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Endocytosis and local protein synthesis (LPS) act coordinately to mediate the

chemotropic responses of axons, but the link between these two processes is

poorly understood. The endosomal sorting complex required for transport

(ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and

here we have investigated the role of ESCRT-II, a critical ESCRT component,

in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is pre-

sent in RGC axonal growth cones (GCs) where it co-localizes with endocytic

vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in col-

orectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and,

strikingly, reduces DCC in GCs and leads to axon growth and guidance

defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient

in vitro and many axons fail to exit the eye in vivo. These defects, similar to

Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in
vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs

LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in

axons. Collectively, our results show that the ESCRT-II-mediated endocytic

pathway regulates both DCC and LPS in the axonal compartment and suggest

that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS.
1. Introduction
During development, neurons send out axons that navigate long distances to their

synaptic targets. Growth cones (GCs), located at the tips of growing axons,

respond directionally to cues in their environment and are essential for this

navigation. Extrinsic cues bind and activate receptors in GCs and stimulate endo-

cytosis [1–5]. The guidance receptors deleted in colorectal cancer (DCC) and

neuropilin, for example, are rapidly endocytosed upon binding Netrin-1 and

Sema3A, respectively [3–6]. Endocytosis is required for the collapse response of

GCs to repulsive cues [4,7] and polarized endocytosis underlies the steering

responses of GCs to a cue gradient [8,9]. Gradient-elicited GC steering similarly

involves a polarized pattern of de novo protein synthesis (PS) [10,11] and GC

adaptation, a key feature of gradient sensing, relies on the coupled action of endo-

cytosis and local protein synthesis (LPS) [5] suggesting that these two processes

are closely linked. Indeed, mRNA transport is directly linked to endosomes in

fungal hyphae where it assists with precise subcellular targeting of locally

synthesized proteins [12].

Activated receptor complexes [13,14] enter the endocytic pathwayand are sorted

into specific vesicles from where they can continue to signal [15–18]. Correct sorting

and transport of endocytosed receptors are necessary for their function in GC moti-

lity and guidance [19]. Different classes of vesicles, named early, late and recycling

endosomes, carry cargoes destined for either recycling or degradation. The
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endosomal sorting complex required for transport (ESCRT)

machinery controls the passage of endocytosed cargo between

different types of endosomes. It consists mostly of vacuolar

protein sorting (Vps) proteins and multiple associated factors

organized into complexes named ESCRT-0, ESCRT-I, ESCRT-II

and ESCRT-III [20]. The ESCRT system was originally identified

for its involvement in endosomal sorting of ubiquitylated

proteins and multivesicular endosome biogenesis [21]. However,

ESCRT components are now known to regulate many additional

cellular functions, including receptor signalling, polarity,

migration, cytokinesis, viral budding, autophagy, exosome

secretion, miRNA activity and mRNA transport [22–26].

While the ESCRT system commonly works together as a

coordinate set of proteins [27], individual ESCRT components

can function independently. Of particular interest, ESCRT-II

can act as an RNA binding protein [28], and endosomes have

been implicated in mRNA transport and local translation

[29–31]. Cue-induced LPS in GCs is known to play a role in

axon navigation [32], and guidance cue receptors involved in

triggering axonal PS such as tropomyosin receptor kinase B

(TrkB), Neuropilin-1 or DCC undergo ligand-induced endocy-

tosis [5,6], linking them to the endosomal pathway. Regulation

of endosomes by ESCRT plays a role in axonal branching

[33,34] and pruning [35] but it is not yet known whether

ESCRT proteins have a role in GC guidance. Therefore, we

have investigated if ESCRT-II could play such a role. Our

results show that ESCRT-II co-localizes with DCC and endo-

somes in GCs and provide evidence that ESCRT-II is needed

for cue-induced LPS and axon guidance.
2. Material and methods
2.1. Embryos
Xenopus laevis embryos of either sex were obtained by in vitro
fertilization, raised in 0.1� modified Barth’s saline (MBS) at

14–188C and staged according to the tables of Nieuwkoop

and Faber (1994).

2.2. Constructs, morpholinos and antibodies

2.2.1. Constructs

Xenopus laevis ESCRT-II subunits EGFP-Vps22, Vps25 and

Vps36, mouse DCC and gap-GFP were cloned into pCS2

vector. GeneMachine Kit (Ambion) was used to make mRNA.

2.2.2. Morpholinos

Antisense morpholino oligonucleotides (MOs) either non-

modified or conjugated to carboxyfluorescein were purchased

from GeneTools. Xenopus laevis Vps25 splice blocking MOs:

50-GCTGTGCCCACCACACCGCTCACGT-30 and 50-CAACT

TTCCTGGAACACAGTATGTT-30. Control MO: 50-CCTCTT

ACCTCAGTTACAATTTATA 30.

2.2.3. Antibodies

Rabbit anti-Xenopus laevis ESCRT-II polyclonal antibody was

made in the Blower laboratory; other antibodies were obtained

as follows: mouse anti-acetylated a-tubulin (Sigma cat. no.

T6793), mouse anti-a-tubulin (Sigma cat. no. T6074), mouse

anti-Rab4 (BD Biosciences cat. no. 610888), mouse anti-Rab5
(BD Biosciences cat. no. 610281), mouse anti-Rab7 (Sigma cat.

no. R8779), mouse anti-Rab11 (BD Biosciences cat. no. 610656),

rabbit anti-b-tubulin (Abcam cat. no. ab6046), mouse anti-DCC

intracellular domain (BD Biosciences cat. no. 554223), goat anti-

DCC extracellular domain (R&D Systems cat. no. AF844),

rabbit anti-RPL5 (Proteintech Europe cat. no. 15430-1-AP).

2.4. Cell cultures
Eye primordia were dissected from stage 24 X. laevis embryos

and plated on 50 mm glass-bottom dishes (MatTek) coated

with 10 mg ml21 poly-L-lysine and 10 mg ml21 laminin (both

from Sigma). Explants were cultured at 208C in 60% Leibowitz’s

L15 medium (Gibco) containing 5% penicillin/streptomycin/

fungizone (Sigma cat. no. P4458) and 50 mg ml21 gentamycin

(GE Healthcare) for 16–18 h.

2.5. Immunostaining
Axons growing from Xenopus eyes cultured in glass-bottom

dishes were fixed with 2% paraformaldehyde (Pfa)/7.5%

sucrose in 1� phosphate-buffered saline (PBS) for 20 min at

room temperature (RT), washed with PBS, permeabilized with

0.1% Triton X-100 in PBS for 5 min at RT, blocked with 5%

goat serum in PBS for 30 min at RT, then incubated with the

primary antibody for 1 h at RT followed by a fluorochrome-

conjugated secondary for 30 min at RT. Where appropriate,

Phalloidin-Alexa Fluor 488 (an F-actin stain; 1 : 100, Invitro-

gen/Molecular Probes) was added together with the second

antibody. GCs were mounted in Fluorosave (Calbiochem), cov-

erslipped and imaged on a Nikon Eclipse TE2000-U inverted

microscope fitted with an Hamamatsu C4742-80-12AG

camera. Co-localization images were taken on a spinning disk

microscope (UltraVIEW Vox system (PerkinElmer) mounted

on an Olympus IX81 inverted microscope) equipped with an

EM-CCD camera (C9100-50, Hamamatsu).

2.5.1. Surface/total DCC staining

Axons cultured in glass-bottom dishes were fixed with 2% Pfa/

7.5% sucrose in 1� PBS for 5 min on ice. After four quick

washes with ice-cold PBS, the axons were incubated with

goat anti-DCC extracellular domain antibody (R&D Systems

cat. no. AF844) at 1 : 20 in PBS/0.1% BSA for 30 min on ice

and washed 4� 2 min with ice-cold PBS. Axons were then

fixed again with 2% Pfa/7.5% sucrose in 1� PBS for 20 min

at RT, washed with PBS, permeabilized with 0.1% Triton

X-100 in PBS for 5 min at RT and incubated with mouse anti-

DCC intracellular domain antibody (BD Biosciences cat. no.

554223) for for 1 h at RT, followed by a mix of donkey second-

ary antibodies (anti-goat Alexa Fluor 568 and anti-mouse

Alexa Fluor 647) for 30 min at RT. GCs were mounted

in Fluorosave (Calbiochem), coverslipped and imaged on

a Nikon Eclipse TE2000-U inverted microscope fitted with a

Hamamatsu C4742-80-12AG camera.

2.6. Western blot
Stage 37–38 Xenopus embryos were anaesthetized in 0.4 mg ml21

tricaine methanesulfonate (MS222) in 1� MBS and their eyes

were dissected, homogenized and lysed in RIPA buffer

(Sigma cat. no. R0278) containing cOmplete Mini EDTA-free

protease inhibitor cocktail (Roche cat. no. 11 836 170 001)
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and spun on a bench-top centrifuge at 48C to clear the lysates.

The protein supernatants were resolved on 12% or 4–20%

gradient Mini-Protean gels (Bio-Rad) and transferred to nitro-

cellulose membrane (Bio-Rad). The membrane was blocked for

30 min in 5% skimmed milk in Tris-buffered saline–Tween 20

(TBS-T: 150 mM NaCl, 50 mM Tris–HCl, pH 8.0, 0.05%

Tween) at RT and incubated with primary antibodies: rabbit

anti-ESCRT-II 1 : 1000 or mouse anti-DCC (BD Transduction

labs) 1 : 1000 or mouse anti-a-tubulin (Sigma cat. no. T6074)

1 : 5000 in 5% milk/TBS-T for 2 h at RT, followed by either

horseradish peroxidase-conjugated anti-rabbit or anti-mouse

secondary antibody (both Abcam, 1 : 5000) for 1 h at RT.

Bands were detected on GE Healthcare Hyperfilm ECL films

using an ECL Plus detection kit (Amersham) and X-ray

developer.

2.7. Electroporation
Eye-targeted electroporation was performed on stage 26–28

embryos as previously described [36]. Embryos anaesthetized

with 0.4 mg ml21 MS222 in 1� MBS were placed yolk-up in

the longitudinal channel of a cross-shaped Sylgard chamber, so

that the eyes faced the homemade platinum electrodes.

A solution of 1 mg ml21 DNA or 1 mM fluorescein-tagged MO

was microinjected into the lumen of the eye vesicle and a 1 Hz

series of eight pulses (18 V and 50 ms long) was delivered by a

square wave pulse generator (TSS20 OVODYNE Electroporator,

Intracel). Embryos were returned to 0.1� MBS and grown at

188C until reaching stage 41. Embryos were either imaged live

(see §2.8) or fixed in 4% Pfa in PBS overnight at 48C, embedded

in OCT compound and cryosectioned to 12 mm thick sections

mounted on microscope slides. Sections were stained with

DAPI and imaged on a Nikon Eclipse 80i upright microscope.

2.8. In vivo ventral brain preparation
Stage 41 embryos were lightly anaesthetized in 1� MBS with

0.4 mg ml21 of MS222. The ventral surface of the brain was

exposed by carefully slicing through from the position directly

dorsal to the cement gland to the posterior hindbrain.

The exposed brains were then bathed in 1� MBS with

0.1 mg ml21 of MS222 and mounted in ventral view in order

to visualize the whole optic path, and imaged on a Nikon Eclipse

80i upright microscope.

2.9. Microinjections
The procedure was performed as described previously [37].

Briefly, jelly coats of the in vitro fertilized embryos were

removed with 2% cysteine (Sigma) solution in 1� MBS.

MOs (12 ng per blastomere) and mRNAs were diluted in

RNase-free water and microinjected into both dorsal animal

blastomeres (a volume of 5 nl blastomere21) at the four-cell

stage in a solution of 4% Ficoll (Sigma) in 1� MBS.

2.10. In vitro axon outgrowth assay
Time-lapse recordings were performed on explanted whole

Xenopus eye primordia from stage 24 cultured in 50 mm glass-

bottom dishes (MatTek) for 16–18 h. Phase contrast images

were taken every 5 min for a total of 2 h (see figure 3 for details)

using 20� on a Nikon Eclipse TE2000-U inverted microscope

fitted with a motorized XY stage (Prior Scientific, Cambridge,

UK) and an automatic shutter. Axons from four to five explants
per dish were imaged at the same time. The same axons were

traced before and after adding Netrin-1. The average speed of

growth was calculated in Microsoft EXCEL from the total dis-

tance covered by the GC in periods before and after Netrin-1

using IMAGEJ (FIJI) plugin Manual Tracking.

2.11. Growth cone turning assay
Retinal explants from stage 24 Xenopus eye primordia were pre-

pared as described and plated on poly-L-lysine-coated 50 mm

glass-bottom dishes (MatTek). Retinal explants were cultured

for 18 h at 208C before turning assays. Netrin-1 gradients were

produced by pulsatile ejection of 10 mg ml21 mouse recombi-

nant Netrin-1 (R&D Systems cat. no. 1009-N1) solution in

culture media from a glass micropipette using a pressure appli-

cation system (Picospritzer, General Valve). The pipette tip was

placed 100 mm from the GC at a 458 angle from the direction of

growth, resulting in an approximately 103-fold dilution of

Netrin-1 at the GC. Phase-contrast images were acquired

every 5 min for 1 h. Turning angle was defined as the angle

between the original direction of growth and the direction

after 1 h. Only GCs that extended 5 mm over 1 h were included

in the analysis. Unlike the other in vitro experiments in this

paper, for turning assays laminin coating was not used as it is

known to interfere with attractive Netrin-1 signalling [38].

2.12. Proximity ligation assay
This was performed according to the manufacturer’s instruc-

tions (Olink Bioscience) with modifications [39]. Briefly, eye

explant cultures grown in glass-bottom dishes were fixed, per-

meabilized and blocked exactly as for immunostaining.

The pair of primary antibodies, either mouse anti-DCC

intracellular domain (1 : 100, BD Biosciences) and rabbit anti-

ESCRT-II (1 : 200) or the same anti-DCC and rabbit anti-RPL5

(1 : 100, Proteintech Europe cat. no. 15430-1-AP), were applied

and incubated overnight at 48C. The dishes were washed 4�
5 min in PBS/0.002% Triton X-100 followed by application of

anti-rabbit (þ) and anti-mouse (2) probes for 1 h at 378C,

ligase for 30 min at 378C and the polymerase mix with green

fluorescence for 100 min at 378C. The samples were mounted

in Duolink mounting media and imaged on the same day.

2.13. FM4-64 dye incorporation
Experiments were performed on RGC axons growing from

whole Xenopus eye primordia from stage 24 embryos cultured

in 50 mm glass-bottom dishes (MatTek) for 16–18 h. A stock

of 2 mM aqueous solution of fixable FM4-64FX (Molecular

Probes/Life Technologies) was vortexed, filtered through a

0.22 mm syringe filter and diluted 1 : 200 in 60% L15 culture

media. The working solution was applied to cells for 90 s at

RT. Dishes were subsequently put on ice and washed 3�
with ice-cold culture media before being fixed in 2% Pfa/

7.5% sucrose in PBS for 20 min at RT. Fluorescent images

were acquired on a Nikon TE2000-U microscope at 60�magni-

fication. Total FM dye fluorescent intensity was measured and

background subtracted in IMAGEJ (FIJI).

2.14. L-Azidohomoalanine incorporation assay
Stage 24 Xenopus eye explant cultures were incubated in

methionine-free 60% L15 media for 6 h prior to the exper-

iments. L-Azidohomoalanine (AHA; Life Technologies cat.
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no. C10102) 200 mM concentration was added for 1 h, then

washed with embryo media followed by PBS. Explants

were fixed with 2% Pfa/7.5% sucrose in PBS for 20 min at

RT, washed 3� with 3% BSA/PBS and permeabilized with

0.1% Triton X-100 in PBS, and the Click reaction was per-

formed with Click-iT Alexa Fluor 488 detection reagent,

according to manufacturer’s instructions (Life Technologies).

Culture dishes were mounted in Fluorosave and imaged.

2.15. Puromycin labelling assay
Xenopus eye explants (either non-stimulated (i.e. time 0 min)

or Netrin-1 (300 ng ml21) stimulated for 25 or 40 min; see

Results and figure 7) were incubated with 10 mg ml21 puro-

mycin (Sigma cat. no. p8833) in culture media for 10 min

(the final 10 min of Netrin-1 stimulation) at RT, washed 3�
with ice-cold culture media, fixed with 2% Pfa/7.5% sucrose

in PBS for 20 min at RT, washed in PBS/1 mg ml21 saponin,

permeabilized in 10 mg ml21 saponin/PBS for 5 min at RT,

blocked in 5% goat serum/1 mg ml21 saponin in PBS for

1 h and incubated with anti-puromycin antibody directly

conjugated to Alexa Fluor 488 (Millipore/Molecular Probes

cat. no. MABE343-AF488; diluted 1 : 250) overnight at 48C
in blocking solution, washed 5� 5 min in PBS/1 mg ml21

saponin, mounted in Fluorosave (Calbiochem) and imaged.

2.16. Live imaging of ESCRT-II and mRNA
Xenopus embryos were co-injected with mRNAs encod-

ing Vps25 (400 pg blastomere21), EGFP-Vps22 and Vps36

(200 pg blastomere21 each) and Cy3-labelled b-actin

mRNA (500 pg blastomere21) at the four-cell stage and eye

cultures in glass-bottom dishes were prepared as described.

Live movies of EGFP-ESCRT-II and Cy3-b-actin mRNA in

axons were recorded using a spinning disc confocal micro-

scope (UltraVIEW Vox system (PerkinElmer mounted on

Olympus IX81 inverted microscope) equipped with an

EM-CCD camera (C9100-50, Hamamatsu), controlled by

VOLOCITY software set to maximum sample protection;

single plane frames were acquired every 2 s (alternating

between 488 and 543 laser lines) for up to 5 min. The

movies were post-processed using both VOLOCITY and

IMAGEJ software to suppress noise.

2.17. Statistical analysis
Statistical analyses were performed using GRAPHPAD PRISM

v. 5 software. For each experimental group, D’Agostino and

Pearson omnibus normality test was run, followed by either

Anova þ Bonferroni/Student’s t-test/uncorrected Fisher’s

LSD (for normally distributed samples) or Kruskal–Wallis þ
Dunnis/Mann–Whitney test.
3. Results
3.1. ESCRT-II localizes to endosomal compartments in

axonal growth cones
To determine the role of ESCRT-II in axon guidance, we first

examined its localization in the GC. Immunostaining of cul-

tured RGCs with a specific anti-Xenopus ESCRT-II antibody

revealed positive punctate staining in the axons, as well as
in the central and the peripheral domains of GCs

(figure 1a–d). ESCRT-II-positive puncta were especially evi-

dent along F-actin-rich (phalloidin-positive) filopodia [40],

where they often resembled a ‘string of beads’

(figure 1a,b,d). Stable microtubules, detected by anti-

acetylated tubulin, typically localize to the GC central

domain (figure 1c).

The localization and function of ESCRT components over-

lap with those of the Rab family of small GTPases [41,42].

Rab5 is associated with early endosomes, Rab4 labels ‘short

loop’ recycling endosomes, Rab11 associates with ‘long

loop’ recycling endosomes and Rab7 marks late endosomes

which send the cargo for degradation in lysosomes [43]

(figure 1e). We therefore assessed the levels of co-localization

of these Rabs with ESCRT-II. The markers of early/recycling

endosomes (Rab5 and Rab4) as well as late and ‘long loop’

recycling endosomes (Rab7 and Rab11) were found to co-

localize with ESCRT-II (figure 1f– j). This suggests that

ESCRT-II is associated with both the early and late part of

the endosomal pathway, including recycling endosomes, in

GCs.

3.2. ESCRT-II depletion reduces endocytosis
Given the importance of membrane dynamics in the GC, we

next investigated whether ESCRT-II is required for GC endo-

cytosis using a loss-of-function approach. Because ESCRT

function is essential for embryonic development [44], we

chose a KD approach. We targeted the Vps25 subunit with

a specific splice-blocking antisense morpholino (MO) and

achieved a 42+4.3% knockdown as measured by western

blot analysis of stage 33/34 eye extracts (figure 2a).

To test whether ESCRT-II regulates endocytosis in RGC

GCs, we exposed control- and ESCRT-II KD GCs to the styryl

dye FM4-64FX [2,45] for 90 s, washed out the dye, and fixed

the samples. Control GCs exhibited a robust FM4-64 signal,

whereas in ESCRT-II-depleted GCs the signal was significantly

reduced (figure 2b–d). This decrease of FM4-64 signal indicates

that ESCRT-II knockdown impairs endocytosis. Alternatively,

given the highly dynamic nature of GC endosomes and recy-

cling turnover [45], it is possible that this decrease reflects an

increase in the recycling rate of endocytosed vesicles and their

reinsertion back into plasma membrane.

3.3. Axons grow abnormally when ESCRT-II is depleted
The speed of axon extension is, in part, controlled by a balanced

rate of insertion and removal of lipid membrane through exocy-

tosis and endocytosis, respectively [46–50]. When membrane

insertion exceeds removal, axons extend and, therefore, a

reduction in endocytosis would be predicted to increase the

rate of axon extension. In line with this, measurements of

basal axon extension rates in vitro showed that ESCRT-II-

depleted GCs advance faster than controls (average 61.3+
1.5 mm h21 versus 54.6+1.22 mm h21; figure 2e–i).

We next asked whether ESCRT-II is required for normal

axon growth in vivo. We used electroporation to target the

MOs (together with a reporter gap-GFP plasmid) directly

into retinal cells at stage 26 when RGCs are newly born.

We found that GFP-labelled axons exiting the eye, crossing

the chiasm and entering the optic tract were markedly spar-

ser in ESCRT-II MO-electroporated brains (less than five

axons) compared with the control MO-electroporated ones
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or ESCRT-II MO (c) GCs. GC outline indicated with yellow line. (d ) Graph shows the average FM4-64 fluorescence in GCs normalized to control MO-injected axons.
(e – i) In vitro RGC axon outgrowth assay. The growth of axons from embryos injected with control MO (e,f ) or ESCRT-II MO (g,h) measured over 45 min; arrows in
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(more than 10 axons; figure 3a,b). Even though the eye size

was unchanged in the ESCRT-II MO electroporated

embryos, this difference could potentially reflect fewer

ESCRT-II-MO-positive cells in the retina owing to increased

cell death. To address this possibility, we sectioned the elec-

troporated eyes and counted the number of axons and the

number of electroporated (MO- and GFP-positive) cells in

the DAPI-stained RGC layer. On average, there were 9.7+
0.88 labelled axons exiting the control MO-electroporated

eye, whereas the mean number of axons exiting the

ESCRT-II MO-electroporated eyes was significantly reduced

to 3.7+ 0.47. The average number of MO-positive cell

bodies in the RGC layer, however, was similar in both con-

ditions (23.8+ 5.64 control MO and 23.1+ 2.75 ESCRT-II

MO; figure 3c–e), suggesting that the decrease of RGC

axons exiting the eye was not a secondary effect owing to
RGC cell death. Collectively, the results indicate that

ESCRT-II-depleted RGCs show axon growth defects in vivo
as well as in vitro.
3.4. ESCRT-II regulates the response of retinal ganglion
cell axons to Netrin-1

One of the key ligands known to guide axons out of the eye is

Netrin-1, which is expressed exclusively at the optic nerve

head [51–53]. We therefore asked if Netrin-1 responsiveness

was affected in ESCRT-II-depleted neurons. Addition of

Netrin-1 globally to cultured retinal axons stimulates an

increase in the rate of axon extension by more than 40%

[53]. We tested if ESCRT-II morphants retained their sensi-

tivity to Netrin-1. Addition of 300 ng ml21 Netrin-1 to the
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culture medium increased the speed of axon growth of con-

trol MO-injected axons by 21.9+2.5% but it slightly

decreased the speed of growth of ESCRT-II-depleted axons.

This effect was rescued by ESCRT-II expression, which

restored axon speed to control Netrin-1 stimulated levels

(figure 4a,b). This indicates that ESCRT-II is involved in

regulating Netrin-1 sensitivity.

3.5. ESCRT-II co-localizes and regulates DCC levels
Previous findings showing that ligand-induced endocytosis

of Netrin-1’s receptor, DCC, is necessary to mediate Netrin-1

signalling in GCs [5] prompted us to investigate a potential

link between ESCRT-II and DCC. Co-immunolabelling for

DCC and ESCRT-II showed a high degree of overlap between

the two signals in the GC central domain and filopodia

(figure 5a–d) that was not altered by 10 min Netrin-1 (data

not shown). To further validate DCC–ESCRT-II co-localization,

we used the proximity ligation assay (PLA) [39,54], which

detects when two proteins are 40 nm or less apart and,

therefore, potentially interacting. GCs showed a strong

DCC–ESCRT-II PLA signal (figure 5e,g). Interestingly, when

compared with the PLA signal between DCC and one of its

known direct-binding partners, RPL5 [55], the PLA signal
of ESCRT-II–DCC was significantly more abundant

(figure 5e–g). This suggests the possibility that ESCRT-II and

DCC interact directly in the GC.

Remarkably, we found that when ESCRT-II was reduced

by 50.5+4.3% with ESCRT-II MO (figure 6a,c,g), DCC was

correspondingly decreased (51.5+6.5%; figure 6b,d,h). This

decrease was rescued by overexpression of ESCRT-II restoring

the levels of DCC to 106.6+13.3% of control (figure 6e–h).

Western blot analysis on whole eyes confirmed these ESCRT-

II-associated changes in DCC levels (figure 6i). These results

indicate that ESCRT-II regulates DCC levels.

The impaired endocytosis (or faster recycling) in ESCRT-

II morphant axons (figure 2b–d) indicates that DCC could be

specifically inserted or removed from the GC plasma mem-

brane. To test this possibility, we assessed the surface

fraction of the DCC receptor using an antibody against the

extracellular domain in non-permeabilized conditions. We

found that in ESCRT-II-depleted GCs, the total DCC levels

were reduced by 39.4+ 8.3% (figure 7a,c,e), whereas the cor-

responding surface fraction was reduced by 38.1+ 7.6%

(figure 7b,d,f ), compared with control GCs. The surface-to-

total DCC ratios were almost identical in control and

ESCRT-II-deficient GCs (figure 7g), indicating that the loss

of total DCC is accompanied by a proportional loss of the
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DCC at the plasma membrane, which is consistent with the

deficient response to Netrin-1 (figure 4).
3.6. DCC rescues ESCRT-II deficiency
The finding that both total and surface DCC decrease with

ESCRT-II depletion raised the possibility that DCC loss

underlies the ESCRT-II phenotype. If this is correct,

we reasoned that restoring DCC levels should rescue the

ESCRT-II phenotype. To address this, we electroporated a

DCC-expression plasmid together with ESCRT-II MO and

a gap-GFP reporter into stage 26 Xenopus eyes and counted

the number of fluorescent axons exiting the eyes and navigat-

ing along the pathway to the optic tectum at stage 41

(figure 8a–d). ESCRT-II morphants (figure 8b) had signifi-

cantly fewer axons in the optic pathway than control

embryos (2.50+0.4 axons versus 9.25+0.73; figure 8a,d).

Co-electroporation of ESCRT-II MO with the DCC-expressing

plasmid resulted in an increase of the number of labelled

axons exiting the eye (4.40+0.58; figure 8c,d), indicating that

DCC overexpression is sufficient to at least partially rescue

the in vivo phenotypes in ESCRT-II knockdown.

We therefore hypothesized that DCC expression could

restore sensitivity to Netrin-1 in ESCRT-II-depleted GCs. To

test this, we performed a turning assay, where growing axons

in vitro are exposed to a gradient of guidance cue [56,57]. In
agreement with previous studies [53], control MO-injected

RGC axons showed a strong attractive turning response to a

Netrin-1 gradient (mean turning angle þ 13.78+6.498,
figure 8e,h,k,n). As expected, ESCRT-II-depleted axons exhibited

no directional response to a Netrin-1 gradient (mean turning

angle of 25.59+5.768, figure 8f,i,l,n). However, re-expression

of DCC in ESCRT-II-depleted axons restored their responsive-

ness to Netrin-1 (mean turning angle of þ 15.77+5.568,
figure 8g,j,m,n). This suggests that the regulation of DCC

by ESCRT-II is needed for the Netrin-1 gradient-sensing

turning mechanism.
3.7. ESCRT-II knockdown reduces local protein synthesis
DCC activation by Netrin-1 triggers LPS in GCs [58], and

the local translation of b-actin mRNA has been shown to

mediate GC turning in vitro [10,11]. Given that ESCRT-II

has been identified as an RNA-binding protein [28], we

asked if ESCRT-II depletion affects PS in the GC. We

assayed the de novo PS using the AHA incorporation

assay [59]. ESCRT-II knockdown resulted in significantly

reduced baseline levels of PS in GCs (67+ 7% of control,

figure 9a–c). The 1-h period of incubation required for

AHA labelling meant that this method could not be used

to assess the rapid Netrin-1-induced PS [58]. Instead, we

took advantage of the aminonucleoside antibiotic
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puromycin, which at low concentrations can be used to label

nascent proteins without blocking translation [60–63], and

we quantified the signal using a fluorescent anti-puromycin

antibody [63]. In line with previous studies [58], Netrin-1

stimulation caused a significant increase in puromycin

signal in control GCs, indicative of increased LPS

(figure 9d,e,h). By contrast, in ESCRT-II-depleted GCs, puro-

mycin staining did not show any increase with Netrin-1

stimulation (figure 9f–h). Consistent with the AHA labelling

experiment, ESCRT-II morphants exhibited a much lower

level of basal PS (0 min; figure 9h). These results show

that ESCRT-II abolishes Netrin-1-stimulated PS in GCs con-

sistent with a loss of DCC signalling. In addition, ESCRT-II

KD substantially lowers basal (unstimulated) levels of

de novo PS in GCs.
Because the basal level of translation is decreased in

ESCRT-II KD GCs and ESCRT-II is reportedly an RNA-

binding protein [28], we asked whether ESCRT-II transports

mRNA. b-actin mRNA is abundant in RGC GCs [64], and

is locally translated in response to Netrin-1 in RGC GCs

[10]. ESCRT-II–GFP plasmid and fluorescently labelled

b-actin mRNA were electroporated into retinal neurons, and

time-lapse imaging was subsequently performed on axons

in retinal explant cultures (figure 9i). We observed dynamic

granules of ESCRT-II–GFP trafficking along axons in both

anterograde and retrograde directions and these were com-

monly positive for b-actin mRNA (figure 9j– l and

electronic supplementary material, movie S1). These results

show that ESCRT-II and mRNAs co-localize and travel

together in the same RNA granules and suggest that
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ESCRT-II may play an active role in RNA trafficking along

axons in neurons.
4. Discussion
To date, only a few studies have investigated ESCRT machinery

in developing axons and these have focused primarily on

ESCRT-0 and ESCRT-III [34,35]. Here, we have characterized

for the first time, to the best of our knowledge, the localization

of ESCRT-II in Xenopus RGC GCs and have investigated the

effect of ESCRT-II depletion on retinal axon growth in vitro
and in vivo. Briefly, our results show that (i) ESCRT-II associ-

ates with the endosomal pathway in GCs; (ii) ESCRT-II KD

impairs axon exit from the eye in vivo and abolishes Netrin-1-

guided responses in vitro; (iii) ESCRT-II depletion causes a

loss of DCC in GCs and DCC expression rescues defects in

axon growth; (iv) ESCRT-II depletion lowers the basal rate of

PS in the GC and abolishes Netrin-1-induced PS increase;

and (v) ESCRT-II co-transports with mRNA in axons.

The ESCRT system is classically known to sort and package

ubiquitylated cargo into the intraluminal vesicles inside late

endosomes, thus forming multivesicular bodies (MVBs) [21].

Our results show that that ESCRT-II also co-localizes with
early and recycling endosomes. We find that ESCRT-II KD

causes a decrease in FM4-64 dye loading, indicating that

ESCRT-II could have an early function in the dynamic

regulation of the endocytosis and/or recycling and re-insertion

of the endosomes into the plasma membrane of RGC GCs.

Indeed, recent studies link ESCRT machinery to the early/

recycling part of the endosomal system. For example, Hrs

(ESCRT-0) was found to associate with a subset of clathrin

pits at the plasma membrane, where it sorts surface cargo

even before endocytosis to facilitate downstream trafficking

[65]. On the other hand, one of ESCRT-III’s subunits, Ist1, was

shown to interact with spastin in early endosomes, controlling

the fission of recycling endosomes and the sorting of recycling

cargoes away from the degradation pathway [34]. These studies,

together with our results, indicate that ESCRT-II could poten-

tially interact with other components of the ESCRT machinery

to control the dynamics of endosomal recycling.

Although the canonical view holds that the multiprotein

ESCRT system acts as a whole to control cargo sorting, mem-

brane bending and fission [21], emerging evidence suggests

that individual elements of the ESCRT system can act indepen-

dently of each other. For example, the ESCRT-II subunit Vps25

acts independently of Hrs to decrease Notch signalling in Dro-
sophila imaginal discs [66], and the ESCRT-III element Vps32
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regulates exovesicle secretion via a mechanism that is distinct

from MVB formation [67]. ESCRT-II has been shown to work

independently of ESCRT-I and III in regulating degradation

but not in the recycling of EGFR [68]. Interestingly,

the reported role of ESCRT-II as an RNA binding protein in

Drosophila oocytes [28] also did not require other ESCRTs.

It is possible, therefore, that in Xenopus RGC growth cones,

ESCRT-II also acts in a non-canonical way. Thus, even

though previous studies showed that some ESCRT com-

ponents, such as ESCRT-0 [65], are dispensable for

endocytosis, we cannot exclude an independent role of

ESCRT-II in the regulation of endocytosis in RGC growth

cones. In particular, ESCRTs have previously been suggested

to control surface levels of various receptors, indicating their

possible involvement in endo- and/or exocytosis. For example,

overexpression of the ESCRT-III component CHMP6 leads to

increased removal of the transferrin receptor from the plasma

membrane [69], whereas disruption of Vps25 function causes

increased surface presence of active Notch [66,70]. Taken

together, this indicates that ESCRT-II might act in a non-

canonical as well as canonical way, to regulate the dynamics

between endocytosis and recycling/exocytosis.

Our results indicate that ESCRT-II associates with endo-

somal vesicles that can contribute to membrane removal.

The balance between endocytosis and exocytosis in growth

cones is a key regulator of axon growth: excess exocytosis

permits extension, whereas excess endocytosis enables retrac-

tion [46–50]. Our finding that ESCRT-II KD leads to

accelerated growth of RGC axons in vitro could arise from a

shift in the balance of endocytosis/exocytosis with the inser-

tion of new membrane by exocytosis exceeding membrane

removal by endocytosis, thereby fuelling increased extension.

Interestingly, it appears that GC morphology and advance

critically depend on the correct localization of endosomes.
For example, recent evidence shows that specifically directing

Rab11 endosomes into or out of the GC leads to axon growth

enhancement or suppression, respectively [71]. In future

studies, it will be of interest to assess the exact role of ESCRT-

II in endosomal trafficking and membrane flow. The accelerated

growth is unlikely to be due to the loss of DCC receptor in

ESCRT-II morphants, because DCC activation increases axon

growth [72].

The finding that DCC rescues the axon guidance defects

in ESCRT-II-depleted axons both in vivo and in vitro indicates

that the loss of DCC receptor, primarily, underlies the axon

guidance phenotypes. ESCRT-II morphants exhibited

reduced retinal projections with fewer axons exiting the eye

and crossing the diencephalon. This defect is similar to

Netrin-1 hypomorphs and DCC knockout mice [51] and

probably arises owing to a failure of axons to turn into the

optic nerve head, a key choice point known to require

Netrin-1–DCC signalling [51,53]. In addition, ESCRT-II-

depleted axons, like DCC-compromised axons [53], are not

able to turn in a Netrin-1 gradient.

Although DCC fully rescued the turning defect in vitro,

the rescue was only partial in vivo, so alternative and/or

additional hypotheses should be considered. For instance,

the reduced number of axons exiting the ESCRT-II morphant

eyes could be due, at least partially, to disrupted axogenesis.

The robust growth of ESCRT-II-depleted axons observed

in vitro, however, argues against this possibility. Another

hypothesis is that ESCRT-II KD affects other guidance mech-

anisms that ultimately cause RGC axons to miss the entrance

to the optic nerve head. For example, mice lacking Slit-1 and

Slit-2 also exhibit axon misrouting at the optic nerve head

[73], and the Slit-2 response is dependent on both endocytosis

and new PS [74]. Additionally, other guidance systems for

axon growth involving EphB and L1 within the retina
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[75,76] are regulated by endocytosis [7,77,78] and show simi-

larities when knocked down to the ESCRT-II knockdown

phenotype [75,76], suggesting that ESCRT-II might also regu-

late these pathways.
Our results show that ESCRT-II regulates the levels of DCC

receptor in the GC, although the mechanism for this is not

clear. The high degree of co-localization of ESCRT-II and

DCC in GCs, confirmed by the PLA assay, suggests that they
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may interact directly. One possibility is that ESCRT-II binds

DCC in the soma and transports it along the axon to the GC.

Our finding that the levels of both surface and internal DCC

in the growth cone decrease by the same amount with

ESCRT-II knockdown is consistent with a global mechanism

of this sort, rather than a local one. Another possibility is that

the loss of axonal PS caused by ESCRT-II KD eliminates the

local de novo supply of DCC. The reappearance of DCC on

the GC surface after its removal through Netrin-1-induced

endocytosis is sensitive to PS inhibition [5]. However, there is

no direct evidence that DCC itself is axonally synthesized.

DCC is rapidly endocytosed after Netrin-1-stimulation [5,79]

and subsequently degraded [79]. Thus, an alternative possi-

bility is that by associating with early/recycling endosomes,

ESCRT-II could protect DCC from Netrin-1-induced degra-

dation, although the unchanged surface/total ratio of DCC in

ESCRT-II KD argues against this. It is notable that ESCRT-II

morphant GCs do not respond to a Netrin-1 gradient in vitro
despite losing only about 50% of their DCC. This suggests

that ESCRT-II function may be involved in the gradient sensing

mechanism, where the stoichiometric proportions of DCC to

other Netrin-1 receptors (e.g. neogenin or UNC-5) could be cru-

cial for correctly responding directionally to guidance cues. On

the other hand, the Netrin-1-induced endocytosis of the

remaining 50% of DCC left in ESCRT-II morphant GCs could

contribute to the decrease of axon speed in vitro.

Our live imaging experiments provide direct evidence that

ESCRT-II–GFP associates with b-actin mRNA in moving gran-

ules in retinal axons. This observation indicates that ESCRT-II

may bind and transport mRNA in axons and suggests that it

may play a major role in RNA localization in axons. This is con-

sistent with results in Drosophila showing that ESCRT-II binds

and localizes bicoid mRNA in the oocyte [28]. The mobile

ESCRT-II-mRNA-labelled granules in axons are reminiscent

of the endosome–mRNA granules seen in fungal hyphae

[30]. These long cellular structures, somewhat analogous to

axons, are known to transport mRNA on endosomes to distant
subcellular locations where de novo PS takes place locally [12].

If ESCRT-II plays a major role in mRNA transport in axons, this

could provide an explanation for the significant reduction in

basal levels of axonal PS following ESCRT-II KD. If fewer

mRNAs reach the axon, then it follows that there will be a

drop in LPS. In future studies, it will be interesting to investi-

gate whether ESCRT-II-depleted axons harbour fewer

mRNAs.

In summary, our findings indicate that ESCRT-II is

involved in controlling RGC axonal guidance through DCC

signalling. Furthermore, the simultaneous loss of endocytosis

and basal LPS suggests that ESCRT-II plays a novel role in

the coordinate regulation of these two processes. Our studies

raise new questions about how ESCRT-II functions in axonal

GCs, and particularly whether its role in the early steps of

endocytosis and endosomal sorting to the recycling pathway

is the primary mechanism underlying these functions.
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