introduced by these different conditions, the overall accu-
racy was still very high.

Horizontal blind spot location estimation.  Both Exp. 1 and Exp. 2 in which we controlled for viewing distances or 
seating distances allowed us to calculate participants’ horizontal blind spot locations based on the data from the 
blind spot tasks. Combining the data from both experiments, the mean horizontal blind spot entry point location 
is 13.59° (min = 11.53°, max = 16.01°) with a SD of 0.96°. The distribution of the estimated blind spot locations 
is plotted in Fig. 4. Since the mean blind spot diameter is around 4.5°22,25, the center of the blind spots from our 
results is then 15.84° ± 0.96°, comparable to prior work, in which the blind spot locations are ranged between 
14.33◦ and 15.52°22,23,25.

The discrepancy of the average blind spot locations from previous studies (e.g.22,23) and our own finding that 
the horizontal blind spot locations ranged between 11.53° and 16.01° may suggest that any minor inaccuracies in 
our viewing distance estimation was caused by variations across individuals’ blind spot locations.

Online replication of a laboratory study on visual crowding using the virtual chinrest.  In Exp. 1 
and Exp. 2 we have demonstrated that the Virtual Chinrest is highly accurate in measuring the viewing distances, 
even in relatively uncontrolled settings with variable viewing distances, display sizes, and potential movements of 
the head and upper torso. This allows us to further examine whether we can use the Virtual Chinrest to conduct 
the type of studies that would typically rely on a physical chinrest, in an uncontrolled online environment. We 
aim to replicate classic findings from psychophysical experiments measuring visual crowding (e.g.27–30) — studies 
that require precise control over the retinal location of stimuli. Visual crowding is a phenomenon that occurs in 
peripheral vision where an observer’s ability to identify a target is greatly reduced when the target is flanked by 
nearby objects. Using the visual crowding paradigm, we can measure individual differences of visual crowding 
effects, i.e., how much distance between the target and flankers one needs to correctly identify the target. These 
individual differences in low-level visual processing have been related to high-level cognitive function such as 
reading ability31,32. Measuring an individual’s crowding effect requires being able to (a) present the target at the 
same eccentricity and (b) manipulate the distance between the target and flankers using the same units (i.e., in 
visual angle) across individuals. Thus, without knowing the viewing distance and the display size, it is impossible 
to measure an individual’s crowding effect.

We developed a version of the visual crowding experiment (see stimuli in Fig. 5) as a 10-minute online test 
that began with setting up the Virtual Chinrest (by asking participants to perform the card task and the blind spot 
test). Each participant was randomly assigned one target eccentricity, 4° or 6°. Participants were then presented 

Actual Distance
(cm)

Estimated Distance
Mean (Avg. Abs. Err)

13″ 23″ Average

43 47.2 (4.6) 44.3 (2.4) 45.8 (3.5)

53 55.7 (4.2) 53.6 (1.6) 54.7 (2.9)

66 63.7 (2.4) 61.7 (4.4) 62.6 (3.4)

Table 1.  Calculated viewing distances of each condition using Virtual Chinrest in Exp. 2, a 3 × 2 within-
subjects lab study.
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Figure 3.  The box plot and the 12 individual viewing distances calculated using Virtual Chinrest in three 
distance conditions (43, 53, and 66 cm or 17, 21, and 26 inch) in Exp. 2. The red dots represent the calculated 
mean distance in each condition. The average absolute error is 3.25 cm (sd = 2.40 cm) across all three conditions.
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instructions for the visual crowding experiment and asked to perform a practice session with 5 trials. The main 
experiment was split into two blocks and each block was followed by another blind spot task to determine 
whether participants have changed position.

Exp. 3. Validation of browser-based measurements of crowding.  Our first goal was to ensure that our 
browser-based implementation of the visual crowding experiment can gather high quality data with and without 
a Virtual Chinrest. To do so, we conducted a within-subjects laboratory study in which 19 participants took the 
experiment (with the same target eccentricity assigned to each of them) in two conditions: (1) using a physical 
chinrest set to a viewing distance of 53 cm and (2) using the Virtual Chinrest on a laptop in their desired position 
(i.e., on the lap or on a desk) and desired distance. The latter condition was intended to simulate an in-situ envi-
ronment that participants might find themselves in when participating in an online experiment. We compared an 
individual’s crowding effect between the two conditions.

Results of 18 participants show that individuals’ crowding effect measures are highly correlated in the con-
trolled and uncontrolled laboratory setting (Pearson’s r = 0.86, p < 0.001, n = 18), suggesting that individual dif-
ferences can be precisely reproduced using the Virtual Chinrest when not controlling for viewing distance and 
angle (we removed the data of one participant who did not correctly follow the instruction). Figure 6 presents 
each individual’s crowding effect in the two conditions, grouped by eccentricity. The results are aligned with pre-
vious findings that the crowding effect is linearly dependent on eccentricity30,33–35. A Welch's two sample t-test 
showed that the average crowding effect is 1.228° when eccentricity is 4°, which is significantly different from the 
average crowding effect of 1.811° when eccentricity is 6° (t(9.08) = −5.122, p < 0.001).

Exp. 4. Visual crowding experiment in the wild.  To evaluate whether we can replicate results from the visual 
crowding experiment in a truly uncontrolled environment, we conducted an online experiment on the 
volunteer-based experiment platform LabintheWild12. LabintheWild attracts participants from diverse demo-
graphic and geographic backgrounds3,10–12. Participants use a wide range of browsers, devices, and displays, and 
take experiments in a variety of situational lighting conditions and seating positions3. Our goal is to evaluate 
whether we can accurately replicate the visual crowding experiment despite this diversity.

Our experiment results, based on the data of 793 participants, replicate the previously found positive corre-
lation between crowding effect and eccentricity30,33–35. More precisely, we compared the crowding effect between 
two target eccentricities. The results showed that participants’ crowding effect increased as the eccentricity of the 
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Figure 4.  The distribution of the estimated horizontal blind spot entry point locations (mean = 13.59°, 
sd = 0.96°) of 30 participants, 85 experimental sessions from Exp. 1 and Exp. 2.

Figure 5.  The main stimuli used in the visual crowding experiments (Exp. 3 and Exp. 4): After 500 msec of 
fixation on the central mark, crowding stimuli appeared at either the left or the right side of the display. The 
stimuli disappeared after 150 msec and participants reported the direction of the gap (up or down) using the 
keyboard.
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Figure 6.  The visual crowding measures in Exp. 3 were significantly correlated (Pearson’s r = 0.86, p < 0.001, 
n = 18) in the controlled and uncontrolled laboratory settings where 18 participants successfully completed 
the visual crowding experiment both in the lab with a physical chinrest and using the Virtual Chinrest on a 
laptop in their desired position and distance. Visual crowding effects increased as the eccentricity of the target 
increased (mean = 1.228° at 4° and mean = 1.811° at 6°, t(9.08) = −5.122, p < 0.001 by Welch’s two sample t-test), 
confirming conventional eccentricity-dependent crowding effects.

Figure 7.  The results of Exp. 4 where 793 participants completed the visual crowding experiment implemented 
using Virtual Chinrest on LabintheWild. (a) The average visual crowding effects were significantly different 
between target eccentricity of 4° (mean = 1.61°) and 6° (mean = 2.66°), and between participants with (e = 4 : 
1.90°; e = 6°: 3.03 ) and without (e = 4°: 1.62°; e = 6°: 2.58°) dyslexia. Error bars represent standard error. (b) 
The distribution of the percentage correctness of the crowding experiment across all participants. The average 
(indicated by the red vertical line) is 85.56%. (c) The distribution of the viewing distances across all participants 
calculated by Virtual Chinrest. Our participants’ viewing distances were between 17.4 cm and 68.3 cm with 
mean = 47.3 cm and sd  = 8.9 cm. (d) The distribution of the within-subjects standard deviation (SD) of the 
viewing distances across all participants: the average is 3.9 cm (min = 0.003 cm, max = 22.7 cm). (e) The 
pairwise correlation of calculated viewing distances among three blind spot tasks at the beginning (s1), in the 
middle (s2) and at the end (s3) of the crowding experiment. The correlations of calculated viewing distances 
between s1 and s2, s2 and s3, s1 and s3 are 0.706, 0.805 and 0.630, respectively.
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target increased from 4° (mean = 1.61°, sem = 0.02°) to 6° (mean = 2.66°, sem = 0.06°), and a non-parametric 
Mann-Whitney U test confirmed that the results are statistically significant (W = 60502, p < 0.001; Fig. 7a), con-
firming eccentricity-dependent crowding effects from previous studies30,33–35.

Since we had a large and diverse sample, we further tested whether and how other covariates might be predic-
tive of visual crowding: We ran a linear mixed-effects regression model with visual crowding as the dependent 
variable and participant as a random variable. We included age and age_squared (i.e., the square of the variable 
age) as fixed effects. Other fixed effects were eccentricity (4° or 6°), dyslexia (1 or 0) and gender. As shown in 
Table 2, the eccentricity-dependent crowding effects held even when controlling for these other variables.

Our results show that people who self-reported having been diagnosed with dyslexia (N=59, excluding 10 
who reported having additional impairments) have significantly higher visual crowding than those without in 
both target eccentricity conditions, consistent with the findings of prior work30,32,36, although the relationship 
between dyslexia and visual crowding is highly debated31,37–40 (Fig. 7a). In addition, we found that visual crowding 
is roughly half of the eccentricity: the ratio of the crowding to the eccentricity is 0.40 (4°) to 0.44 (6°), following 
the Bouma’s law41,42 also conformed by other studies32,43. Age also significantly impacted visual crowding, con-
firming previous findings demonstrating increased visual crowding in aging populations44–46. Moreover, we find 
increased crowding in young children compared to adults. Thus, there is a quadratic relationship between crowd-
ing and age, and individuals with dyslexia (on average) display increased crowding across the sampled age range.

The average accuracy of the crowding experiment (50 trials) across all participants was 85.56% (median = 88%, 
max = 100%, min = 42%; Fig. 7b). This is aligned with the 79.4% correction rate of the 1-up 3-down staircase pro-
cedure, which demonstrates that we obtained reliable and accurate data the same as observed in our laboratory 
study or in prior work47.

Our experiment included three blind spot tests at the beginning, in the middle, and at the end of the study 
to evaluate whether and how much participants move and whether it is sufficient to only assess their viewing 
distance once for a 10-minute online study. In our online experiment, participants varied in their viewing dis-
tance between 17.4 cm and 68.3 cm (mean = 47.3 cm, sd = 8.9 cm, see Fig. 7c). As shown in Fig. 7d, the average 
within-subjects standard deviation of estimated viewing distances (across the three blind spot tests) is 3.9 cm 
(min = 0.003 cm, max = 22.7 cm). Estimated by a one-way random effects model with absolute agreement, the 
intra-class correlation of a participant’s estimated viewing distances before, during and after the crowding exper-
iment is ρ = 0.88 (see Fig. 7e for pairwise correlations). This suggests that different participants vary substantially 
in their viewing distance (underlining the need for a Virtual Chinrest), but participants do not move much over 
the course of a 10-minute online experiment. We found no substantial difference in visual crowding between 
people who moved more and less, and therefore, assessing the viewing distance once at the beginning of an exper-
iment may be sufficient for most participants.

Discussion
This paper introduced the Virtual Chinrest, a novel method that allows estimating participants’ viewing distances, 
and thus, calibrating the size and location of stimuli in online experiments. We validated our method in two 
laboratory studies in which we varied the viewing distance and display size, showing that the Virtual Chinrest 
estimates participants’ viewing distances with an average absolute error of 3.25 cm – a negligible error given an 
average viewing distance of 53 cm. Using the Virtual Chinrest in an online environment with 1153 participants, 
we were able to replicate and extend the results of a laboratory study on visual crowding, which requires par-
ticularly tight control of viewing distance and angle. More specifically, we replicated three prior findings: (1) 
the positive correlation between the crowding effect and eccentricity in30,33–35, (2) the finding that participants 
with dyslexia experience higher visual crowding than those without dyslexia30,32,36, and (3) the increase in visual 
crowding that occurs with aging44–46. Moreover, we extended these results by showing that there is a quadratic 
relationship between age and visual crowding. Our findings pave the way for laboratory studies requiring a phys-
ical chinrest to be conducted online, enabling psychophysical studies with larger and more diverse participant 
samples than previously possible.

The Virtual Chinrest is not necessary for all types of psychophysical online experiments. For example, prior 
work has successfully replicated visual perception experiments on proportional judgments of spatial encodings 
and luminance contrast, and investigated the effects of chart size and gridline spacing for optimized parameters 
for web-based display via online experiments, without controlling for viewing distance, display size or resolu-
tion2,21. These prior experiments followed a within-subjects design, did not require cross-device comparisons, and 
the results are not sensitive to changes in visual degrees.

However, there are two main types of visual perception studies that are unlikely to replicate if conducted 
without controlling for participants’ viewing distance: (1) between-subjects studies that compare specific metrics 

Variable Est. SE t-value Pr(>|t|)

(Intercept) −0.38 −0.20 −1.88 =0.06.

Eccentricity [6°] 0.53 0.02 21.39 <0.001∗∗∗

Dyslexia [yes] 0.26 0.10 2.70 <0.005∗∗

Age_squared 0.004 0.001 2.68 <0.005∗∗

Age −0.02 0.01 −1.77 =0.07

Gender 0.04 0.06 0.74 0.46 (n.s.)

Table 2.  The results of a quadratic mixed-effect model predicting visual crowding.
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across participants, because they require a consistent measurement across various environments and devices, 
and (2) any study that requires visual stimuli sizes to be the same across participants. Visual crowding is a prime 
example, where thresholds are expressed in units of visual angle. For these types of study designs, each partici-
pant’s viewing distance derived from the Virtual Chinrest can be used for adapting the size of the stimuli and/or 
as a control variable in the analysis.

Our results show that after instructing online participants to keep their position throughout the experiment, 
they indeed move very little – on average, participants viewing distance changed by 3.9 cm. This suggests that 
for 10-minute experiments, asking participants to take the 30 seconds to set up the Virtual Chinrest once at the 
beginning of the experiment may be enough. For longer experiments, we suggest assigning the Virtual Chinrest 
tasks multiple times throughout the experiments to adjust the stimuli correspondingly.

In summary, we developed the Virtual Chinrest to measure a person’s viewing distance through the web 
browser, enabling large-scale psychophysical experiments of visual perception to be conducted online. Our 
method makes it possible to automatically adjust the stimulus configurations according to each participant’s 
viewing distance, producing reliable results for visual perception studies that are sensitive to display parameters. 
We hope that our method will enable researchers to leverage the power of studies with large and diverse online 
samples, which often have greater external validity, can detect smaller effects, and have a higher probability of 
finding similarities and differences between populations than traditional laboratory studies.

Methods
Lab study.  In Exp.1, 19 participants completed the Virtual Chinrest experiment (consisting of the card task 
and blind spot test) using a physical chinrest in a psychophysical experiment room. Each participant completed 
the experiment once. In Exp. 2, 12 new participants performed the same experiment, but without a physical 
chinrest. The 2 × 3 within-subjects experiments used two different-sized screens (13′′ and 23′′) and three seating 
distances: 43, 53, and 66 cm (17, 21, and 26 inch). We chose 53 cm because it was the distance used in the original 
laboratory study, and we chose 43 cm and 66 cm because the International Organization for Standardization (ISO) 
guidelines suggest distances between 40 cm and 75 cm are reasonable choices48. The 6 conditions were counter-
balanced across participants.

Setup.  Participants completed the experiment in a room with controlled artificial lighting. Exp. 1 was conducted 
using a 24′′ monitor (Model: LG 24GM77-B) with a resolution of 1920 × 1080. The viewing distance was set to 
53 cm (21 inch). Exp. 2 was conducted with two monitors: a 13′′ Macbook Pro with a resolution of 2560 × 1600 
pixels and a 23′′ monitor (Model: HP Compaq LA2306x) with a resolution of 1920 × 1080 pixels. To perform the 
card task, participants were provided a card of size 85.60 × 53.98 mm (a standard credit card size) in both exper-
iments. The setup remained the same throughout the entire experiments.

Procedure.  Both experiments asked participants at the beginning to assume a comfortable position and to keep 
this position throughout the experiment. The experiment started with an informed consent form, a demographic 
questionnaire, followed by the Virtual Chinrest experiment consisting of two tasks. During the blind spot task 
(Fig. 1b), participants were instructed to press the spacebar as soon as the red dot disappears from their left 
eyesight and repeat this process 5 times so that later we calculated the viewing distance by taking the average of 
the results. The participants in Exp. 1 (with chinrest) only completed the tasks once while participants in Exp. 2 
(without chinrest) completed the tasks in all 6 conditions. Completion of the experiment in each condition took 
approximately 4 minutes. All experimental sessions were approved by the University of Washington Institutional 
Review Board and performed in accordance with the relevant guidelines and regulations.

Participants.  A total of 19 participants and another 12 distinct participants completed the experiments in Exp.1 
and Exp. 2, respectively. All of the participants were recruited from a local university, and all self-reported having 
normal or corrected-to-normal vision. Written informed consent was obtained from all participants.

Analysis.  For the analysis of Exp. 2, we removed one participant who did not successfully complete the entire 
experiment. We also removed one data point of another participant who did not correctly complete the card task 
in the condition of [66 cm, 13′′].

Online experiment.  The online experiment was launched on the volunteer-based online experiment plat-
form LabintheWild and advertised with the slogan “How accurate is your peripheral vision?” on the site itself as 
well as on social media.

Experimental design.  During each experimental session, we first presented the Virtual Chinrest experiment and 
used the results to calculate individual’s viewing distance and to calibrate the stimuli’s size and locations. Instead of 
creating stimuli (demonstrated in Fig. 5) using MATLAB, we created the stimuli as SVG on HTMLs and manip-
ulated the stimuli using JavaScript. All the elements were created in a container with a width of 900 pixels on the 
webpage. In the blind spot test, the dot was drawn in red with a diameter of 30 pixels, and the fixation square was 
drawn in black with a side length of 30 pixels (Fig. 1b). Replicating the original crowding study30 in the unit of 
visual degrees, stimuli comprised four flankers — open circles with 1° diameter and a target — an open circle with 
a gap (target; an arc with reflex central angle of 330°). All stimuli were black and displayed on a white background 
(Fig. 5). Two conditions of target eccentricity (the center-to-center distance between the fixation mark at the center 
of the webpage and the target) were 4° and 6°. In each crowding experiment session, each participant was randomly 
assigned one target eccentricity, and the target eccentricity was fixed with the starting target-flanker distance being 
set as 1.3 times greater than half the eccentricity (3.9° for 6° eccentricity; 2.6° for 4° eccentricity).

https://doi.org/10.1038/s41598-019-57204-1
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During each crowding experiment session, the subsequent target-flanker distances (25 trials/steps in total) 
were controlled by the 1-up 3-down staircase procedure implemented in JavaScript [https://github.com/hadrienj/
StaircaseJS]. On a given trial, the fixation mark was displayed first and remained on the webpage for the entire 
session. After 500 ms of fixation onset, the stimuli were displayed either to the left or the right of the fixation for 
150 ms. Only the fixation remained on the webpage until the participant submitted a response by using the arrow 
keys on the keyboard to indicate the direction (up or down) of the target gap. No feedback was provided during 
the experiment. There was a 500 ms blank between a participant’s response and the beginning of the next trial.

The visual crowding, defined as the minimal center-to-center distance between a target and the flankers (in 
degrees), was used to quantify the crowding effects when participants could report the target identity at certain 
accuracy. Since we are using a 1-up 3-down staircase procedure, participants should be able to correctly report 
the target identity 79.4% of times.

Procedures.  The experiment began with a brief overview of the study, an informed consent form approved by 
the University of Washington Institutional Review Board, and a voluntary demographic questionnaire, followed 
by the card task and the blind spot test with 5 trials to calculate participants’ viewing distances. Participants were 
then presented the instruction of the crowding tasks and a practice session with 5 trials.

The main experiment was split into two blocks (two independent staircases, 25 trials each), and each was 
followed by another blind spot task with 3 trials. After the last blind spot test, participants were then given the 
opportunity to report on any technical difficulties, and to provide any other general comments or questions. The 
final page showed their personalized “crowding effect” in comparison to others. The entire study took 10–12 min-
utes to complete. All experimental sessions were approved by the University of Washington Institutional Review 
Board and performed in accordance with the relevant guidelines and regulations.

Participants.  The experiment was deployed online for 15 months and completed 1198 times. We excluded 45 
participants who self-reported participating more than once. Our analysis therefore reports on the data of 1153 
participants. Informed consent was obtained from all participants.

Participants were between 7–71 years old (mean = 26.3, sd = 12.4) and 50.2% were female. 229 participants 
reported to have cognitive impairments, including dyslexia, learning disability, reading difficulties and Attention 
Deficit Disorder (ADD). 69 (6.0%) of all participants reported to have dyslexia. The plurality of participants 
(32.9%) reported having completed college, 21.3% completed graduate school, and 19.8% completed high school. 
The remaining participants were enrolled in professional schools, pre-high school, or unspecified.

Analysis.  We deployed the online study in two stages, where we added more granular data log at the second 
stage, such as the percentage correctness of the experiment and the results of each individual trial. Therefore, 
the analysis of visual crowding effects (Fig. 7a,b) was performed on the data of 793 participants from the second 
stage, the results in Table 2 was based on a subset of 570 participants who have explicitly reported whether they 
have dyslexia and/or other related impairments, while the results of the viewing distances from the three blind 
(Fig. 7c–e) spot tests were reported from all 1153 participants.

We checked for data normality by both the visual inspection of histograms and the Shapiro-Wilk normality 
tests before each analysis. We then conducted parametric (e.g. the Welch’s two sample t-test) and non-parametric 
(e.g. Mann-Whitney U test) analysis accordingly. In the linear mixed-effects regression models, t-tests (p-values) 
were calculated using Satterthwaite approximations for the degrees of freedom.

The data analysis of all four experiments was performed in R, with the help of multiple packages49–52.

Data availability
We make available the Virtual Chinrest as a JavaScript library, all data from our lab studies, online study, and the 
R-code for analysis at https://github.com/QishengLi/virtual_chinrest/.

Received: 5 August 2019; Accepted: 13 December 2019;
Published: xx xx xxxx

References
	 1.	 Crump, M. J., McDonnell, J. V. & Gureckis, T. M. Evaluating amazon’s mechanical turk as a tool for experimental behavioral 

research. PloS one 8, e57410 (2013).
	 2.	 Heer, J. & Bostock, M. Crowdsourcing graphical perception: Using mechanical turk to assess visualization design. In Proceedings of 

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, 203–212, https://doi.org/10.1145/1753326.1753357, 
(ACM, New York, NY, USA, 2010).

	 3.	 Reinecke, K., Flatla, D. R. & Brooks, C. Enabling designers to foresee which colors users cannot see. In Proceedings of the 2016 CHI 
Conference on Human Factors in Computing Systems, 2693–2704 (ACM, 2016).

	 4.	 Berinsky, A. J., Huber, G. A. & Lenz, G. S. Using mechanical turk as a subject recruitment tool for experimental research. Submitt. 
for review (2011).

	 5.	 Gosling, S. D., Vazire, S., Srivastava, S. & John, O. P. Should we trust web-based studies? a comparative analysis of six preconceptions 
about internet questionnaires. Am. psychologist 59, 93 (2004).

	 6.	 Ipeirotis, P. G. Demographics of mechanical turk (2010).
	 7.	 Mason, W. & Suri, S. Conducting behavioral research on amazon’s mechanical turk. Behav. research methods 44, 1–23 (2012).
	 8.	 Hartshorne, J. K., Tenenbaum, J. B. & Pinker, S. A critical period for second language acquisition: Evidence from 2/3 million english 

speakers. Cognition 177, 263–277 (2018).
	 9.	 Hartshorne, J. K. & Germine, L. T. When does cognitive functioning peak? the asynchronous rise and fall of different cognitive 

abilities across the life span. Psychol. science 26, 433–443 (2015).
	10.	 Li, Q., Gajos, K. Z. & Reinecke, K. Volunteer-based online studies with older adults and people with disabilities. In Proceedings of the 

20th International ACM SIGACCESS Conference on Computers and Accessibility, 229–241 (ACM, 2018).

https://doi.org/10.1038/s41598-019-57204-1
https://github.com/hadrienj/StaircaseJS
https://github.com/hadrienj/StaircaseJS
https://github.com/QishengLi/virtual_chinrest/
https://doi.org/10.1145/1753326.1753357


1 0Scientific Reports |          (2020) 10:904  | https://doi.org/10.1038/s41598-019-57204-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

	11.	 Reinecke, K. & Gajos, K. Z. Quantifying visual preferences around the world. In Proceedings of the SIGCHI conference on human 
factors in computing systems, 11–20 (ACM, 2014).

	12.	 Reinecke, K. & Gajos, K. Z. Labinthewild: Conducting large-scale online experiments with uncompensated samples. In Proceedings 
of the 18th ACM conference on computer supported cooperative work & social computing, 1364–1378 (ACM, 2015).

	13.	 Germine, L. et al. Is the web as good as the lab? comparable performance from web and lab in cognitive/perceptual experiments. 
Psychon. bulletin & review 19, 847–857 (2012).

	14.	 Reimers, S. & Stewart, N. Adobe flash as a medium for online experimentation: A test of reaction time measurement capabilities. 
Behav. Res. Methods 39, 365–370 (2007).

	15.	 Reimers, S. & Maylor, E. A. Task switching across the life span: effects of age on general and specific switch costs. Dev. psychology 41, 
661 (2005).

	16.	 Simcox, T. & Fiez, J. A. Collecting response times using amazon mechanical turk and adobe flash. Behav. research methods 46, 
95–111 (2014).

	17.	 Barnhoorn, J. S., Haasnoot, E., Bocanegra, B. R. & van Steenbergen, H. Qrtengine: An easy solution for running online reaction time 
experiments using qualtrics. Behav. research methods 47, 918–929 (2015).

	18.	 Zwaan, R. A. & Pecher, D. Revisiting mental simulation in language comprehension: Six replication attempts. PloS one 7, e51382 (2012).
	19.	 de Leeuw, J. R. & Motz, B. A. Psychophysics in a web browser? comparing response times collected with javascript and psychophysics 

toolbox in a visual search task. Behav. Res. Methods 48, 1–12 (2016).
	20.	 Reimers, S. & Stewart, N. Presentation and response timing accuracy in adobe flash and html5/javascript web experiments. Behav. 

research methods 47, 309–327 (2015).
	21.	 Liu, Y. & Heer, J. Somewhere over the rainbow: An empirical assessment of quantitative colormaps. In Proceedings of the Conference 

on Human Factors in Computing Systems (CHI), 598:1–598:12, https://doi.org/10.1145/3173574.3174172, (ACM, 2018).
	22.	 Wang, M. et al. Impact of natural blind spot location on perimetry. Sci. reports 7, 6143 (2017).
	23.	 Rohrschneider, K. Determination of the location of the fovea on the fundus. Investig. ophthalmology & visual science 45, 3257–3258 (2004).
	24.	 Safran, A. B., Mermillod, B., Mermoud, C., Weisse, C. D. & Desangles, D. Characteristic features of blind spot size and location, 

when evaluated with automated perimetry: Values obtained in normal subjects. Neuro-ophthalmology 13, 309–315 (1993).
	25.	 Ehinger, B. V., Häusser, K., Ossandon, J. P. & König, P. Humans treat unreliable filled-in percepts as more real than veridical ones. 

Elife 6, e21761 (2017).
	26.	 Chudler, E. H. Neuroscience for Kids: Sight (Vision), https://faculty.washington.edu/chudler/chvision.html (2019).
	27.	 Levi, D. M., Hariharan, S. & Klein, S. A. Suppressive and facilitatory spatial interactions in peripheral vision: Peripheral crowding is 

neither size invariant nor simple contrast masking. J. vision 2, 3–3 (2002).
	28.	 Pelli, D. G., Palomares, M. & Majaj, N. J. Crowding is unlike ordinary masking: Distinguishing feature integration from detection. J. 

vision 4, 12–12 (2004).
	29.	 Van den Berg, R., Roerdink, J. B. & Cornelissen, F. W. On the generality of crowding: Visual crowding in size, saturation, and hue 

compared to orientation. J. Vis. 7, 14–14 (2007).
	30.	 Joo, S. J., White, A. L., Strodtman, D. J. & Yeatman, J. D. Optimizing text for an individual’s visual system: The contribution of visual 

crowding to reading difficulties. Cortex 103, 291–301 (2018).
	31.	 Bouma, H. & Legein, C. P. Foveal and parafoveal recognition of letters and words by dyslexics and by average readers. 

Neuropsychologia 15, 69–80 (1977).
	32.	 Martelli, M., Di Filippo, G., Spinelli, D. & Zoccolotti, P. Crowding, reading, and developmental dyslexia. J. vision 9, 14–14 (2009).
	33.	 Bouma, H. Interaction effects in parafoveal letter recognition. Nature 226, 177 (1970).
	34.	 Levi, D. M. Crowding—an essential bottleneck for object recognition: A mini-review. Vis. research 48, 635–654 (2008).
	35.	 Whitney, D. & Levi, D. M. Visual crowding: A fundamental limit on conscious perception and object recognition. Trends cognitive 

sciences 15, 160–168 (2011).
	36.	 Spinelli, D., De Luca, M., Judica, A. & Zoccolotti, P. Crowding effects on word identification in developmental dyslexia. Cortex 38, 

179–200 (2002).
	37.	 Doron, A., Manassi, M., Herzog, M. H. & Ahissar, M. Intact crowding and temporal masking in dyslexia. J. Vis. 15, 13–13 (2015).
	38.	 Hawelka, S. & Wimmer, H. Visual target detection is not impaired in dyslexic readers. Vis. Res. 48, 850–852 (2008).
	39.	 Lovegrove, W. J., Bowling, A., Badcock, D. & Blackwood, M. Specific reading disability: differences in contrast sensitivity as a 

function of spatial frequency. Science 210, 439–440 (1980).
	40.	 Shovman, M. M. & Ahissar, M. Isolating the impact of visual perception on dyslexics’ reading ability. Vis. research 46, 3514–3525 

(2006).
	41.	 Bouma, H. Visual interference in the parafoveal recognition of initial and final letters of words. Vis. research 13, 767–782 (1973).
	42.	 Pelli, D. G. & Tillman, K. A. The uncrowded window of object recognition. Nat. neuroscience 11, 1129 (2008).
	43.	 Pelli, D. G. et al. Crowding and eccentricity determine reading rate. J. vision 7, 20–20 (2007).
	44.	 Owsley, C. Aging and vision. Vis. research 51, 1610–1622 (2011).
	45.	 McCarley, J. S., Yamani, Y., Kramer, A. F. & Mounts, J. R. Age, clutter, and competitive selection. Psychol. Aging 27, 616 (2012).
	46.	 Scialfa, C. T., Cordazzo, S., Bubric, K. & Lyon, J. Aging and visual crowding. Journals Gerontol. Ser. B: Psychol. Sci. Soc. Sci. 68, 

522–528 (2012).
	47.	 Levitt, H. Transformed up-down methods in psychoacoustics. The J. Acoust. society Am. 49, 467–477 (1971).
	48.	 Ergonomics of Human-system Interaction — Part 303: Requirements for Electronic Visual Displays. Standard, International 

Organization for Standardization, Geneva, CH (2008).
	49.	 Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 

1–26, https://doi.org/10.18637/jss.v082.i13 (2017).
	50.	 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48, https://doi.

org/10.18637/jss.v067.i01 (2015).
	51.	 Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).
	52.	 Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University, Evanston, Illinois 

R package version 1.8.12 (2018).

Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant (No. NRF-
2019R1C1C1009383) funded by the Korea government (MSIT) to S.J.J., NSF/BSF BCS #1551330 and Jacobs 
Foundation Research Fellowship to J.D.Y., NSF #1651487 to Q.L. and K.R., and Microsoft Research Grants to 
Q.L., J.D.Y. and K.R.

Author contributions
Q.L., S.J.J., J.D.Y. and K.R. designed research; Q.L. performed research; Q.L. analyzed data; and all authors wrote 
and reviewed the manuscript.

https://doi.org/10.1038/s41598-019-57204-1
https://doi.org/10.1145/3173574.3174172
https://faculty.washington.edu/chudler/chvision.html
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01


1 1Scientific Reports |          (2020) 10:904  | https://doi.org/10.1038/s41598-019-57204-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Q.L. or S.J.J.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-019-57204-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Controlling for Participants’ Viewing Distance in Large-Scale, Psychophysical Online Experiments Using a Virtual Chinrest

	The Virtual Chinrest

	Screen resolution. 
	Viewing distance. 

	Results

	Validation experiments in the lab. 
	Exp. 1. Validation of the virtual chinrest with a physical chinrest. 
	Exp. 2. Distance calculation with different display sizes & viewing distances and no physical chinrest. 
	Horizontal blind spot location estimation. 

	Online replication of a laboratory study on visual crowding using the virtual chinrest. 
	Exp. 3. Validation of browser-based measurements of crowding. 
	Exp. 4. Visual crowding experiment in the wild. 


	Discussion

	Methods

	Lab study. 
	Setup. 
	Procedure. 
	Participants. 
	Analysis. 

	Online experiment. 
	Experimental design. 
	Procedures. 
	Participants. 
	Analysis. 


	Acknowledgements

	Figure 1 Card Task and Blind Spot Task procedures that are used to calculate the viewing distance using the Virtual Chinrest.
	Figure 2 Trigonometric calculation of a participant’s viewing distance using the human eye’s blind spot.
	Figure 3 The box plot and the 12 individual viewing distances calculated using Virtual Chinrest in three distance conditions (43, 53, and 66 cm or 17, 21, and 26 inch) in Exp.
	Figure 4 The distribution of the estimated horizontal blind spot entry point locations (mean = 13.
	Figure 5 The main stimuli used in the visual crowding experiments (Exp.
	Figure 6 The visual crowding measures in Exp.
	Figure 7 The results of Exp.
	Table 1 Calculated viewing distances of each condition using Virtual Chinrest in Exp.
	Table 2 The results of a quadratic mixed-effect model predicting visual crowding.




