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Aims: To explore differences in advanced brain magnetic resonance imaging

(MRI) characteristics between myelin oligodendrocyte (MOG) immunoglobulin

(IgG) and aquaporin-4 (AQP4) IgG seropositive (+) neuromyelitis optica spectrum

disorders (NMOSD).

Methods: 33 AQP4-IgG and 18 MOG-IgG seropositive NMOSD patients and 61 healthy

control (HC) subjects were included. All 112 participants were scanned with the same

standardized MRI-protocol on a 3-Tesla MRI-scanner. Brain volume and diffusion tensor

imaging (DTI) parameters were assessed.

Results: MOG-IgG+ patients showed reduced parallel diffusivity within white matter

tracts compared to HC whereas AQP4-IgG+ showed no significant brain parenchymal

damage in DTI analysis. AQP4-IgG+ patients showed reduced whole brain volumes

and reduced volumes of several deep gray matter structures compared to HC whereas

MOG-IgG+ patients did not show reduced brain or deep gray matter volumes compared

to HC.

Conclusions: Microstructural brain parenchymal damage in MOG-IgG+ patients was

more pronounced than in AQP4-IgG+ patients, compared with HC, whereas normalized

brain volume reduction was more severe in AQP4-IgG+ patients. Longitudinal imaging

studies are warranted to further investigate this trend in NMOSD. Our results suggest
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that MOG-IgG+ and AQP4-IgG+ NMOSD patients differ in cerebral MRI characteristics.

AdvancedMRI analysis did not help to differentiate betweenMOG-IgG+ and AQP4-IgG+

patients in our study.

Keywords: NMOSD, AQP4, MOG, MRI, DTI, advanced imaging

INTRODUCTION

Neuromyelitis optica spectrum disorders (NMOSD) are
autoimmune diseases that present with longitudinally extensive
transverse myelitis (LETM) and or optic neuritis (ON). They
can also present with area postrema, diencephalic, cerebral
or acute brainstem syndromes (1–6). The proof of serum
autoantibodies directed against aquaporin-4 (AQP4-IgG)
in around 80% of cases established NMOSD as a distinct
disease from multiple sclerosis (MS) (7–10). In a subgroup
of AQP4-IgG negative NMOSD patients serum antibodies
targeting the myelin oligodendrocyte glycoprotein (MOG-IgG)
were detected (11–16). MOG-IgG+ patients with clinical and
neuroimaging characteristics of NMOSD are currently discussed
as a different disease entity (17–23). Cortical encephalitis and
seizures or cranial nerve involvement have also been reported in
MOG-IgG+ patients (24–27).

While brain atrophy and microstructural tissue damage occur
in MS from earliest disease stages (28–30), non-conventional
MRI studies have shown conflicting results in NMOSD (31–35),
and advanced imaging, such as diffusion tensor imaging (DTI)
analysis, have not been reported fromMOG-IgG+ patients.

Thus, the goal of our study was to further investigate
possible MRI differences between MOG-IgG+ and AQP4-IgG+
mediated pathology in NMOSD patients and to compare these
effects to a group of HCs.

MATERIALS AND METHODS

Study Participants and Controls
Data for this cross-sectional study were extracted from an
ongoing longitudinal observational study following patients with
NMOSD andHCs performed at the NeuroCure Clinical Research
Center, Charité Universitaetsmedizin Berlin.

Inclusion criteria were diagnosis of NMOSD according to
the international consensus diagnostic criteria for NMOSD
2015 (36) or positive proof of MOG-IgG serum antibodies
in a live cell-based assay and an associated demyelinating
CNS disease with a clinical phenotype equivalent to NMOSD
diagnosis criteria in patients over 18 years (17). In this
regard, we treated MOG-IgG positivity as equivalent to positive
AQP4-IgG for fulfilling the diagnostic criteria. All MOG-
IgG+ patients met the currently proposed criteria for MOG
encephalomyelitis (26). Exclusion criteria were a relapse within 3
months prior to MRI examination. Patients from the outpatient
clinics of the Experimental and Clinical Research Center,
NeuroCure Clinical Research Center and from theDepartment of
Neurology, Charité – Universitätsmedizin Berlin were screened
for eligibility.

Ethics Statement
The study was approved by the Charité-Universitätsmedizin
Berlin ethics committee (EA1/041/14) and was conducted in
accordance to the Declaration of Helsinki in its currently
applicable version and applicable German laws. All participants
gave written informed consent to participate in the study.

CLINICAL DATA

Clinical Assessment
The expanded disability status scale (EDSS) and further clinical
characteristics were assessed on the day the MRI scan was
performed as part of a study protocol. All patients included
were enrolled into a prospective observational cohort study of
NMOSD at NeuroCure Clinical Research Center and received a
MRI scan annually as part of this cohort study. All patients were
examined with the same standardized MRI protocol at the same
MRI scanner for study purposes. From themajority of patients no
MRI at disease onset was available because most of the included
patients were referred from other hospitals and the department
of neurology - Charité – Universitätsmedizin Berlin.

MRI Acquisition Protocol
The multimodal brain MRIs all were acquired from a 3T MRI
(MAGNETOM Trio Tim, Siemens, Erlangen, Germany) and
included a 3-dimensional T1-weighted magnetization prepared
rapid acquisition gradient echo (MPRAGE) sequence (1 × 1 ×

1mm resolution, TR= 1,900ms, TE= 3.03ms), a 3-dimensional
fluid attenuated inversion recovery (3D FLAIR) sequence (1
× 1 × 1mm resolution, TR = 6,000ms, TE = 388ms) and
a single-shot echo planar imaging DTI sequence (TR/TE =

7,500/86ms; FOV = 240 × 240mm; matrix 96 × 96, 61 slices
no gap, slice thickness 2.3mm, 64 non-collinear directions,
b-value= 1,000 s/mm²).

MRI-Data Post-processing
Brain and Deep Gray Matter Volumes
Gray and white matter volumes were calculated from MPRAGE
scans, after lesion filling, using FSL SIENAX for normalized
whole brain gray matter and white matter and with FSL FIRST
for deep gray matter volumes (37–40).

DTI PARAMETERS

FSL DTIFIT (41) was used for DTI data processing, which
included brain extraction and correction for eddy current
distortions. Fractional anisotropy (FA) and parallel diffusivity
were calculated by fitting a tensor model to the diffusion data
using the tools from FSL. All data were then further processed
with the tract based spatial statistics (TBSS) (42, 43).
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Statistical Analysis
Statistical analyses was were performed with R version 3.3.0
using the packages geepack and ggplot2 (44). Differences in
demographics and clinical characteristics between patients and
HC were tested using Welch’s two-sample t-test. Differences
in gender, clinical phenotype and immunosuppressive therapy
were tested with the Fisher Exact Test. Group differences
(brain volume and DTI measures) were analyzed using a linear
regression model, including age, female sex and disease duration
as a covariate. A p-value of<0.05 was considered significant. Due

TABLE 1 | Demographics and clinical characteristics of AQP4-IgG+ and

MOG-IgG+ patients.

Parameter AQP4 (n = 33) MOG (n = 18) p-value

Sex (f/m) 30/3 11/7 0.02

Age in years 50.3 ± 13.6 (24–72) 44.3 ± 12.2 (22–59) 0.11

EDSS 4 (0–7) 2 (1–6) 0.01

Annualized Relapse Rate 0.8 ± 1.2 1.3 ± 1.2 0.28

Total number of relapses 3.6 ± 2.1 3.7 ± 2.5 0.89

Disease Duration in years 8 ± 7 8 ± 11 1.0

Immunosuppressive Therapy 28 (85%) 14 (78%) 0.70

Clinical Phenotype

LETM + bilateral ON

14 (42%) 5 (28%) 0.37

Bilateral ON 3 (9%) 4 (22%) 0.23

LETM only 12 (36%) 3 (17%) 0.20

F, female; M, Male; EDSS, Expanded Disability Status Scale; LETM, longitudinal extensive

transverse myelitis; ON, optic neuritis. EDSS is presented as median (range). Age, annual

relapse rate, total number of previous attacks and disease duration are presented asmean

± standard deviation. Clinical phenotype and immunosuppressive therapy are presented

as total numbers and in %.

to the exploratory nature of the study, no correction for multiple
comparisons was made.

RESULTS

From the 51 included patients, 33 had a diagnosis of AQP4-
IgG seropositive NMOSD according to the 2015 IPND diagnostic
criteria (36). From the 18 patients with positive MOG-IgG
serology, five patients fulfilled the criteria for AQP4-IgG
seronegative NMOSD. Another 13 patients were tested positive
for serum MOG-IgG and had recurrent ON or at least one
episode of LETM, but did not formally fulfill the 2015 IPND
criteria for NMOSD. Demographics and clinical characteristics of
AQP4-IG+ andMOG-IgG+ patients are summarized inTable 1.
AQP4-IgG+ and MOG-IgG+ patients showed differences in
sex and EDSS score, with no significant difference in age,
disease duration, annualized relapse rate and further clinical
characteristics (see Table 1).

Brain Volume Analysis
AQP4-IgG+ patients showed a trend for reduced normalized
whole brain volumes compared to HC (p = 0.087, see
Figure 1). There was no difference between AQP4-IgG+
patients, MOG-IgG+ patients and HC normalized gray matter
volumes and white matter volumes.

Brain Volume Analysis of Deep Gray Matter
Structures
MOG-IgG+ patients did not show any volume reduction in deep
gray matter structures compared to HC. A significant volume
reduction for AQP4-IgG+ patients compared to HC was found
in the putamen (p = 0.035, see Figure 2), the thalamus (p =

0.019, see Figure 3) and the pallidum (p= 0.008, see Figure 4).

FIGURE 1 | Normalized Brain Volumes. Y-axis: normalized brain volume in ml. X-axis: patient groups and healthy controls. AQP4, Aquaporin-4-IgG+ patients; HC,

healthy control; MOG, Myelin oligodendrocyte glycoprotein IgG+ patients.

Frontiers in Neurology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 499910

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Schmidt et al. MRI Differences in NMOSD

FIGURE 2 | Y-axis: Normalized putamen volume in ml. X-axis: patient groups and healthy controls. AQP4, Aquaporin-4-IgG+ patients; HC, healthy control; MOG,

Myelin oligodendrocyte glycoprotein IgG+ patients.

FIGURE 3 | Y-axis: Normalized thalamus volume in ml. X-axis: patient groups and healthy controls. AQP4, Aquaporin-4-IgG+ patients; HC, healthy control; MOG,

Myelin oligodendrocyte glycoprotein IgG+ patients.

Diffusion Tensor Imaging
MOG-IgG+ patients showed reduced parallel diffusivity
compared to HC while AQP4-IgG+ patients showed no
difference in parallel diffusivity compared to HC (see Figure 5).
No difference was found between AQP4-IgG+ and MOG-IgG+
patients or HC in fractional anisotropy (FA), mean diffusivity, or
radial diffusivity measures.

DISCUSSION

How intracranial volume and brain parenchymal damage differ
between MOG-IgG+ and AQP4-IgG+ patients has not been
investigated in detail before.

MOG-IgG seropositive patients with clinical and
neuroimaging features of NMOSD are currently under
discussion as being a distinct disease entity (45–51). There
are few studies investigating MRI findings of MOG-IgG+
patients, likely due to its recent discovery and rare prevalence
(18, 28, 46–48).

This is the first study that compares advanced MRI analysis
of a larger cohort of MOG-IgG+ patients against AQP4-IgG+
patients along with HC. Other studies demonstrated that MRI
brain lesion distribution criteria may help to distinguish MOG-
IgG+ and AQP4-IgG+ patients from multiple sclerosis patients
(28, 32, 45, 47, 48, 52). However, these studies did not analyze
differences in brain volume and brain parenchymal damage.
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FIGURE 4 | Y-Axis: Normalized pallidum volume in ml. X-axis: patient groups and healthy controls. AQP4, Aquaporin-4-IgG+ patients; HC, healthy control; MOG,

Myelin oligodendrocyte glycoprotein IgG+ patients.

FIGURE 5 | Y-axis: Parallel diffusivity. X-axis: patient groups and healthy controls. AQP4, Aquaporin-4-IgG+ patients; HC, healthy control; MOG, Myelin

oligodendrocyte glycoprotein IgG+ patients.

Interestingly, in our brain volume analyses and DTI analysis
no significant differences were found between MOG-IgG+ and
AQP4-IgG+ patients, although MOG-IgG+ patients showed a
reduced parallel diffusivity compared to HC. Our findings of
reduced parallel diffusivity in white matter tracts of MOG-IgG+
patients compared to HC are complemented by previous studies
investigating C57BL/6 mice with MOG-induced experimental
autoimmune encephalomyelitis (EAE) that showed significant
parallel diffusivity reduction within optic nerves (53) and
within the spinal chord (54) with significant associations to

EAE clinical scores and greater amounts of axonal damage as
confirmed by quantitative staining. Decreased parallel diffusivity
within the optic nerves of human patients after acute optic
neuritis (55, 56) further corroborated the notion that decreased
parallel diffusivity may be associated with various mechanisms
of axonal damage, such as Wallerian degeneration, and diffuse
axonal injury (57) that might have similarly occurred within
the white matter of our MOG-IgG+ patients. Axonal loss
and atrophy might lead to a bulk reduction of the intra-
axonal volume and associated anisotropic diffusion profile
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(58). However, the exact biophysical mechanisms of reduction
in parallel diffusivity still remain uncertain and further in-
and ex-vivo studies are highly warranted to elucidate the
exact associations between parallel diffusivity alterations and
potentially corresponding axonal damage in patients with
MOG-IgG+ encephalomyelitis.

AQP4-IgG+ patients showed a trend for a reduced
normalized whole brain volume and a reduced volume of
the putamen, pallidum and thalamus compared to HC. In a
previous study, a smaller number of AQP4-IgG+ patients from
our NMOSD cohort was analyzed and no significant brain
volume reduction was found compared to HC with no brain
parenchymal damage (34, 59). The differences could be explained
by a statistical power problem, since the AQP4-IgG+ patient
cohort was smaller.

Several measures were taken to establish a homogeneous
study cohort to permit a comparison of these heterogeneous
autoimmune disorders. Firstly, only antibody seropositive
patients were included. Also, each patient was examined with the
same standardized MRI protocol at the same MRI scanner. MRI
data was evaluated by the same experienced neuroradiologist
blinded to the patients’ diagnosis. Further, the current study was
restricted to mainly Caucasian patients with NMOSD given that
ethnicity likely interacts with NMOSD pathogenicity with regard
to possible genetic influence (i.e., Asian opticospinal MS) (60).
Finally, AQP4-IgG+ and MOG-IgG+ patients were close in age
where there was no significant difference in the means, thus
reducing chances of finding differences in brain volume based
on age.

A limitation of our study, and most of the previous imaging
NMOSD studies, is the limited sample size due to the prevalence
of this rare disease, especially in Caucasians (61). One possible
solution to this fact, in a rare disease like MOG-IgG+ NMOSD,
would be to compile available data in an international study
group and pool imaging data in a common database for analysis
in multicenter studies. This would allow for the evaluation of
brain damage in NMOSD patients with enhanced statistical
power. Another limitation are differences in sex and EDSS score
between MOG-IgG+ and AQP4-IgG+ patients in our study.
Both variables might have an impact on the MRI results.

We conclude that MOG-IgG+ patients in our cohort have
more structural brain parenchymal damage, as detected by
DTI measures when compared to HC whereas AQP4-IgG+
patients showed reduced whole brain volumes and reduced
volumes of several deep gray matter structures compared to HC.
Volume sub-analyses of deep gray matter structures and DTI
measurements did not help to differentiate betweenMOG-IgG+-
and AQP4-IgG+ patients in our study.

Our results are in favor of an early immunosuppressive
treatment of patients with MOG encephalomyelitis whose
treatment approaches still are a matter of debate (62). Similar
to the treatment strategies for AQP4-IgG+ NMOSD patients,
we believe this suggestion is valid because of the increased
brain parenchymal damage observed from diffusion tensor
imaging measures of parallel diffusivity in MOG-IgG+ patients.
Longitudinal imaging studies are warranted to further investigate
this trend of increased brain parenchymal damage in MOG-
IgG+ patients.
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