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Abstract: Except of pest control, insecticides have shown adverse effects on natural enemies as well.
Thus, risk assessment of pesticides for biological control agents is critical for effective use in integrated
pest management (IPM) schemes. In the present study, the lethal and sublethal effects of chlorpyrifos,
a commonly used insecticide that may negatively affect biological control agents, were evaluated
on a non-target predator, the Asian ladybeetle Harmonia axyridis. Previous studies have reported on
lethal concentrations, but the effects of sublethal concentrations remain unclear. Lethal and sublethal
concentrations of chlorpyrifos were applied to third instar larvae of H. axyridis, and different growth
and developmental parameters were measured. Treatment with LC10 (4.62 mg a.i. L−1) significantly
shortened the developmental period of third instar larvae, whereas it significantly prolonged those
of fourth instar larvae and pupa. Treatment with LC30 (9.59 mg a.i. L−1) significantly increased
the larval and pupal developmental period compared with that of the control, whereas feeding
potential, female fecundity, and adult longevity significantly decreased after LC10 and LC30 treatment.
The pre-oviposition period significantly increased compared with that of the control. Population
growth parameters, the finite (λ) and intrinsic rate of increase (r) and the net reproductive rate
(R0), decreased following exposure to sublethal concentrations of chlorpyrifos. According to the
results, the use of chlorpyrifos in IPM schemes requires further research because even sublethal
concentrations of this insecticide were harmful to H. axyridis population growth.
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1. Introduction

Predators play a vital role in the regulation of a wide range of pests in agro-ecosystems [1,2] as
they can control different insect pests from different families [3]. Many ladybeetle species (Coleoptera:
Coccinellidae) are gregarious predators of several pest species, such as aphids [4,5], whiteflies [6],
mealybugs [7], mites [8], and scale insects [9]. Coccinellid predators are particularly useful as biological
control agents because both adults and larvae are predaceous. Owing to its global distribution
and extensive ability to interrupt agricultural ecosystems, the Asian ladybeetle Harmonia axyridis
(also known as the harlequin ladybird) is an important predator used in insect-based integrated
pest management (IPM) schemes [10–12]. Owing to the highly polyphagous nature of H. axyridis,
this species consumes many species of aphid [13,14]. Feeding potential, voracity, and reproduction
rate make this predator an effective biological control agent for different IPM strategies. This beetle is
available commercially for insect pest management [15]. Previous studies have shown the effectiveness
of H. axyridis for the biological control of different pests, such as the apple aphid Aphis spiraecola in apple
orchards [16], yellow pecan aphid Monelliopsis pecanis in pecan orchards [17,18], Asian citrus psyllid
Diaphorina citri [19], European corn borer Ostrinia nubilalis in sweet corn [20], root weevil Diaprepes
abbreviatus [21], and brown citrus aphid Toxoptera citricida [22]. Therefore, H. axyridis is an effective
biological control agent when used in IPM schemes [11,23].

In addition to releasing biological control agents, IPM strategies commonly include the use of
insecticides [24]. However, extensive application of insecticides may cause environmental pollution
and insecticide resistance and can also negatively affect natural enemies [25–27]. Globally, several insect
pest species have shown resistance to generally used insecticides [27–31] and both toxic and sublethal
effects have been observed on non-target predators [32–34]. Thus, it is necessary to fully understand
the negative effects of an insecticide on natural enemies when planning pest control measures within
an IPM scheme.

Many studies have focused on the deleterious effects of different insecticides on non-specific
arthropods [27,35]. However, most of these studies evaluated the lethal (short term) toxicity of
insecticides but did not evaluate the indirect consequences of sublethal effects, which may impair, e.g.,
the pre-adult development, adult longevity, feeding capacity, female fecundity, and pre-oviposition
period of biological control agents [27,35–37]. The population growth rate is an important statistical
parameter that can be used to comprehensively assess pesticide toxicity [38]. Therefore, life table
analysis is an important technique for evaluating the population growth rate and sublethal effects of
an insecticide on non-target natural enemies [39].

Chlorpyrifos is a broad-spectrum, non-systemic, synthetic organophosphate that acts as a
cholinesterase inhibitor through different exposure routes. In 1969, commercial manufacturing of
this insecticide began, since then chlorpyrifos has been used for different purposes. Commonly,
this insecticide is used on farms to protect fruit trees, cotton, and corn against insect pests [40]. Similar
to other phosphorus compounds, chlorpyrifos induces oxidative stress, damages DNA, and inhibits
acetylcholinesterase (AChE) [41]. Adverse effects from the use of this insecticide include negatively
affecting non-target beneficial arthropods, such as coccinellid predators e.g., the convergent ladybeetle
Hippodamia convergens [42], pollinators [43], parasitoid wasps e.g., Trichogramma brassicae [44] and other
natural enemies e.g., the dipteran parasitoids Eibesfeldtphora trilobata and Apocephalus setitarsus [45].

The sublethal effects of exposure to chlorpyrifos at the population level of H. axyridis have not been
previously evaluated. The present study was designed to evaluate the toxicity and sublethal effects
of chlorpyrifos on life table parameters of the non-target predator H. axyridis, including pre-adult
development, feeding potential, survival rate, female fecundity, and male and female adult longevity.
For this purpose, an age-stage, two-sex life table technique was applied to provide a more robust
understanding of the effects of using chlorpyrifos for pest control in IPM schemes.
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2. Materials and Methods

2.1. Insect Culture

A population of H. axyridis was reared on the soya bean aphid Aphis glycines (Hemiptera:
Aphididae). The mass cultures of A. glycines and H. axyridis were maintained at 23 ± 2 ◦C and
68 ± 5% RH, under a 16:8 light:dark photoperiod. A. glycines colonies were established on faba bean
(Vicia faba L.) plants. Faba bean plants were grown in mesh-covered cages (34 cm height × 60 cm length
× 44 cm width). H. axyridis adults were also reared in mesh-covered cages where the females laid eggs
on the leaves of bean plants, and these eggs hatched to larvae and then grew to adults. To establish
new colonies of A. glycines, fresh faba bean plants were kept in cages with an old plant that was highly
infested with A. glycines.

Adults of H. axyridis were kept separately in pairs in Petri dishes. The sex of adults was determined
based on the morphology of the last abdominal segment [46]. Adults were provided with sufficient
aphids for successful egg laying. Paired adults were transferred to new Petri dishes (10 mm depth ×
100 mm diameter) when egg patches were found. Each neonate was maintained in a single Petri dish
to avoid cannibalism and provided with sufficient aphids until they developed to the desired stage for
the experiment.

2.2. Acute Toxicity Determination

Toxicity bioassays were carried out through the topical application of chlorpyrifos (technical grade
chlorpyrifos (95%) was purchased from Dow Agro Sciences, Shanghai, China). Acute toxicity was
evaluated on third instar larvae (<24 h) by treating them with seven concentrations of chlorpyrifos
(3.12, 6.25, 12.50, 25, 50, 100, and 200 mg L−1) prepared by diluting chlorpyrifos in acetone to determine
the sublethal concentrations. For every concentration, four replicates were established each containing
15 individuals. Larvae were placed in a small glass tube and immobilized with a small amount of
CO2 for 4–5 s, and the ventral side of the abdomen of each larva was topically treated with 1 µL of
chlorpyrifos solution with a micro-applicator (Burkard, Rickmansworth, UK). Larvae in the control
group were treated with 1 µL acetone. Individuals from treatment and control groups were reared in a
controlled condition chamber at 23 ± 2 ◦C, 68 ± 5% RH, under a 16:8 h light:dark photoperiod, and live
aphids were provided ad libitum. After treatment, larvae were checked daily to record mortality until
either they died or developed to the next stage, and after 72 h of treatment, acute mortality data were
recorded. Larvae showing no movement when softly pushed with a soft brush were considered to be
dead [47].

2.3. Evaluation of Sublethal Effects on Life Table of H. axyridis

To determine life table parameters, approximately 600 eggs of H. axyridis (<24 h) were kept in
Petri dishes (10 mm depth × 100 mm diameter) following a technique defined previously [48,49].
Two treatment groups (LC10: 4.62 mg a.i. L−1 and LC30: 9.59 mg a.i. L−1) and one control group
(treated with acetone) were established. In each group, 150 newly developed third instar larvae were
selected, and each larva was considered as a single replicate [50]. The LC10 and LC30 values were
calculated from acute toxicity bioassays of chlorpyrifos. Treated larvae were supplied with live aphids
on fresh leaves, and mortality data were recorded daily until the larvae developed to the next instar.
After adult emergence in all treatments, males and females were kept in pairs to record mortality,
pre-oviposition period, female fecundity, and adult longevity data.

2.4. Assessment of Feeding Potential of H. axyridis

To assess the feeding ability of H. axyridis larvae and adults following insecticide exposure,
approximately 30 third instar larvae were treated with acetone as a control group, 50 third instar larvae
were treated with the LC10 concentration (4.62 mg a.i. L−1), and 50 third instar larvae were treated
with the LC30 concentration (9.59 mg a.i. L−1), considering each larva as one replicate. Treated larvae
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were maintained in Petri dishes and sufficient adult aphids were provided ad libitum. Dead larvae
were removed, and 50 adult aphids were provided daily to each replication to feed the treated larvae.
The number of aphids consumed by larvae per day was recorded daily until the larvae developed
to the next instar or to the adult stage. For H. axyridis adults, 70 adult aphids were provided to each
adult lady beetle daily, and per day aphid consumption of adults (developed from the larvae treated
previously) was recorded separately for males and females.

2.5. Effects of Sublethal Chlorpyrifos Concentrations on Population Growth Parameters

Population growth parameters were also evaluated, including r, intrinsic rate of increase
(r = ln(R0)/T), which denotes the maximum population increase rate. λ, finite rate of increase (λ= exp (r)),
which is an expression of the factors responsible for population growth. R0, net reproduction rate (R0 =

Σlxmx), is the value of the population growth rate, including the female offspring produced by a female
in one generation, and T, mean generation time (T = Σlxmx/R0), is the average time interval between the
birth of two consecutive generations.

2.6. Effect of Chlorpyrifos Sublethal Concentrations on Demographic Parameters

In addition to the differences between the developmental periods of life stages, demographic
parameters were also recorded, including sxj (age-stage-specific survival rate), where x denotes age
and j denotes stage; lx (age-specific survival rate), a simple form of sxj, which is an estimation of
the age of a newly hatched egg [51]; fxj (age-stage-specific fecundity), which is the female fecundity
for a given number of days at age x and stage j; mx (age-specific fecundity), which is the number of
eggs laid per individual at age x, lxmx (age-specific maternity), which is the combination of lx and
mx; Vxj (age-stage-specific reproduction), which is the degree of involvement of each individual in
the next generation and exj (life expectancy), which is an estimation of the expected survival time of
each individual.

2.7. Statistical Analysis

PoloPlus [52] was used to calculate concentrations of chlorpyrifos that were lethal and sublethal
for third instar larvae in the acute toxicity bioassay. The age-stage two-sex life table model was used
to analyze the development of different stages, survival rate, fecundity parameters, pre-oviposition
period, and adult longevity [53,54], and the TWOSEX-MS Chart software was obtained from http:
//140.120.197.173.193 [55]. Standard errors (SEs) and means were calculated based on 100,000 bootstrap
iterations [51,56]. The paired bootstrap test was used for comparing all treatments; bootstrap and
paired bootstrap tests were analyzed in TWO SEX-MS Chart [55]. Statistics 8.1 was used for calculating
the means and SEs for feeding potential data. SigmaPlot 12.0 was used to draw graphs of feeding
potential data and the curves of all parameters, including fecundity, survival rate, life expectancy,
and reproductive values. And according to completely randomized design, the data of the feeding
potential of H. axyridis were statistically analyzed using one-way ANOVA (analysis of variance) and
their mean values were compared using least significant difference (LSD) tests at the p = 0.05 level
of significance.

3. Results

3.1. Chlorpyrifos Toxicity on Third Instar H. axyridis Larvae

Acute toxicity bioassays were carried out to determine the lethal (toxic) and sublethal
concentrations of chlorpyrifos for third instar H. axyridis (Table 1). After 72 h of treatment, lethal and
sublethal concentrations of chlorpyrifos were calculated. The LC10, LC30, LC50, and LC90 values for
third instar larvae were calculated as 4.62 (mg a.i. L−1), 9.59 (mg a.i. L−1), 15.90 (mg a.i. L−1), and 54.63
(mg a.i. L−1), respectively but only sublethal concentrations (LC10 and LC30) were used in life-table
experiments. Control group mortality was observed to be <10%.

http://140.120.197.173.193
http://140.120.197.173.193
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Table 1. Acute toxicity of chlorpyrifos on 3rd instar larvae of Harmonia axyridis.

Insecticide
Concentration (95% CL)−1 mg (a.i.) L−1

N LC10 LC30 LC50 LC90 Slope ± SE χ2 (Df)

Chlorpyrifos 360
4.62 9.59 15.90 54.63

2.391 ± 0.225 5.822 (4)
(2.31–6.92) (6.27–12.89) (11.70–21.19) (37.66–102.01)

N = number of third instar larvae of H. axyridis treated with chlorpyrifos.

3.2. Sublethal Effects of Chlorpyrifos on H. axyridis

3.2.1. Effects on Pre-Adult Development

We evaluated the sublethal effects of chlorpyrifos on the developmental period of pre-adult
stages (Table 2), male and female adult longevity, pre-oviposition period, and fecundity of H. axyridis
(Table 3). Results show that the LC10 treatment significantly shortened the developmental period of
the third instar, whereas the developmental periods of fourth instar larvae and pupa were significantly
prolonged compared with those in the control. Larval and pupal development times significantly
increased after the LC30 treatment.

Table 2. Sublethal effects of chlorpyrifos on the developmental period (mean ± SE) of pre-adult stages
of H. axyridis.

Treatments
Development Period of Immature Stages

Third Instar Larva
(Day)

Fourth Instar
Larva (Day) Pupa (Day)

Control 2.68 ± 0.07 b 5.31 ± 0.06 c 5.74 ± 0.06 c
LC10 2.13 ± 0.10 c 6.46 ± 0.12 b 6.70 ± 0.13 a
LC30 2.95 ± 0.08 a 7.44 ± 0.22 a 6.14 ± 0.19 b

Means followed by the same letters in the same column are not significantly different based on the paired bootstrap
test at the 5% significance level. 150 insects were used for each treatment.

3.2.2. Effects on Life Table Parameters of H. axyridis Adults

Female fecundity and male and female adult longevity were negatively affected by chlorpyrifos
exposure. Treatment with LC10 and LC30 concentrations significantly decreased the female and male
adult longevity and female fecundity compared with those of the control. Conversely, the adult
pre-oviposition period (APOP) and total pre-oviposition period (TPOP, calculated from eggs hatched)
were significantly prolonged after treatment with LC10 and LC30 (Table 3).

Table 3. Sublethal effects of chlorpyrifos on the life parameters (mean ± SE) of H. axyridis adults treated
with insecticide from the third instar larval stage.

Treatments Female Adult
Longevity (d)

Male Adult
Longevity (d) APOP (d) TPOP (d) Fecundity

(Eggs/Female)

Control 65.43 ± 1.16 a 63.89 ± 0.9 a 9.76 ± 0.12 c 33.14 ± 0.21 c 694.84 ± 17.28 a
LC10 55.41 ± 1.36 b 50.02 ± 1.13 b 11.76 ± 0.14 b 36.27 ± 0.32 b 379.03 ± 24.21 b
LC30 47.26 ± 1.55 c 44.46 ± 0.92 c 12.61 ± 0.30 a 38.50 ± 0.46 a 229.06 ± 36.88 c

Means followed by the same letters in the same column are not significantly different based on the paired bootstrap
test at the 5% significance level. 150 insects were used for each treatment.

3.3. Effects on H. axyridis Population Growth Parameters

The effect of chlorpyrifos on population growth parameters is shown in Table 4. Results show that
r, λ, and R0 were negatively affected by chlorpyrifos exposure. LC10 and LC30 treatments significantly
reduced the values of r, λ, and R0. There was no significant effect on mean generation time.
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Table 4. Sublethal effects of chlorpyrifos on the population growth parameters (mean ± SE) of H.
axyridis adults exposed to insecticide from the third instar larval stage.

Treatments
Population Growth Parameters

(r) (λ) (R0) (T)

Control 0.12 ± 0.002 a 1.13 ± 0.002 a 290.33 ± 28.60 a 43.92 ± 0.33 a
LC10 0.10 ± 0.003 b 1.10 ± 0.004 b 93.36 ± 14.53 b 44.40 ± 0.50 a
LC30 0.07 ± 0.006 c 1.07 ± 0.006 c 27.48 ± 7.43 c 44.22 ± 0.75 a

Means followed by the same letters in the same column are not significantly different as calculated using the paired
bootstrap test at the 5% significance level. r = Intrinsic rate of increase day−1; λ = Finite rate of increase day−1;
R0 = Net reproductive rate (offspring per individual); T = Mean generation time.

3.4. Effects on H. axyridis Feeding Potential

Sublethal concentrations of chlorpyrifos negatively affected the feeding potential of third and
fourth instar larvae and adults of H. axyridis (Figure 1). The results demonstrate that LC10 and LC30

treatments significantly reduced the feeding potential of third instar (F2,27 = 44.7, p < 0.001) and fourth
instar (F2,27 = 26.9, p < 0.001) larvae, adult males (F2,27 = 109, p < 0.001), and adult females (F2,27 = 8.25,
p = 0.0016) as compared to that of the control.
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Figure 1. Feeding potential of the pre-adult and adult stages of H. axyridis in the control and treatment
(LC10, LC30) groups. (A) = feeding potential of 3rd instar, (B) = feeding potential of 4th instar, (C) =

feeding potential of adult male, (D) = feeding potential of adult female. Different letters above each
bar indicate significant differences between treatments using one-way ANOVA, LSD test (p = 0.05 and
n = 30 (Control), n = 50 (LC10 & LC30)).
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3.5. Effects on H. axyridis Demographic Parameters

3.5.1. Effect on Survival Rate

The sxj value decreased in the treated populations (Figure 2). Results show that the survival rate
of third instar larvae was higher than that in subsequent stages. The highest peaks of sxj for fourth
instar larvae were at 0.94 in the control, 0.56 in LC10, and 0.73 in LC30. The pupal stage was more
susceptible to increasing insecticide concentration (control: 0.89, LC10: 0.49, LC30: 0.34). sxj peaked
in the control group (males: 0.48, females: 0.42), whereas this value decreased in treatments with an
increase in chemical concentration (LC10: 0.26 for males, 0.24 for females; LC30: 0.16 for males, 0.12 for
females). Mean longevity of females and males in the control was 54 and 56 days, respectively, higher
than that in the LC10 (43.54 and 45.46 days) and LC30 (38.24 and 41.81 days) treatment groups.
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Figure 2. Graphs show sxj (age-stage-specific survival rate) values of offspring produced by Harmonia
axyridis females treated with sublethal chlorpyrifos concentrations.

Graphs of lx (age-specific survival rate), fxj (age-stage-specific fecundity), mx (total fecundity of
population), and lxmx (net maternity) are shown in Figure 3. lx represents a simple form of the Sxj
curves. On the 30th day, the slope of the lx curve of the control group (0.90) was greater than that
of the LC10 (0.52) and LC30 (0.28) curves, which decreased following insecticide treatment. The fxj
(age-stage-specific fecundity, mean number of individuals produced by a female at age x) values were
also negatively affected by pesticide treatment. In the control, the highest observed value of fxj was
29.86 eggs female−1 day−1 on the 78th day, whereas in the LC10 treatment, the fxj value was 23.36 eggs
female−1 day−1 on the 50th day. The highest calculated mx value for the control (30 eggs individual−1

day−1 on the 80th day) was found to be greater than that in LC10 (14.28 eggs per individual−1 day−1 on
the 56th day) and LC30 (26 eggs individual−1 day−1 on the 55th day). The lxmx curves depended on lx
and mx values. The highest peak of lxmx was observed in the control at the age of 47 (12.08), LC10 at
the age of 46 (6.90), and LC30 at the age of 42 (2.99) days.
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with the value of those in the control. In the control, exj was 60 days, which considerably decreased in
LC10 (32.67 days) and LC30 (24.16 days). The exj curves showed that the life expectancy of 24-day-old
females and males further reduced in the chlorpyrifos-treated population compared with those in the
control. The exj values of 24-day-old females and males were 41.69 and 40.19 in the control, 31.4 and
25.9 in LC10, and in LC30 it was further reduced to 23.26 and 20.45.
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females treated with sublethal chlorpyrifos concentrations.

4. Discussion

Non-target organisms are directly or indirectly effected by a number of insecticides extensively
applied in agriculture for pest control [34,57]. We evaluated the sublethal effects of chlorpyrifos on life
table parameters of H. axyridis. The LC50 value of chlorpyrifos was 15.90 (mg a.i. L−1) for the third
instar larvae, which is less than the recommended field concentration [42]. The developmental period
of third instar larvae was shortened following LC10 treatment, whereas LC30 treatment prolonged
this period. Sublethal concentrations (LC10: 4.62 mg a.i. L−1, LC30: 9.59 mg a.i. L−1) of chlorpyrifos
prolonged the developmental periods of fourth instar larvae and pupae and significantly negatively
affected feeding potential, male and female adult longevity, female fecundity, population growth, and
demographic parameters. Similar results were reported when the effect of chlorpyrifos on the generalist
predator H. convergens was evaluated [42]. Among the different life stages of H. axyridis, a high level of
toxicity was calculated when third instar larvae were exposed to chlorpyrifos, which shows that this
stage was more vulnerable to chlorpyrifos than the adult stage in the present study. Different toxicity
levels between life stages have been reported for H. axyridis [25,35,58], Ceraeochrysa cubana (Neuroptera:
Chrysopidae) [59], Chrysoperla carnea (Neuroptera: Chrysopidae) [60], and Adalia bipunctata (Coleoptera:
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Coccinellidae). The lower adult susceptibility is due to a high amount of cuticle sclerotization in the
integument of adult insects, which reduces insecticide penetration [61].

Age-stage, two-sex life table theory is a comprehensive tool for evaluating the total effects of
an insecticide on insect pest populations based on life stage developmental periods, survival, adult
longevity, and female fecundity [62]. The results of larval and pupal development show that even
lower concentrations of chlorpyrifos are toxic for pre-adult development. Chlorpyrifos treatment
prolonged the developmental period of larval and pupal stages in comparison with that of the control
because, after treatment, most of the energy in a treated individual was used for detoxification of the
applied chemical [63]. In another study, chlorpyrifos treatment also increased the larval and pupal
developmental period of H. convergens [42]. Similar results were reported in a study showing the
adverse effects of chlorantraniliprole on H. axyridis [35].

Despite an increase in the pre-oviposition period (adult and total), a strong decrease was observed
in adult life span (male and female longevity), feeding potential, and female fecundity. Decreases in
the fecundity of three natural enemies, Orius insidiosus (Hemiptera: Anthocoridae), Cycloneda sanguinea
(Coleoptera: Coccinellidae), and Chauliognathus flavipes (Coleoptera: Cantharidae) were previously
confirmed when chlorpyrifos was evaluated for safety [64]. The reduced fecundity in our results was
consistent with that reported in a previous study [42], which revealed a strong decrease in female
fecundity of H. convergens when exposed to chlorpyrifos. Reduced fecundity was also reported when the
natural enemy Habrobracon hebetor (Hymenoptera: Braconidae) was exposed to sublethal concentrations of
chlorpyrifos [65]. The above mentioned results are all consistent with studies of neonicotinoid insecticides,
including clothianidin [66] and acetamiprid [67], reducing the fecundity of coccinellid predators. Decreased
fecundity may be the result of ovary deformation caused by pesticide application [68].

Predation ability is also adversely affected after insecticide exposure [69]. Our results were consistent
with this, showing that the feeding potential of larvae and adults of H. axyridis was significantly reduced
when third instar larvae were treated with chlorpyrifos. Similar results were previously reported
regarding the decreased foraging time and feeding capacity of other predators, Macrolophus pygmaeus
(Hemiptera: Miridae), Coleomegilla maculata, Serangium japonicum and Hippodamia convergens (Coleoptera:
Coccinellidae) because of neonicotinoid insecticide exposure [69–71]. Adult male and female longevity
was shortened in H. convergens [42] and H. hebetor [65] after exposure to chlorpyrifos. These results are
similar to those of our study regarding chlorpyrifos exposure significantly reducing male and female
longevity. According to these results, H. axyridis is very susceptible to chlorpyrifos, specifically during
the pre-adult stages. The absolute change in all parameters after chlorpyrifos treatment may have been
because of the higher toxicity of chlorpyrifos than that of other insecticides [64].

The comprehensive study of life table parameters is necessary for the assessment of the sublethal
effects of an insecticide on insects as well as on the population growth rate [39,72]. Our results
demonstrate that population growth parameters r, R0, and λwere significantly lower after LC10 and
LC30 treatments, indicating that sublethal concentrations of chlorpyrifos cause damaging effects on the
physiology of insects, which are often not observed in the short term [73]. Corroborating these results,
a decrease in r, λ, and R0 values was observed in chlorpyrifos-exposed H. convergens populations [42].
Similar results were reported when the toxic effects of chlorpyrifos were observed on the population
growth and biological activity of Bracon hebetor (Hymenoptera: Braconidae) [74].

Our results confirm the negative effects of chlorpyrifos on demographic parameters of H. axyridis
by showing the deleterious effects on population growth rate. Specifically, sxj was significantly lower
after chlorpyrifos treatment, whereas fxj and mx values were also decreased in LC10 and LC30 treatments.
A similar tendency was observed in the reproduction value, vxj. In addition, a strong decrease was
found in population growth, exj. Sublethal effects were also observed in later stages; exj values of
freshly hatched eggs were higher for the control than the treatment groups due to high chlorpyrifos
stress. Our results show that chlorpyrifos application exerted negative effects on the feeding, survival
rate, reproduction, and development of H. axyridis. Further work is required to evaluate the genetic
changes that occur following exposure to sublethal concentrations of chlorpyrifos.
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Except of being an effective biological control agent, H. axyridis is also known as an invasive
species in some countries of the world [10]. It is native to central and eastern Asia occurring in Korea,
Japan, Mongolia, China, Russian Far East [75]. In some regions, it has become invasive, producing
negative socio-economic and ecological effects [76]. It was introduced to North America for biological
control of coccids and aphids [77] but in 1988, its dispersal was observed in the wild areas [78]. It was
introduced across Europe as a biological control agent of aphids [75]. Because of its excellent dispersal
abilities, it invaded to Britain also [79]. It is a successful invader due to polyphagous nature, excellent
capacity to disperse and establish and flexibility of its immune system [80].

5. Conclusions

In the present study, chlorpyrifos exhibited high toxicity to H. axyridis because it increased the
pre-adult developmental period, pre-oviposition period, and lowered male and female adult longevity,
female fecundity, and feeding potential. Treatment with this insecticide negatively affected both life
table and demographic parameters. According to our results, we suggest that the field application of
chlorpyrifos can damage H. axyridis populations either in the short or long term, so the use of this
insecticide needs more attention and care in IPM schemes.
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