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1 |  INTRODUCTION

Antibodies are B‐cell proteins that play a vital role in adaptive 
immunity. These complex molecules, and their diverse speci-
ficities are defined at several levels. At the protein level, these 
molecules are heterodimers joined with disulfide bonds be-
tween heavy and light chains. At the genetic level, the antibody 
specificity is influenced by semi‐randomly recombining a vari-
able (V), diversity (D), and joining (J) gene segments that are 
encoded in the genome. This V‐D‐J, or in the case of the light 
chain, V‐J rearrangement, also influences antibody specificity 

by random and semi‐random base insertions or deletions during 
the recombination process. In the end, the collection of antibod-
ies produced, the antibody repertoire, is a fingerprint of what 
antigens an organism has been exposed to and a measure of im-
munocompetence. Sequencing has become easier, cheaper, and 
faster in recent years. Antibody repertoires have been sequenced 
in numerous species, in response to vaccinations1-3 and infec-
tions,4-6 and have been employed in cancer detection providing 
valuable feedback regarding the immune system’s response to 
challenges and for early cancer detection in patients.7,8

In an effort to supplement unamplified MiSeq data sets 
used in our laboratory,9 we explored the use of commercial 
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processes that use technologies to amplify sequences to increase 
the depth of coverage of specifically targeted immunoglobulin 
gene transcripts. These data sets are created using massively 
multiplexed PCR reactions that are subsequently sequenced on 
the Illumina platform. Multiplex amplification strategies have 
been used to explore the T‐cell10,11 and B‐cell repertoires,12-15 
and biases, omissions.10,11,16-18and PCR artifacts have been de-
tected in the data sets.10

We started this project with the hypothesis that our un-
amplified data set would provide comparable results to those 
seen in the commercially amplified data sets. However, we 
are unaware of any immunoglobulin repertoire studies that 
have been done to compare data obtained using amplifica-
tion techniques compared to the repertoire in a total RNASeq 
library. Concurrent with performing these analyses, we dis-
covered that the required sample preparation for commercial 
sequencing also varied. Therefore, we found it necessary to 
examine the impact of sample preparation as part of our ef-
fort. This manuscript describes our results comparing a data 
set generated using unamplified total RNA (TRNA) to com-
mercially amplified data sets. We examined the role of com-
mercial amplification and cDNA generation methods as well 
as the impact of the starting material on sequence output.

2 |  MATERIALS AND METHODS

2.1 | KSU RNA preparation
RNA was prepared as outlined in Rettig et al.9 Briefly, RNA 
was extracted from the spleens of four 9‐week‐old female 
C57Bl/6 J mice. TRNA was submitted to the Kansas State 
University Integrated Genomics Facility for sequencing 
and cDNA was prepared using standard Illumina protocols. 
cDNA made from the TRNA using random hexamer primers 
and oligo‐dT selection, was size selected to 275‐800 bp length 
and sequenced on the Illumina MiSeq at 2 × 300 bp using 
Illumina’s protocol. No additional amplification beyond that 
required by Illumina preparation was used and we consider 
these samples nonspecifically amplified, or “unamplified.”

2.2 | Commercial sample preparations
mRNA was extracted from the TRNA isolated from the sam-
ple used for the KSU data set using the PolyATtract mRNA 
isolation system (Promega, Fitchburg, WI) following manu-
facturer’s instructions. RT‐PCR for samples amplified with 
Avian Myeloblastosis Virus (AMV) reverse transcriptase–
based sample preparation was performed using the Access 
RT‐PCR System (Promega, Fitchburg, WI) following the 
manufacturer’s instructions. RT‐PCR for Moloney Murine 
Leukemia Virus (MMLV) reverse transcriptase–based sam-
ple preparation was performed using the SuperScript III 

First‐Strand Synthesis System (Invitrogen, Carlsbad, CA) 
following manufacturer’s instructions. Starting material for 
RT‐PCR was either TRNA from the KSU data set or the pu-
rified mRNA. RT‐PCR products were submitted to Adaptive 
Biotechnologies (Seattle, WA) (Com1) on dry ice following 
company protocols. TRNA and mRNA (unamplified) were 
submitted to iRepertoire, Inc (Huntsville, AL) (Com2) on dry 
ice following company protocols.

2.3 | Bioinformatic analysis
KSU sequencing results were analyzed as described pre-
viously.9 Briefly, sequencing results were quality con-
trolled. Antibody‐specific sequences were isolated and 
submitted to ImMunoGeneTics (IMGT)19 for analysis. 
Individual sequences were assigned a unique ID by the 
sequencing machinery during Illumina sequencing and 
were used to identify unique sequences. The sequence 
containing the most high‐quality information was re-
tained for further analysis as outlined in Rettig et al.9 
No further filtering of reads was performed. Both com-
mercial sequencers provided their own bioinformatic 
analyses of the sequencing results. The raw sequencing 
results from Com1 and Com2 were also submitted to 
IMGT for analysis and subjected to the standard KSU 
bioinformatics pipeline. IMGT’s nomenclature and 
classifications were used throughout this paper. We as-
sessed all functional V‐gene segments as identified by 
IMGT. We also include three putative functional genes 
(V5S21, V1S100, and V3S7) which were detected in re-
arranged transcripts (containing a CDR3 C‐xx‐W motif 
or class switched) in our previous analysis of the normal 
C57BL/6 repertoire.20 IMGT’s High‐V Quest occasion-
ally assigned multiple potential V‐gene segments to a 
single sequence, likely due to incomplete capture of the 
entire V‐gene sequence or high homology between gene 
segments.

In all IMGT processed data, sequences that contained 
two possible V‐gene segment possibilities were assigned 
a weighted value of 0.5 per sequence, as opposed to one 
for full matches. Sequences with V‐gene segments that 
were assigned more than two potential matches were ex-
cluded from analysis. Initial results were tabulated using 
the companys’ proprietary bioinformatic results. However, 
to determine the role of bioinformatic handling of the data, 
some of Com1 and Com2 data were subjected to the stan-
dard KSU bioinformatic workflow analysis and CDR3 
analyses.9

2.4 | Statistical tests
All statistical analyses were carried out using GraphPad 
Prism (Version 6.0). Paired T tests were performed using 



8 |   RETTIG ET al.

the raw read counts. Coefficient of determinations (R2) were 
performed by comparing the percent of repertoire between 
animals. Percent of repertoire is determined by dividing the 
read count for a specific V‐gene segment by the total number 
of reads detected and multiplying by 100.

3 |  RESULTS

Most studies examining immunoglobulin repertoires use 
amplification to increase the depth of sequencing, but am-
plification comes with some drawbacks. We wanted to 
assess the comparability of amplified and non‐amplified 
data from identical samples. In preparation to do this com-
parison, we found that different commercial amplification 
methodologies required different types of sample prepara-
tion. For example, sample submission for the Com1 data 
sets required a cDNA sample. The Com1 process amplified 
the resulting cDNA using proprietary primers and sequenc-
ing on the Illumina platform. After an initial submission 
showed a low correlation between the Com1 sequencing 
and the KSU data set (data not shown), we hypothesized 
that cDNA preparation plays a role in determining the 
amplified repertoire. To test this hypothesis, we assessed 
the role of starting material (mRNA or TRNA), reverse 
transcriptase (AMV vs MMLV), and primer templates 
(oligo‐dT or random hexamer) on the sequenced B‐cell im-
munoglobulin repertoire. Com2 submissions required the 
submission of TRNA, rather than cDNA.

3.1 | Assessment of transcriptional 
read counts
Com1 amplified data sets returned between 7084 and 
1 263 003 sequences, dependent on the preparation method. 
mRNA starting material yielded more total transcriptional 
reads than TRNA (P = 0.013, two-tailed matched T test; 
Table 1). Generally, the AMV reverse transcriptase and 

random hexamer primers tended to yield higher numbers 
of transcripts. The use of AMV and random hexamer prim-
ers resulted in more total productive reads in three out of 
four of the comparisons directly comparing primers, how-
ever, the overall differences were not statistically different 
(P > 0.05, two‐tailed matched T test; Table 1). In the Com2 
data set, we found a moderate number of reads, about one‐
half of those detected in the highest Com1 numbers. These 
compare to 11 200 sequence reads containing a CDR3 gen-
erated in the KSU data set using a total MiSeq approach.

3.2 | Determination of sequencing 
reproducibility
To assess the repeatability of the amplified Com1 and Com2 
data sets, we examined the correlation of V‐gene segment 
usage. In the C57BL/6 mouse, the V‐gene segment is the 
most varied in the heavy chain (IgH locus) comprising a 
total of 109 functional V‐gene segments, three putative func-
tion V‐gene segments, and alleles compared to 19 for the 
D‐gene segment and four for the J‐gene.21,22 The nucleotide 
sequences in the V‐gene segments are also highly varied and 
require a complex multiplex PCR to amplify. Correlations 
were assessed using the data provided by the commercial 
vendor’s proprietary bioinformatics.

Non‐strain specific V‐gene segment assignments ac-
counted for between 0.84% and 1.46% of the sequencing 
results from Com1 and 1.74% and 1.41% for Com2 (Table 
2). Although there were differences in the immunoglobulin 
gene transcripts detected, there was a high correlation in the 
V‐gene sequences detected among the different technical rep-
licates in the Com1 data (R2 range from 0.6986 to 0.9933, all 
P < 0.0001) (Figure 1). The R2 between technical replicates 
in Com2 was 0.9621 (P < 0.0001). We also examined the re-
producibility of two technical replicates of KSU sequencing 
used for a different analysis and obtained an R2 of 0.9996 
for Mouse 32, and 0.9995 for Mouse 39 (P < 0.001) showing 
high levels of reproducibility between KSU sequencing runs. 

T A B L E  1  Total number of productive reads per data set

KSUa

Com1a Com2a

mRNAb TRNAb

mRNAb TRNAb

AMVc MMLVc AMVc MMLVc

dTd Hexd dTd Hexd dTd Hexd dTd Hexd

Total 
Productive 
Reads

11 200e 553 521 1 263 003 883 532 1 035 461 7 975 6 867 208 979 220 772 637 214 766 075

aSequencing technique (Com1 and Com2 are amplified data sets). 
bStarting material (mRNA, messenger RNA; TRNA, total RNA). 
cReverse transcriptase (AMV, Avian Myeloblastosis Virus; MMLV, Moloney Murine Leukemia Virus). 
dPrimer (dt, Oligo dT; Hex, random hexamer). 
eAn additional 27 896 reads were used for V‐gene segment usage assessment. These sequences were not long enough for CDR3 detection. 
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Therefore, although total transcripts generated varied with 
sample preparation, the V‐gene segments that were detected 
were consistently detected using two different commercial 
approaches.

3.3 | Impact of amplification on V‐gene 
segment detection
The unamplified KSU approach produced a data set where a 
total of 112 V‐gene segments were detected while the Com1 
data sets contained between 85 and 100 V‐gene segments. 
The Com2 mRNA data set contained 99 detectable V‐gene 

segments and the TRNA contained 100. Comparisons of 
V‐gene segments in the Com1 data set to the KSU data 
set showed moderate R2 values (0.4457 to 0.5841, all 
P < 0.0001) (Table 3). The Com2 data sets also showed 
moderate R2 of 0.6695 for mRNA and 0.6607 for TRNA 
(all P < 0.0001). To determine why there were differences 
in V‐gene detection, we compared the results from the 
most commonly detected V‐gene segments in the KSU data 
sets to their frequencies in the Com1 and Com2 data sets. 
The protocol for Illumina sequencing uses mRNA selec-
tion, SuperScriptIII reverse transcriptase, and random hex-
amer primers. To best compare results, we used the Com1 

T A B L E  2  Percent of non‐C57BL/6 V‐gene segments detected per data set

Com1a Com2a

mRNAb TRNAb

mRNAb TRNAb

AMVc MMLVc AMVc MMLVc

dTd Hexd dTd Hexd dTd Hexd dTd Hexd

% Non‐B6 
V‐Gene 
segments

0.92 0.88 0.84 1.17 1.30 1.46 1.02 1.14 1.74 1.41

aSequencing technique (Com1 and Com2 are amplified data sets). 
bStarting material (mRNA, messenger RNA; TRNA, total RNA). 
cReverse transcriptase (AMV, Avian Myeloblastosis Virus; MMLV, Moloney Murine Leukemia Virus). 
dPrimer (dt, Oligo dT; Hex, random hexamer). 

F I G U R E  1  R2 values of sequencing 
technical replicates. The percent of 
repertoire for each V‐gene segment detected 
was compared between technical replicates. 
The highest R2 are dark read, while the 
lowest R2 are blue
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mRNA‐MMLV‐Hex data set and the Com2 mRNA data set 
using the top 34 V‐gene segments in the KSU data set. These 
V‐gene segments comprise over one percent of the detected 
repertoire and are considered highly expressed. In the Com1 
data set, of these 36 highly expressed V‐gene segments, five 
(V1‐26, V1‐18, V1‐50, V4‐1, and V2‐6) were detected at 
twofold lower frequency than in the KSU data set (Figure 
2). These five V‐gene segments were either absent or were 
near zero percent of the repertoire (Figure 2). Of these same 
top 34 V‐gene segments in the Com1 data set, two (V6‐3 
and V2‐6‐8) were detected at twofold greater than the KSU 
data set (Figure 2). The R2 for these top 36 V‐gene segments 
to the KSU data set was 0.1783 (P = 0.0128).

We also compared the Com2 mRNA data set to the same 
34 V‐gene segments from the unamplified KSU data. Of 
the 34 V‐gene sequences, nine (V9‐3, V4‐1, V2‐6, V1‐81, 
V5‐17, V2‐2, V8‐8, V11‐2, V14‐2) were detected at a two-
fold or lower level than in the KSU data set (Figure 2). Five 
other V‐gene segments (V1‐53, V3‐6, V1‐64, V10‐1, and 
V1‐69) were detected at twofold higher levels than those 
found in the KSU data set (Figure 2). The correlation of 
these top 34 V‐gene segments was better than the Com1 R2 
at 0.4098 (P ≤0.0001).

Our normal workflow methods include the use of func-
tionally productive and unknown transcripts for analysis9. 
This inclusion helps balance the lower read numbers ob-
tained with unamplified sequences. We performed the same 
analysis as above between our productive + unknown data 
set used above, with our productive only data set. We de-
tected a total of 104 V‐gene segments. Those not detected 
in the productive only list (V3S7, V6‐7, V6‐4, V1‐62‐1, 
V5‐12‐4, V1‐17‐1, and V6‐5) comprised less than 0.7% 
of the repertoire. The correlation coefficient was high at 
0.9596 (P < 0.0001), and there were no changes at greater 
than twofold of the productive + unknown data set (Figure 
2). These analyses reveal that the addition of unknown 

functionality V‐gene segments does not significantly alter 
the repertoire.

3.4 | Direct comparisons of amplified and 
unamplified data sets
The comparisons in V‐gene use were made using the bioin-
formatics provided by the commercial ventures. To standard-
ize the data handling to remove bioinformatic reasons for the 
differences in data, we processed the sequencing results from 
the Com1 mRNA‐MMLV‐Hex and Com2 mRNA data sets 
using the KSU bioinformatics work flow.9

The KSU bioinformatic treatment of the Com1 data set 
correlated moderately with the commercially provided bio-
informatics (R2 = 0.4795, P < 0.0001). After processing the 
Com1 data with the KSU bioinformatics pipeline, the R2 to 
the KSU data set increased slightly from 0.5517 (Table 3) 
with the original bioinformatics to 0.5649 (P < 0.0001) with 
the adjusted bioinformatics. However, nine V‐gene segments 
were detected in the Com1 data set using the KSU bioinfor-
matics workflow that were not originally detected using the 
commercially provided bioinformatics (Supporting informa-
tion Figure S1). When we processed the Com2 data using the 
KSU bioinformatic pipeline, the Com2 data set was highly 
correlated with the original commercially provided bioinfor-
matics treatment (R2 = 0.9860, P < 0.0001). When we com-
pared Com2 data set processed with the KSU bioinformatics 
pipeline to the KSU RNASeq data set, the data still only had 
an R2 = 0.6791 (P < 0.0001). The KSU bioinformatics work-
flow detected an additional four V‐gene segments that were 
not detected by the commercial bioinformatics (Supporting 
information Figure S1).

When we reanalyzed the bioinformatics data from Com1 
and Com2 using the KSU pipeline, we detected gene seg-
ments that were not detected in the original commercially 
provided bioinformatics. However, the inclusion of these 

T A B L E  3  Correlations of data sets to unamplified KSU data set and read counts

Com1a Com2a

mRNAb TRNAb mRNAb TRNAb

AMVc MMLVc AMVc MMLVc

dTd Hexd dTd Hexd dTd Hexd dTd Hexd

R2 to KSU 
Dataset

0.5677 0.5773 0.4496 0.5517 0.4457 0.5606 0.5554 0.5841 0.6695 0.6607

Assessed 
V‐Gene 
Segments

506 503 151 104 1 749 618 1 245 999 267 946 5666 267 946 302 057 626 093 755 280

aSequencing technique (Com1 and Com2 are amplified data sets). 
bStarting material (mRNA, messenger RNA; TRNA, total RNA). 
cReverse transcriptase (AMV, Avian Myeloblastosis Virus; MMLV, Moloney Murine Leukemia Virus). 
dPrimer (dt, Oligo dT; Hex, random hexamer). 
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gene segments, did not greatly improve the R2 between the 
amplified data sets and the KSU RNASeq data. In the Com1 
data set, some gene segments (V1‐26, V1‐18, V1‐50, V2‐9‐1) 
were not detected or only detected at low levels in the orig-
inal bioinformatics but were detected at high levels (>1%) 
in the KSU/IMGT processed data (Supporting information 
Figure S1). The three additional V‐gene segments detected in 
the Com2 data set (V2‐5, V1‐62‐2, and V1‐62‐3 were found 
in less than <0.3% of the repertoire (Supporting information 
Figure S1). These changes were not sufficient to significantly 
improve R2 values.

3.5 | Impact of amplification on the 
reproducibility of CDR3 detection
The absence of some V‐gene segments in the Com1 and Com2 
data compared to the KSU data was a concern. It precludes 
a complete picture of the V‐gene repertoire. Nevertheless, 
amplified sequencing of the antibody repertoire is thought 
to provide an advantage in that the depth of coverage is in-
creased over unamplified data sets due to the number of reads 
generated. To determine how extensive the discrepancy is be-
tween amplified and unamplified data, we assessed the read 
depth (number of reads generated) and resampling efficiency 
of CDR3 (number of unique CDR3s resampled between rep-
licates) using technical replicates of samples sequenced with 
the various sequencing techniques. As anticipated, ampli-
fied data sets had both higher total read numbers and unique 
CDR3 numbers (Table 4).

Resampling/reproducibility has been assumed to improve 
with the depth of coverage. We had the unique opportunity to 
compare sequencing data from the same biological material 
subjected to multiple sequencing methodologies. We have 
also had the opportunity to do technical replicates on mul-
tiple samples subjected to RNASeq or amplification proce-
dures. This allowed us the ability to look at CDR3 sampling 
reproducibility and to determine if amplification provided 
any advantage in CDR3 reproducibility. For the KSU unam-
plified data set, two C57BL/6 J mouse spleen RNA samples 
(#32 and #39) were sequenced independently two times each 
and the CDR3s sampled were compared. In the KSU data set, 
32‐1 shared 28% of its total unique reads with 32‐2. (Figure 
3). 32‐2 shared 24% of its reads with 32‐1 (Figure 3). KSU 
data set, 39, showed 25% overlap of their total unique reads 
between each sampling (Figure 3). For the Com2 data, since 

F I G U R E  2  Percent of repertoire for high‐frequency V‐gene 
segments among data sets. Percent of repertoire for the KSU, Com1 
(mRNA‐MMLV‐hex), Com2 (mRNA), and Prod (productive only 
sequences from the KSU data set) are displayed. The highest value 
percent of repertoire is dark read while the lowest are white. Black 
boxes represent no detected reads (true zero). Rounded zeros are 
represented as 0.0
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there was such a strong correlation between the sequence out-
put between mRNA and TRNA samples of C57BL/6 J spleen 
samples (R2 = 0.9644), we considered these technical repli-
cates. The mRNA data set shared 24% of its sequences with 
the TRNA data set while the TRNA data set shared 30% of 
its sequences with the mRNA data set. We also examined the 
resampling efficiency in the Com1 data set using the spleen 
mRNA‐MMLV data sets that were reversed transcribed 
with two different primers, random hexamer and oligo‐dT. 
Although this was not a perfect technical replicate, there was 
an R2 of almost 0.94 in V‐gene segments detected (Figure 
1). Therefore, we felt these served as “incipient” technical 
replicates. The random hexamer data set shared 20% of the 
detected CDR3s and the oligo dT data set shared 32% of its 
CDR3 sequences. Therefore, regardless of data set, there 
was an average of 26%‐27% sampling overlap regardless of 
whether amplification was performed or not.

We also assessed the overlap in the detected CDR3s be-
tween the Com1 data set (mRNA‐MMLV‐Hex), Com2 data 

set (mRNA), and the KSU original data set to determine the 
extent of the overlap of CD3 detection using the different 
methods. From the 295 116 CDR3 unique sequences that were 
detected, 2662 of those sequences were shared among all three 
data sets (Figure 4). The amplified data sets from Com1 and 
Com2 shared the most CDR3 sequences between them with 
34 141 sequences found in both data sets (Figure 4). The KSU 
data set shared 59% of its detected CDR3 sequences with the 
Com1 and Com2 data sets (Figure 4). These data are consistent 
with the lower depth of sequencing of the unamplified data set 
compared to the Com1 and Com2 data sets where 19%‐32% 
overlap occurred in detected CDR3 sequences.

3.6 | Detection of high‐frequency CDR3s
To gauge whether the highest frequency CDR3s can be de-
tected by the different techniques, we assessed the 25 high-
est frequency CDR3s from each sequencing method. This 
resulted in a total of 48 unique CDR3s from the three dif-
ferent methods (Figure 5). The KSU data set detected all 
but one (CARGYFDVW) of these 48 sequences, the Com1 
data set failed to detect four sequences (CARGTYW, 
CTWDEGNYW, CARGIYW, and CARGSYW) and the 

KSUa mRNA‐MMLV‐Hex (Com1)a mRNAa (Com2)

Read Countb 11 200 1 035 461 637 214

Unique CDR3 
Sequencesc

6668 180 266 146 231

aSequencing data set. 
bTotal number of reads obtained per data set. 
cTotal number of unique CDR3 AA sequences. 

T A B L E  4  Unique CDR3 sequences in 
the KSU, Com1, and Com2 data sets

F I G U R E  3  Overlap of CDR3 sequence detection between 
technical replicates. CDR3 amino acid sequences were compared 
between technical replicates. Sequences unique to one data set are 
displayed in the outer circles. Sequences shared between data sets 
are in the overlap. Percent of shared CDR3 sequences is displayed in 
parentheses in the outer circles. (A) KSU data sets 32‐1 and 32‐2. (B) 
KSU data sets 39‐1 and 39‐2. (C) Com1 data sets mRNA‐MMLV‐Hex 
and mRNA‐MMLV‐dT. (D) Com2 data sets mRNA and TRNA

F I G U R E  4  CDR3 sequence capture among Com1, Com2, and 
KSU data sets. CDR3 amino acid sequences were compared among 
the Com1 mRNA‐MMLV‐Hex, Com2 mRNA, and the KSU data sets. 
Percent of the repertoire shared with at least one other data set is listed 
in parentheses
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Com2 data set detected all 48 sequences (Figure 5). The 
CDR3s that were not detected in the Com1 data set, did use 
V‐gene segments that were detected in the data set. These 
data show that although the depth of sequencing of the KSU 
data set was about 10% of the amplified data sets, the data set 
still captured 98% of the highest frequency CDR3’s.

3.7 | CDR3 frequency assessment
While the high‐frequency CDR3s were shared among at least 
two sequencing runs, most of the CDR3 sequences detected 
were unique to each sequencing run (Figure 4). To determine 
the frequency of unique CDR3 sequences, we compared the 
most frequent, least frequent, and average percent of the 
measured CD3 repertoire (Table 5). The highest frequency 
CDR3 was detected at 4.16%, 0.22%, and 2.26%, and of the 
repertoire for the KSU, Com1, and Com2 data sets, respec-
tively (Table 5). The lowest frequency CDR3s, representing 
only a single detected read, were 0.0088%, 0.0004%, and 
0.0002%, of the repertoire for the KSU, Com1, and Com2 
data sets, respectively (Table 5). The average detection level 
for the KSU data set was 0.015%, 0.0006% for the Com1 data 
set, and 0.0007% for the Com2 data set (Table 5).

We also examined the frequency of CDR3s that were 
unique to each data set. Overall, the maximum and the aver-
age frequencies of the data sets were reduced compared to the 
whole repertoire (Table 5). This demonstrates that the unique 
reads in each data set were most likely transcripts from low 
frequency B cells. Moreover, these data suggest that even 
without amplification, the KSU data set was detecting the 
most prevalent CDR3s and many low‐frequency sequences.

4 |  DISCUSSION

Illumina sequencing of total RNA from mouse spleen is able 
to capture a representative sample of the splenic B‐cell rep-
ertoire. This snapshot of the repertoire, while producing less 
reads than amplified data sets, detected more V‐gene seg-
ments than data sets that used two different amplification 
strategies and captures 98% of the high frequency CDR3s 
found in the amplified data sets. While amplified data sets 
provide more CDR3 depth of coverage, the unamplified data 
sets produced from an RNASeq allow for further data min-
ing, eliminate as much primer bias as possible and provides 
an accurate representation of the repertoire.

Sequencing requirements of the B‐cell receptor are more 
challenging than those of the T‐cell receptor. There are no 
consensus sequences to reference.10 Additionally, transcripts 
from the germline which are not successfully rearranged can 
be detected.23 Therefore, avoiding bias is one of the main pri-
orities for antibody repertoire sequencing.16 PCR errors are 
accumulated through the amplification process which can 
falsely inflate the repertoire or they can add suspected mu-
tations that do not exist10,17,24,25 and they may not be distin-
guishable from low level mutations that actually do exist in 
the repertoire.24,26 PCR biases can be introduced because of 
primer binding properties, CG content, mispriming, nonspe-
cific binding, and errors during replication.16,27-29 A specific 
issue in targeting antibody gene segments is primer annealing 
efficiencies since the gene segments that make up the murine 
IgH locus are similar, though not identical.28 The biases inher-
ent in the multiplex PCR can lead to false repertoire skewing, 

F I G U R E  5  High‐frequency CDR3s 
detected among the Com1, Com2, and KSU 
data sets. The top 25 CDR3s from each data 
set (48 total) were compiled and percent of 
repertoire compared. Black boxes represent 
no detected reads (true zero). Rounded zeros 
are represented as 0.0
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gene frequency inaccuracies, and a less comprehensive view 
of the repertoire.25,30,31 The development of these multiplex 
primers, is highly challenging.32 Work by Bashford‐Rogers33 
shows that there is little difference between RNA‐capture, 
5’RACE or PCR amplification in humans but others27 have 
shown that PCR does create biases and 5’ RACE helps re-
duce these.

Our results demonstrate some of the issues of assessing B‐
cell repertoires using massively multiplexed PCR reactions. 
While reproducibility for technical replicates was moderate 
to high, there was a large range of total read numbers across 
methodologies. Given the increase in read results with mRNA 
samples compared to TRNA samples, the authors hypothe-
size that mRNA increases the availability of antibody specific 
transcripts, increasing the overall read counts. Additionally, 
the reverse transcriptase plays a role in sequence generation. 
AMV reverse transcriptase has an RNase H activity, where 
MMLV reverse transcriptase does not.34 This activity may 
cleave RNA transcripts prior to completion of amplification, 
resulting in shorter reads with inadequate length for amplifi-
cation. The use of oligo‐dT primers will begin reverse tran-
scription from the most 3’ end of the transcript. The target of 
amplification is around 1.5 kilobases upstream of the poly‐A 
tail,35 likely leading to shorter reads and failure to amplify the 
region of interest. Random hexamer primers may be able to 
overcome this bias due to their random priming nature.

In addition to variations in read depth, the correlations 
of these data sets to the unamplified KSU data sets were 
low to moderate, even when the same bioinformatics pro-
cessing was employed. Of significant concern is the Com1 
and Com2 sets failed to detect 13 V‐gene segments that 
were detected by the unamplified KSU RNASeq data set. 
The absence of these genes draws into question how one 
compares the various data sets with correlation coefficients 
that are below 0.7 when technical replicates of the same 
sequencing are greater than 0.99. Although Carlson et al 
argues that amplification methodologies can capture the 
entire repertoire, there are concerns.11 Even when we only 
looked at the V‐gene families detected at the highest fre-
quency there were omissions. Of the 34 V‐genes that we 
categorized as “high frequency” (>1% of the repertoire), 
Com1 found lower detection levels (defined as less than 

twofold that found in the KSU data set) for five gene seg-
ments (V1‐26, V1‐18, V1‐50, V4‐1, and V2‐6) and nine 
(V9‐3, V4‐1, V2‐6, V1‐81, V5‐17, V2‐2, V8‐8, V11‐2, 
V14‐2) for the Com2 data set. These results suggest that 
those methods are skewing the reported repertoire by 
missing or underreporting those high frequency V‐gene 
segments. Interestingly, two V‐gene segments (V4‐1 and 
V2‐6) were underrepresented in both data sets, but the 
other V‐gene segments were unique.

The failure of primers to capture specific V‐genes is not a 
new discovery, as primers failed to adequately sequence hy-
bridomas previously.18,36 “Universal” primers for the human 
antibody repertoire do exist, but some questions remain if 
they cover the entire repertoire.37 The difficulty in develop-
ing a “universal” or even highly comprehensive primer set 
for the mouse is likely due to their highly varied leader se-
quences, V‐gene segments, and framework regions. Primer 
design would have to rely on massively multiplexed reactions 
and/or degenerate primers. Additionally, the most commer-
cially viable amplification methods would need to amplify 
across multiple common strains adding additional levels of 
complexity. Indeed, in our attempts to design “universal” 
primers, we found a minimum of 11 primer sets would be 
needed to detect V‐genes associated for each isotype. Even 
then, there were still issues with matching PCR conditions 
and efficiency. Methods to overcome the biases detected in 
amplification have been developed, such as the use of 5’ 
RACE26,38,39 and using molecular barcodes or identifiers.40,41 
However, these methods are expensive and have their own 
draw backs. Replication of the entire repertoire using 5’RACE 
would still require the use of multiple constant region prim-
ers, leading to the same multiplexing issues. Barcoding can 
have errors and chimeric reads making repertoires difficult 
to reconstruct.42 This latter issue is not a problem with our 
RNASeq data.

While bias exists in the massively multiplexed ampli-
fication process, there may be some sequencing errors in 
the unamplified KSU data set as well. While not specifi-
cally amplified for antibody sequences, random hexamers 
and oligo‐dT capture beads are used prior to sequencing to 
generate the library43 and some biases have been observed 
in random hexamer binding.44 The use of oligo‐dTs can 

Whole repertoirea Unique repertoirea

KSU Com1 Com2 KSU Com1 Com2

Minimumb 0.008758 0.000446 0.000221 0.008758 0.000446 0.000221

Maximumb 4.165500 0.216969 2.259680 0.035032 0.005804 0.026044

Averageb 0.014997 0.000555 0.00684 0.008929 0.000478 0.00290
aRepertoire sampled (Whole repertoire – includes all sequences, unique repertoire – sequences unique to a single 
analyzed repertoire). 
bMinimum or maximum frequency in the repertoire. 

T A B L E  5  CDR3 AA sequences 
frequencies in the whole and unique 
repertoire
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result in enhancement of the 3’ end of transcripts.45 We 
do not think this is particularly problematic since Illumina 
sequence methodology aims to reduce bias in their library 
preparations by combining the random hexamer and oligo‐dT 
capture. Additionally, while all libraries were sequenced on 
the Illumina platform, 3.19% of high‐quality Illumina reads 
contain false base calls, which are impossible to differentiate 
using normal bioinformatics methods.10 Overrepresentation 
of specific dinucleotides can also be detected in sequencing 
which are not related to primer usage.46 Therefore, although 
we hope to reduce bias and omission by doing RNASeq, we 
still have some technical issues that keep the data set from 
being a perfect reflection of the repertoire. Multiple technical 
replications help reduce the impact of this problem.

One analysis that was not pursued in this current investi-
gation was the identification of clonally related sequences. 
We were specifically interested in the functional antibody 
repertoire present in the spleen and focused our analysis at 
the transcript level. We acknowledge that the overrepresen-
tation of some sequences may be likely within our data sets 
since we do not use barcoding or clonality analysis to col-
lapse similar mRNA sequences. Nevertheless, the overrepre-
sentation of a specific sequence by an overly productive cell 
is also representative of cellular activation of transcription, 
and likely, functional antibody protein in the body.47,48

The lack of amplification also results in varying sequence 
lengths in our data set. We selected 40 nt as our minimum 
cutoff to provide us enough information to detect V‐, D‐, and 
J‐ gene segments. While some short sequences were included 
in the data analysis, our overall average sequence length was 
287 nt, with productive sequences averaging 331 nt and un-
known sequences averaging 270 nt (data not shown). Overall, 
less than 0.5% of the sequences analyzed where less than 
100 nt long (data not shown). Therefore, we do not think that 
sequence length is an issue in this study.

Although there are issues using massively multiplexed 
PCR reactions, there are advantages that may overshadow 
the disadvantages. For example, increased sequencing depth 
(eg, 1 260 000 reads vs 11 200 complete reads), better low‐
frequency CDR3 detection (20‐fold more unique CDR3 se-
quence than the unamplified KSU data set), and sequencing 
costs can be lower than an Illumina MiSeq run (by integrat-
ing multiplexing/barcoding).

Although amplification provides more detail in the 
CDR3 repertoire, if one is interested in the B‐cell clones 
that are most prevalent, then RNASeq does not appear to be 
at a disadvantage. CDR3 resampling was similar (20%‐32%) 
regardless of method. Additionally, when examining high 
frequency CDR3s, the unamplified data set only failed to 
detect a single unique CDR3 sequence, while the Com1 
data set failed to detect four. Without using an amplifica-
tion method with unique barcoding, such as that used in 
Shugay et al49 it is impossible to tell which unique CDR3s 

are, in fact, correctly identified new sequences and which 
involve miscalls, leading to false diversity. As our current 
paper does not focus on the actual diversity of the reper-
toire, and instead focuses on the differences among sample 
preparations and sequencing methods, we do not attempt to 
identify false call unique CDR3s as doing so may falsely re-
duce diversity. Instead, we used strict read quality cutoffs to 
prevent low quality base calls from being included in analy-
sis, and we point to our highly overlapping V‐gene segment 
usage (R2 = 0.9995 among multiple sequencing replicates 
to assure us that we minimized artifacts. Additionally, all 
sequencing was performed on the Illumina platform, so 
false base call rates should be similar across methodologies 
which we were focused on in this study.

When preparing for antibody repertoire sequencing, mul-
tiple factors must be considered within the framework of 
the specific biological questions being asked. This includes 
needed coverage, cost, and starting material.39 Additionally, 
it is important to consider that all repertoire sequencing is 
merely a snapshot of a constantly shifting image.25 We will 
also never be able to fully capture the full diversity of the 
B‐cell immunoglobulin repertoire, which is estimated to 
range from 106‐107 possible unique rearrangements and mu-
tations25,39 to as much as 1013.15 The failure of the KSU data 
set to detect rare clones compared to the amplified data sets is 
likely due to this; but even the amplified data sets only sam-
pled a fraction of the total repertoire. Therefore, one must de-
cide how “deep” is adequate for the question being addressed.

During this investigation, we also had to address the issue 
that starting material may influence the quality of one’s se-
quencing. mRNA as a starting template increased reads up 
to two orders of magnitude. Furthermore, random hexamer 
primers and MMLV reverse transcriptase generally yielded 
higher read count results. Interestingly, the use of mRNA, 
with MMLV reverse transcriptase and hexanucleotide prim-
ers is most technically like that used in Illumina sequencing. 
However, additional data will be needed to confirm our ob-
servations since we did not pursue this aspect of the study 
in detail and the replicate number did not allow for robust 
statistical comparisons.

In conclusion, we have demonstrated that sequencing 
of unamplified splenic RNA provides a realistic snapshot 
of the total splenic B‐cell repertoire. We also have demon-
strated that a good understanding of the bioinformatics work 
flow and reporting of the methodology is critical and cannot 
be understated. We understand that there are cellular biases 
and transcript stability differences within B‐cell subpopula-
tions.50,51 However, for the purpose of assessing a whole tissue 
B‐cell repertoire, unamplified RNASeq can provide a glimpse 
of the most prevalent B‐cell clones. The unamplified approach 
could just as well be applied to specific cell populations when 
the application requires it. Moreover, an unamplified data set 
may detect V‐gene segments that amplified data sets miss.
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