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Abstract

The Common topological features of related species gene regulatory networks suggest

reconstruction of the network of one species by using the further information from gene

expressions profile of related species. We present an algorithm to reconstruct the gene reg-

ulatory network named; F-MAP, which applies the knowledge about gene interactions from

related species. Our algorithm sets a Bayesian framework to estimate the precision matrix

of one species microarray gene expressions dataset to infer the Gaussian Graphical model

of the network. The conjugate Wishart prior is used and the information from related species

is applied to estimate the hyperparameters of the prior distribution by using the factor analy-

sis. Applying the proposed algorithm on six related species of drosophila shows that the pre-

cision of reconstructed networks is improved considerably compared to the precision of

networks constructed by other Bayesian approaches.

Introduction

Constructing gene regulatory networks (GRNs) using microarray gene expressions data is one

of the most challenging issues in bioinformatics. The noisy nature and high-dimensionality of

microarray data make it difficult to find appropriate measures for characterizing gene relation-

ships. There are various algorithm introduced for constructing gene networks. Most of them

infer edges in the network by using the marginal or partial correlations between pair of genes

[1–5]. The empirical sample covariance or correlation matrix is a standard tool for estimation

of gene associations. However, these estimations often have poor behaviors in high-dimen-

sional settings such as microarray datasets where the number of observations is much smaller

than the number of genes [3].

It is assumed that integrating a priori information such as pathway information in a gene

expressions analysis would improve the power of the method to reconstruct gene networks [6–

10]. For instance, Prior Lasso method (Plasso) reconstructs the gene network using the avail-

able biological knowledge about gene interactions [6]. They use the information from Pathway

Common (PC) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) as prior
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information for the network reconstruction. Some other studies consider the joint inference of

GRNs from different species gene expression dataset [11–15]. The main idea of these studies is

that the GRNs of related species share common topological features with respect to a shared

ancestry. Consequently, it is assumed that exploiting this common information may result in

more accurate inferred network and extract the true relationships among genes regarded to

determination of the conserved gene relationships among species. Although the final networks

in these studies are more accurate comparing to single-species networks, but the inferred net-

work represents just an average network rather than a species—specific one.

In this study, we aim to reconstruct a gene regulatory network by the use of the information

of gene expressions profile from related species by applying Bayesian inference of precision

matrix. Fitting a Gaussian Graphical Model (GGM) is a common approach to infer a gene net-

work [16]. In the context of Gaussian graphical models (GGM), conditional relationships

between a pair of genes could be inferred from partial correlations. Assuming a multivariate

normal distribution for gene expression vectors, the precision matrix (the inverse of the

covariance matrix of genes) could be considered as a way of estimating partial correlations.

We set a conjugate Wishart prior for the precision matrix. The external information is applied

in estimation of hyperparameters in prior distribution by applying a factor analysis (FA) on

the covariance matrix of the related species. Then, the part of the simplified structure of the

covariance matrix obtained by loading factors is used as the estimated for the hyperparameters

of prior distribution. Our proposed approach (F-MAP) is then applied to the gene expressions

prepared from several time points during early embryonic development in six Drosophila spe-

cies. The gene networks for all six species are estimated five times. In each time the informa-

tion from one of the other species is considered as external information or knowledge. The

results demonstrate the effectiveness of F-MAP to exploit external hints of other species gene

expressions and the improvement in the precision of the reconstructed network considerably.

Materials and methods

Gaussian graphical model (GGM)

Graphical models are statistical models for which a graph represents the conditional depen-

dence structure of variables [17]. Assuming a multivariate normal distribution for a set of vari-

ables, Gaussian Graphical models (GGMs) are popular class of graphical models for modeling

the conditional dependence relationships among variables through their joint distribution

[18]. The precision matrix (Θ) could be considered as a way of representation of Gaussian

Graphical Models (GGM). In this sense, each element of precision matrix (θij) demonstrates

the partial correlation (ρij) between two corresponding genes.

rij ¼ �
yij
ffiffiffiffiffiffiffiffiffi
yiiyjj

q ð1Þ

Therefore genes i and j would be correlated if the corresponding element in precision

matrix is non-zero. In fact, non-zero elements in the precision matrix indicate the presence of

direct interaction between two genes.

Bayesian inference of precision matrix

Let Yi for all i in {1, . . ., n} be independent and identically multivariate normally distributed

observation; N (0, Θ−1) in which p×p matrix Θ−1 is an unknown covariance matrix. The

Gene regulatory network reconstruction by external hints

PLOS ONE | https://doi.org/10.1371/journal.pone.0184795 September 22, 2017 2 / 17

Hamadan University of Medical Sciences: http://

www.umsha.ac.ir/index.aspx?siteid=135&pageid=

15681 (grant No.9505122649). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0184795
http://www.umsha.ac.ir/index.aspx?siteid=135&amp;pageid=15681
http://www.umsha.ac.ir/index.aspx?siteid=135&amp;pageid=15681
http://www.umsha.ac.ir/index.aspx?siteid=135&amp;pageid=15681


likelihood function of the data Y = (Y1, . . ., Yn)T is:

LðΘjYÞ ¼ Pn
i¼1

pðYijΘÞ / jΘj
n=2exp �

n
2
trðSΘÞ

n o
; ð2Þ

whereΘ, the precision matrix, is positive definite. Matrix S is the sample covariance matrix

and the maximum likelihood estimator (MLE) ofΘ−1. The MLE is a classical estimator ofΘ−1

without taking positive definite constraint into account. Additionally, the MLE is not reliable

when p (the number of variables) is greater than or equal to n (number of observations)[19].

When n is smaller than p, the matrix S is no longer positive definite. Therefore, it is not possi-

ble to estimate precision matrix by S−1. A Bayesian approach is an alternative way to estimate

Θ (andΘ−1).

Wishart prior distribution. By the assumption of Y ~ N(0,Θ−1) where Y is an n×p

matrix, Wishart distribution is a commonly used class of distributions forΘ [20, 21]. There-

fore, by the relationship between Wishart and inverse Wishart distribution we assume that the

prior distribution onΘ−1 is the inverse Wishart distribution [22]. The prior distribution of

Wishart W (ʋ, G) is:

PðΘÞ ¼
1

2up=2jGju=2
Gp

u

2

� � jΘj
u� p� 1

2 expf� 1=2trðG� 1ΘÞg; ð3Þ

where the scale matrix G is a p×p positive definite matrix. The parameter Гp(.), is a multivariate

gamma function and the parameter ʋ is the degree of freedom which should be greater than p-1.

The parameter G can be represented as G = (ʋΩ)-1 in which Ω is a p×p matrix [22] and

thus:

E½ΘjO; u� ¼ O
� 1
: ð4Þ

Therefore, the expectation of the covariance matrix is:

E½Θ� 1jO; u� ¼
1

u � p � 1
O ð5Þ

Hence, the prespecified structural form for Ω represents structural information about the prior

mean ofΘ andΘ−1.

The Wishart distribution is the conjugate prior for the population precision matrix of mul-

tivariate normal distribution. Thus, the posterior distribution of Θ follows Wishart distribu-

tion; W (ʋ�, (ʋ� Ω�)-1) in which:

u� ¼ uþ n; O
�
¼

n
nþ u

� �

Sþ
u

nþ u

� �

O: ð6Þ

The mode of the posterior distribution (MAP) can be considered as an estimator for Θ:

argmaxΘpðYjYÞ ¼ ðu
� � p � 1Þðu�O

�
Þ
� 1
: ð7Þ

According to Ω�, the prior degree of freedom (ʋ) somehow represents the strength of belief

about prior hyperparameters. It can be set empirically as any non-negative real number which

is greater than (p-1) [20, 22–25].

The prior Wishart distribution is characterized by the hyperparameters Ω and ʋ. Estima-

tion of these two parameters would determine the posterior distribution. In the case of existing

scientific information, the hyperparameters can be specified by the investigators. Unfortu-

nately, this prior information is rarely available. Therefore, the hyperparameters can be esti-

mated using empirical Bayes estimation [22, 26]. In this procedure the scale matrix can be set
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as various forms such as an intraclass correlation or factor analysis form[22] or even it is possi-

ble to set the scale matrix as sample covariance matrix. The variability may be underestimated

since the data is used twice [27]. An alternative approach is to apply a hierarchical modeling

[27]. A hierarchical model is built by assigning a prior distribution on the hyperparameters.

The choice of hyperprior is important. Bouriga et al. introduce hierarchical inverse Wishart

prior for the estimation of covariance matrix which use the shrinkage toward diagonality [27].

In general, the hierarchical approach applies MCMC the sampling for the estimation.

In this paper, we apply the external information to estimate the hyperparameters. We esti-

mate the hyperparameters based on the information obtained from the factor analysis on

other related dataset. Actually, we apply factor analysis on other related species gene expres-

sions data and extract the prior information to estimate Ω.

Factor analysis (FA)

In factor analysis [28, 29] the random observed vector y of p dimension (y1, . . ., yp)T is repre-

sented as linear combinations of a few latent variables f1, f2, . . ., fm (m<p) which are called fac-

tors. For example for the jth (j = 1, . . ., n) observation, the factor model for the ith variable is:

yij ¼ mi þ li
T fj þ εij; i ¼ 1; . . . ; p; ð8Þ

where fj = (fj1, . . ., fjm)T is a vector of factors. The coefficient vector λi = (λi1, . . ., λim)T is called

loading factor vector and its components indicate the importance of the corresponding factors.

μi and εij are the mean and the error term, respectively. This model can be written in matrix

notation as:

yj ¼ mþ Λ fj þ εj; ð9Þ

The vector yj is observable and none of the variables in the right-hand side of (9) are observ-

able. It is assumed that error terms are independently distributed as normal distribution with

zero mean and the variance-covariance matrix C which is diagonal. Also, it is assumed that

error terms are independent from factors. Factors can be considered as random variables or

fixed quantities that vary from one individual to another. For random factors, it is assumed

that E[ffT] = F. If factors are not random F is defined as:Φ ¼ 1

n Sn
j¼1
ðfjfjTÞ.

Taking the factor model (9) into account the covariance matrix of variables is decomposed

as:

S ¼ ΛΦΛT þΨ : ð10Þ

There are different methods to estimate parameters of a factor model such as principle

component methods (PCA) and maximum likelihood estimation (MLE) [29, 30]. In this work,

we use the MLE approach introduced by Bai et al. [31]. Their approach considers the maxi-

mum likelihood estimation for high dimensional data where the number of variables is equal

with or greater than the number of observations. They show that the MLE is able to provide

more efficient estimation under large p compared to PCA which is the most frequently used

approach to estimate the parameters of the factor model [32–34]. The PCA is easy to compute

and provides consistent estimators for the factors and their loading coefficients when the num-

ber of variables and observations are both large [31]. Homoscedasticity of the error terms is an

implicit assumption of the PCA approach. Unlike PCA, the applied MLE in our work allows

the hetroskedasticities which are estimated by other parameters simultaneously.

The applied MLE uses the quasi-likelihood function since it is assumed that {fj} is a

sequence of fixed constants. However, the analysis holds if factors assumed to be random
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variables. The number of factors should be prespecified. There are various methods to find the

appropriate number of factors [35]. We estimate the number of factors by Bi-cross-validation

for factor analysis introduced by Wang et al. [35]. The introduced method is based on Bi-

cross-validation, using randomly held-out sub-matrices of the data to choose the optimal

number of factors. The Bi-cross-validation is done by applying esaBcv package from software

R.

The objective quasi likelihood function is:

ln L ¼ �
1

2p
lnjSj �

1

2p
trðSS� 1Þ; ð11Þ

where, S is the sample covariance matrix. Let ∑ be as shown in (10) whereՓ is 1

n Sn
j¼1
ð fjfjTÞ,

based on the factor model (9), the corresponding quasi likelihood function is:

lnL ¼ �
1

2p
lnjΨ j �

1

2pn
Sn

j¼1
ðyj � m � ΛfjÞ

TΨ � 1ðyj � m � ΛfjÞ: ð12Þ

To estimate the parameters, we take the following assumptions:

Assumption 1. The errors are independent and identically distributed as normal distribution.

E[ej] = 0 and E[ejejT] = C which is a diagonal matrix; C = diag(ψ2
1, . . ., ψ2

p); E[e4
ij]� C4 for

all i and j, for C�1.

Assumption 2. There exists a positive large enough constant C such that:

• kλik � C for all i. (k.k is a Frobenius norm)

• C� 2 � ci
2 � C2

• The limits limp!1p� 1ΛTΨ � 1Λ and limp!1
1
pS

p
i¼1ci

� 4ðli 
 liÞðli
T 
 li

T Þ exist and end-

ing up with positive definite matrices.

Assumption 3. The diagonal elements of C are estimated in the set [C−2, C2] andՓ is

restricted to be a semi-positive definite matrix with elements bounded in the interval [−C,

C]. C is a large constant.

To make the factor model identifiable, Bai et al. study the ML estimation under five dif-

ferent identification conditions. These conditions are explained in their paper with details

[31]. In this work, we only need to estimate the loadings factor matrix (∧) to estimate the

hyperparameter O of the prior Wishart distribution. Therefore, we impose the identification

condition which restricts Փ to an identity matrix and the matrix (p−1∧TC−1∧) as diagonal

one with distinct elements. The MLE is implemented via the expectation maximization algo-

rithm (EM).

We fitt the FA model on the external data based on ML estimation using cate package from

software R. After obtaining the loading factors, the hyperparameter O is estimated by:

O ¼ LL
T
: ð13Þ

F-MAP algorithm

Our proposed algorithm is a combination of Bayesian estimation and factor analysis which are

explained above. The steps of the algorithm (Fig 1) are presented as follows:

Step 1. Data pre-processing

There are two microarray gene expressions datasets in the algorithm. The first one is the dataset
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from the species which inferring its network. The other one is a dataset considered as external

knowledge. The gene vectors in both datasets are centralized to have zero means.

Step 2. Bayesian inference of precision matrix

This step includes different stages:

2.1 - Set Wishart prior for precision matrix; W (ʋ, (ʋO)-1)

2.2 - Choose a number greater than p-1 as the prior degree of freedom ʋ. The number of

degrees of freedom is empirically determined (see for example [23, 24, 36]). In Eq (6) the

parameter ʋ somehow represents the strength of hyperparameter O in the weighted average

for estimating the parameter of posterior distribution, O�. The largest value put more weight

on the hyperparameter O and also make the distribution concentrated around the O.

2.3 - Fit a factor analysis on the covariance matrix of the related species data:

• Determine the appropriate number of factors

• Extract the matrix (∧∧T). It should be noted that this may lead to a non-positive

definite matrix. Therefore, this problem would be solved by adding a positive value

to the diagonal elements.

2.4 - Set the hyperparameter O equal to matrix∧∧T.

Fig 1. Overview of F-MAP algorithm.

https://doi.org/10.1371/journal.pone.0184795.g001
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2.5 - Estimate the posterior distribution; W (ʋ�, (ʋ� O�)-1) by (6)

2.6 - Estimate the precision matrix by MAP

Step 3. Make sparse precision matrix

The posterior estimation of the precision matrix is the mode of posterior distribution (MAP)

which does not have zero components. Therefore, to impose the sparsity to the MAP, the

hard-thresholding method is applied. To find the threshold, we apply the decision-rule for

sparse precision matrix by Kuismin and Sillanpää [24], and set the different percentiles of the

absolute values of the estimated conditional correlations in the MAP as threshold and choose

the one with smaller extended Bayesian information criterion (EBIC)[37].

EBIC ¼ � nflogjΘ̂j � trðΘ̂SÞg þ df ðΘ̂ÞlogðnÞ þ 4df ðΘ̂ÞglogðpÞ ; ð14Þ

in which, Θ̂ is the sparse posterior estimate of Θ, S is the sample covariance matrix, df is the

number of none-zero elements of Θ̂ , γ is a user specified parameter which is set to 0.5 as a

default value and n is the number of observations.

Step 4. Make adjacency matrix

The adjacency matrix (AD) is constructed from the estimated sparse matrix in the following

manner:

ADij ¼
1; ŷ ij 6¼ 0

0; otherwise

(

;

where i,j = 1, . . ., p and p is the number of genes. The non-zero element indicates an edge

between corresponding genes.

Evaluation of the reconstructed network

In order to evaluate the performance of our algorithm in reconstruction of the network, accu-

racy measures; precision, recall, specificity, and accuracy are computed for each network by

comparing to the gold standard network.

precision ¼
TP

ðTP þ FPÞ
; recall ¼

TP
ðTPþ FNÞ

; accuracy ¼
TP þ TN

ðTP þ TN þ FN þ FPÞ

specificity ¼
TN

ðTN þ FPÞ
:

Here TN is the number of true negative, FP is the number of false positive, FN is the num-

ber of false negative and TP is the number of true positive edges.

Also, for the comparative analysis, we consider the most popular as well as the state-of–the-

art approaches for estimation of covariance and precision matrices; Ledoit and Wolf (Ledoit)

[38] and Graphical Lasso (Glasso)[39, 40]. In order to evaluate the Bayesian framework of

F-MAP with Wishart prior, we compare it with the approach by Kuismin and Sillanpää (Kuis-

min) [24]. Their approach uses the Wishart prior and proposes a decision-rule to estimate a

sparse precision matrix.

Results

We implement our approach to six datasets from six species of Drosophila fly. Dataset includes

embryonic development time-course expression in six Drosophila species: D.melanogaster
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(amel), D.ananassa(ana), D.persimilis(per), D.pseudoobscura(pse), D.simulance(sim) and D.viri-
lis(vir). The phylogenetic tree between these six species is illustrated in Fig 2.

The data obtained from Kalinka et al. study [41] and it is accessible in ArrayExpress (acces-

sion code E-MTAB-404). The dataset includes the array of different developmental time points

with several replicates for each species; 10 time points for amel, 13 time points for vir and 9

time points for ana, per, pse and sim. The expressions for genes are processed by averaging over

absolute expression levels of different replicates and taking the log2 transform. We consider the

expression of 2049 genes among all the dataset information. The 2049 genes are the target

genes of twelve transcription factors constructing the gold standard network. Part of chip-chip

data obtained from MacArthur et al. [42] is considered as gold standard for gene regulatory

network. The chip-chip data includes 21 sequence-specific Drosofila transcription factors (TFs)

measured in D.melanogastar embryos. For constructing a gold standard network, the informa-

tion of relationships between twelve TFs which are presented on the array and their 2049 target

genes are considered. The TFs and the number of their target genes are shown in Table 1. For

more information of gold standard network, readers are referred to [11].

The specific GRN for each species is reconstructed five times by applying F-MAP. Each

time, the gene expressions of one of the other species is considered as external information.

The degrees of freedom for all networks are subjectively set to 2050. The degree of freedom

somehow represents the strength of belief about prior hyperparameters. Since at first there is

no information about which species which may improve the precision of the results, we set

that as p+1. Hence, all the prior information obtained from different species will have the

Fig 2. The phylogenetic tree of species. The graph is reproduced with the permission of Joshi et al. (2015).

https://doi.org/10.1371/journal.pone.0184795.g002

Table 1. Number of target genes for 12 transcription factors (TFs).

TF zD twi slp1 Sna run prd mad kr hb dl da cad

Number 1166 1164 212 291 158 313 40 518 358 1503 795 273

These TF constitute the gold standard network. The gold standard network includes 6791 edges.

https://doi.org/10.1371/journal.pone.0184795.t001
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same weight in the posterior estimation. However, we increase it gradually and compute the

accuracy measures each time. There is no considerable improvement in the accuracy measures

and especially the precisions are not changed noticeably. S1 File shows the results of different

degrees of freedom for each species.

To make a sparse precision matrix, the appropriate threshold for almost all the networks is

set to the 95th percentile of the conditional correlations in the estimated precision matrix.

Thus, in order to compare the results, the threshold is chosen alike for all networks as 95th per-

centiles of their corresponding estimated partial correlations. Therefore, the total number of

edges is equal for all networks. The penalization parameters of Glasso algorithms are chosen

from [0.1, 0.2, . . ., 0.9] to minimize the EBIC. S2 File shows EBIC for different thresholds for

each method.

The diagnostic accuracy measures are computed for all methods (Table 2). All recon-

structed networks almost have equal accuracy, recall and specificity. The specificity of all meth-

ods in all species are high (>90%) and the recall of all methods are 0.08 on average. The

highest recall is about 15%. Comparing five reconstructed networks for a species to ones

reconstructed by three other methods, shows that adding information from some species

could improve the precision of reconstructed network for five species except for species vir
(Table 2). However, as shown for the case of vir, the performance of our method, although

lower than those for Glasso, is almost as good as the other ones. In addition, as shown by the

Table 2, when using the vir information for network reconstruction, the precisions of the net-

works of other species are not affected considerably. The reason may be the different charac-

teristics of vir which is solely stand in separate split of the phylogenetic tree.

The highest improvement in precision is found for ana network reconstructed by the use of

the information of pse. By applying the information from pse, the precision is found to be 46%.

Since the reconstructed networks include the large number of edges, we just illustrate some

parts of the final networks for ana (Fig 3). These graphs represent the interactions between 12

TFs and 100 genes. To choose these genes, we partitioned the gene set to 21 groups and chose

the one at random. The graph for F-MAP is reconstructed by using the pse as external hints.

All four graphs are sparser than the gold standard one. The comparison of the number of true

positive (green lines) and false positives edges (red lines) between four inferred networks

shows the higher precision of the F-MAP approach especially compared to Ledoit and Wolf

and Kuismin and Sillanpää approaches.

Bar charts illustrated in Fig 4 represent the number of true positive edges which are com-

mon between each reconstructed networks and the one with highest precision constructed by

F-MAP, for each species. Two black and grey columns of each chart represent the total number

of true positive edges and the number of common edges, respectively. Comparing the height

of two columns for each species shows that the networks with the highest precision include at

least 40% of true positive edges of each reconstructed networks. Therefore, including the iden-

tified edges of other reconstructed network to the network with highest precision cannot

improve the precision and it may just increase the false positive edges. For example, in the case

of pse, the 81% of true positive edges of the reconstructed network by sim is common with

those included in the network reconstructed by amel. Almost for all species, the least similari-

ties often belong to the networks reconstructed by vir or Kuismin which usually have the high-

est number of false positive edges.

Using the information of pse as external hints could improve the precision of networks for

all the species, especially those constructed by Ledoit and Kuismin approaches. When recon-

struction of pse network is considered, applying the information of amel, ana and sim improve

the precision of the network, respectively. For a more precise consideration, we simulate the

pse dataset using 100 times sampling with replacement of the main data. Then, all the methods
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Table 2. Measures of diagnostic accuracy of reconstructed networks for six species.

Main species approach Related species Edges True positive Precision Recall Accuracy Specificity

ana F-MAP amel 810 340 0.42 0.05 0.72 0.97

sim 856 324 0.38 0.05 0.71 0.97

per 1285 509 0.40 0.07 0.71 0.96

pse* 1036 474 0.46 0.07 0.72 0.97

vir 1721 609 0.35 0.09 0.70 0.94

Ledoit 1635 590 0.36 0.08 0.70 0.94

Kuismin 2230 742 0.33 0.11 0.69 0.92

Glasso 480 167 0.35 0.02 0.71 0.98

amel F-MAP ana 860 393 0.45 0.06 0.72 0.97

Sim 976 472 0.48 0.07 0.72 0.97

per 1183 517 0.44 0.08 0.72 0.96

pse* 1001 513 0.51 0.07 0.72 0.97

vir 1604 612 0.38 0.09 0.71 0.94

Ledoit 1647 738 0.45 0.11 0.72 0.95

Kuismin 1736 758 0.44 0.11 0.71 0.94

Glasso 390 207 0.53 0.03 0.72 0.99

sim F-MAP amel 802 349 0.43 0.05 0.72 0.97

ana 819 303 0.37 0.04 0.71 0.97

per 1246 478 0.38 0.07 0.71 0.96

pse* 984 445 0.45 0.06 0.72 0.97

vir 1739 633 0.36 0.09 0.70 0.94

Ledoit 1550 574 0.37 0.08 0.70 0.94

Kuismin 2461 968 0.39 0.14 0.70 0.9

Glasso 619 274 0.44 0.04 0.72 0.98

per F-MAP ana 1595 710 0.45 0.10 0.72 0.95

sim 1556 707 0.45 0.10 0.72 0.95

amel* 1438 678 0.47 0.10 0.72 0.96

pse 1761 823 0.47 0.11 0.72 0.95

vir 2014 791 0.39 0.11 0.71 0.93

Ledoit 2389 994 0.42 0.14 0.71 0.92

Kuismin 1980 770 0.39 0.11 0.70 0.93

Glasso 423 179 0.42 0.03 0.72 0.99

pse F-MAP ana 1318 624 0.47 0.09 0.72 0.96

sim 1304 600 0.46 0.09 0.72 0.96

per 1608 696 0.43 0.10 0.71 0.95

amel* 1162 590 0.50 0.08 0.72 0.97

vir 1959 793 0.40 0.11 0.71 0.93

Ledoit 2143 932 0.43 0.13 0.71 0.93

Kuismin 1859 600 0.45 0.14 0.70 0.93

Glasso 432 186 0.43 0.02 0.72 0.99

Vir F-MAP ana 1951 890 0.46 0.13 0.72 0.94

sim 2031 915 0.45 0.13 0.71 0.94

per 2094 964 0.46 0.14 0.71 0.94

pse* 2117 997 0.47 0.15 0.72 0.94

amel 1881 873 0.46 0.13 0.72 0.94

Ledoit 2622 1181 0.45 0.17 0.71 0.92

Kuismin 2138 976 0.46 0.14 0.72 0.93

Glasso 246 144 0.58 0.02 0.72 0.99

F-MAP, Ledoit and Wolf (Ledoit), Kuismin and Sillanpää(Kuismin), Graphical Lasso (Glasso).

(*): represents the species with highest impact on the network.

https://doi.org/10.1371/journal.pone.0184795.t002
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are implemented on all simulated data. The averages of accuracy measures for simulated data

are shown in Table 3. These measures confirm that adding information of related species to

pse improve the precision of its reconstructed networks compared to three other approaches

considerably.

Fig 3. Sub-networks for ana. The graphs represent the interactions among 100 genes. The F-MAP network

was constructed by using the information of species pse. The blue and grey nodes indicate the TFs and their

target genes, respectively. The red and green lines indicate the false and true edges, respectively.

https://doi.org/10.1371/journal.pone.0184795.g003
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Discussion

In this paper we introduce F-MAP approach; an algorithm for gene regulatory network recon-

struction by using the external knowledge about gene interactions drawn from the other

related species gene expressions data. Based on the results of applying F-MAP on six high-

Fig 4. Common edges. The charts represent the number of true positive edges for each reconstructed network (black

column) and the number of common edges (gray column) with the network which has the highest precision for each

species in Table 2. The names of species on the horizontal axes indicate the species which its information is used as

external hints for F-MAP approach. Ledoit and Kuismin represent the networks reconstructed by Ledoit and Wolf and

Kuismin and Sillanpää approaches, respectively. GLASSO indicates the networks constructed by GLASSO.

https://doi.org/10.1371/journal.pone.0184795.g004
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dimensional datasets, we are able to exploit external information of other species gene expres-

sions. This in turn improves the precision of estimated network. Our approach is different

from other studies which are considering the same issue [11–15], in terms of achieving a spe-

cies- specific network rather than an average one.

The F-MAP is a combination of factor analysis and Bayesian frame work to estimate the

precision matrix of genes in order to reconstruct the genes regulatory network. Bayesian meth-

ods to estimate the covariance matrix and consequently precision matrix such as Ledoit and

Wolf method [38] focus on the computational algorithm and they are not motivated to infer

gene regulatory networks. In fact, in almost all of the Bayesian approaches to estimate the

covariance matrix in high-dimensional data, the condition that all the variances are the same

and all the covariances are zero imposed to the estimation via determining a diagonal structure

for prior hyperparameters, while the nature of a network is based on the interactions among

variables. We use the factor analysis (FA) on the related species gene expressions to extract

estimation of hyperparameter of the prior density function about covariance matrix. The FA

gives an explanation of the interdependence of a set of genes as number of latent factors. By

considering the latent factors as the elements which cause the transcription of number of

genes together and also the fact that the coexpression of genes can be conserved among species,

we extract the prior information of gene relationships through FA. The FA represents a simpli-

fied structure for covariance matrix, as it is shown in (10), in which covariances are modeled

by loading factors. Therefore, using the factor analysis once can reduce the number of

parameters.

Also, for a good factor solution the resulting partial correlations should be close to zero

[43]. Therefore, another advantage of using factor analysis is that it can induce shrinkage to

the posterior precision without using a restricting assumption of applying a diagonal matrix

for the prior information. The F-MAP uses the hard-thresholding approach. The thresholds

are chosen based on the quantiles of the estimated precision matrix. Since, genes with different

factor structure have small correlations the final estimation of precision matrix will change to

the sparse one.

We apply our approach on six different Drosophila fly species. To evaluate the precision of

the reconstructed networks by F-MAP, three other precision matrix estimation approaches are

applied; Ledoit and Wolf method and Kuismin and Sillanpää approach and Graphical lasso

(Glasso). Accuracy measures of all the reconstructed networks are computed to compare the

approaches. Compared to the constructed networks by these methods, The F-MAP approach

can improve the precision. We have generated 100 simulated datasets of gene expressions of

pse by sampling with replacement. Comparing the average of accuracy measures of the

Table 3. The average of diagnostic accuracy measures of reconstructed networks for simulated data of pse.

Main species approach Related species Edges (SD) True positive (SD) Precision (SD) Recall (SD) Accuracy (SD) Specificity (SD)

pse F-MAP amel 990(150) 447(93) 0.45(0.03) 0.06(0.01) 0.72(0.002) 0.97(0.003)

sim 971(189) 421(111) 0.43(0.04) 0.06(0.02) 0.72(0.004) 0.97(0.004)

per 1560(139) 639(91) 0.41(0.03) 0.09(0.01) 0.71(0.003) 0.95(0.003)

ana 1054(151) 469(92) 0.44(0.03) 0.07(0.01) 0.72(0.002) 0.97(0.004)

vir 1948(102) 752(54) 0.38(0.01) 0.11(0.007) 0.70(0.002) 0.93(0.003)

Ledoit 1809(371) 704(170) 0.39(0.03) 0.10(0.02) 0.71(0.005) 0.94(0.01)

Kuismin 1920(320) 614(130) 0.32(0.02) 0.09(0.02) 0.70(0.003) 0.93(0.01)

Glasso 373(160) 134(64) 0.35(0.05) 0.02(0.009) 0.72(0.002) 0.98(0.005)

Simulated data generated via 100 times sampling with replacement from pse data. SD is standard deviation of measures in 100 simulated datasets.

https://doi.org/10.1371/journal.pone.0184795.t003
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simulated data shows the considerable improvement of the precisions of F-MAP over three

other methods.

Although, F-MAP has not made big increase in recalls but they are approximately equal to

those obtained by other approaches. Actually, the true positive rates in all reconstructed net-

works are low perhaps reflecting that gold standard network does not contain many interac-

tions among genes.

The other noticeable point is, although we just consider the part of the reconstructed net-

works based on the 12 TFS, but the differences between the numbers of edges determined by

GLASSO with the size of other networks is considerably different. Especially, in the cases

which GLASSO represents the highest precision, the number of edges are considerably small.

These results indicate the "over-sparsity" condition imposed by GLASSO to the estimated net-

work. However, it should be mentioned that even in the cases which GLASSO have the better

performance rather than our approach, F-MAP is almost as good as GLASSO.

Although, joint graphical lasso (JGL) [44] is an extension of GLASSO for joint estimation

of graphical models for the case of multiple datasets, but it is useful to determine the similari-

ties and differences among the networks. However, the main purpose of F-MAP is to apply

external information to improve the precision of the reconstructed network. That makes the

F-MAP algorithm applicable in microarray studies which always deal with the high-dimen-

sional datasets.

As the point of the time of processing, considering the high dimension of applied data,

F-MAP is not time-consuming and its algorithm is processed in a few minutes. That makes

the F-MAP algorithm applicable in microarray studies which always deal with the high-dimen-

sional datasets.

As the results of applying of our approach to six different Drosophila fly show adding the

information of species which is not related to the one in consideration is expected to decrease

the precision. For instance, when using the vir information for network reconstruction, the

precisions of the networks of other species are not affected considerably. However, as shown

for the case of vir, the performance of F-MAP, although lower than those for other species, is

almost as good as the other methods. Consequently, finding some criteria to choose the related

species such as taking account the evolutionary distance between species could be considered.

Further work is still in progress.

Also, F-MAP approach applies the information of one related species. In order to use the

information of several related data, a list of related species which cause the highest improve-

ment in precision is determined and the information about identified edges from other related

species are included to its reconstructed network. This approach does not improve the preci-

sion of the network and just increase the number of false positive edges since the reconstructed

network with highest precision shared at least thirty percent of true positive edges with other

species. Therefore, finding a way to mix the information of several species to construct the

prior information can also be of interest.
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24. Kuismin M, Sillanpää MJ. Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Esti-

mation. PloS one. 2016; 11(2):e0148171. https://doi.org/10.1371/journal.pone.0148171 PMID:

26828427

25. Zhang Y. Smart PCA. Proceedings of the 21st international jont conference on Artifical intelligence;

Pasadena, California, USA. 1661662: Morgan Kaufmann Publishers Inc.; 2009. p. 1351–6.

26. Champion CJ. Empirical Bayesian estimation of normal variances and covariances. Journal of multivari-

ate analysis. 2003; 87(1):60–79.
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