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Abstract: HIV-1 subtype C is the most abundant strain of HIV-1 infections worldwide and was found
in the first known patients diagnosed with HIV/AIDS in Bulgaria in 1986. However, there is limited
information on the molecular-epidemiological characteristics of this strain in the epidemic of the coun-
try. In this study, we analyze the evolutionary history of the introduction and dissemination of HIV-1
subtype C in Bulgaria using global phylogenetic analysis, Bayesian coalescent-based approach, and
molecular clock methods. All available samples with HIV-1 subtype C from individuals diagnosed
with HIV/AIDS between 1986 and 2017 were analyzed. Men and women were equally represented,
and 24.3% of patients reported being infected abroad. The global phylogenetic analysis indicated
multiple introductions of HIV-1 subtype C from various countries of the world. The reconstruction
of a Bayesian time-scaled phylogenies showed that several Bulgarian strains segregated together
in clusters, while others were intermixed in larger clades containing strains isolated from both Eu-
ropean and non-European countries. The time-scale of HIV-1 subtype C introductions in Bulgaria
demonstrates the early introduction of these viruses in the country. Our in-depth phylogenetic
and phylogeographic analyses are compatible with a scenario of multiple early introductions in
the country followed by limited local distribution in the subsequent years. HIV-1 subtype C was
introduced in the early years of the epidemic, originating from different countries of the world. Due
to the comprehensive measures for prevention and control in the early years of the epidemic in
Bulgaria, HIV-1 subtype C was not widely disseminated among the general population of the country.

Keywords: HIV; subtype C; molecular epidemiology; Bulgaria

1. Introduction

Human immunodeficiency virus type 1 (HIV-1) is divided into four major phyloge-
netic groups: M (major), N (new), O (outlier), and P, representing independent cross-species
transition from SIV in chimpanzee (Pan troglodytes (Ptt)) to HIV in humans [1,2]. HIV-1
group M, responsible for the current pandemic, comprises numerous genetically distinct
subtypes (A–D, F–H, J, and K) as well as circulating recombinant forms (CRFs) and unique
recombinant forms (URFs) [3–10]. The unequal worldwide distribution of different HIV-1
subtypes and CRFs has been explained by different founder effects followed by regional
spread driven by socioeconomic and behavioral (circulation within specific risk groups)
factors [4–11], in some cases sustained by the continuous inflow of new infections from
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neighboring geographic areas [12]. Subtype B is predominant in the Americas, Western
Europe, and Australia, and subtype A prevails in Eastern Europe and Central Asia, in-
cluding Russia and the former Soviet Union countries [3,6,12–14]. Subtype C accounts for
about 46.6% of HIV-1 infections worldwide and is the most abundant strain in South Africa
and Southeast Asia, followed by subtypes A and B [13,15]. CRFs and URFs are widely dis-
tributed in Central Africa and in countries where different subtypes co-circulate [13,16–18].

HIV-1 epidemic in the Balkan region, including Bulgaria, has been affected by various
historic and socio-economic factors. The first HIV/AIDS case in Bulgaria was found in
an individual infected abroad [19–21]. Our previous reports indicated that various HIV-1
subtypes and recombinant forms were introduced from various countries of the world
and subsequently disseminated unequally among individuals from different transmission
groups in Bulgaria, including heterosexuals (HET), men who have sex with men (MSM),
and persons who inject drugs (PWID) [21–23]. Due to random founder events, multiple
HIV-1 strains have had a chance to spread rapidly after being introduced into vulnerable
groups. Indeed, such events have been observed since 2005, when two different CRFs
(CRF01_AE and CRF02_AG) were independently introduced and rapidly disseminated
among two geographically distinct subgroups of PWID, resulting in local outbreaks [19,24].
In contrast, other clades have been characterized by limited dissemination patterns and,
after being passed on to few or single partners outside the risk populations, have reached
a dead-end [21]. Such multiple introductions of different viral strains from abroad have
led to a wide variety of circulating HIV-1 subtypes unevenly distributed among the pop-
ulations of the country, and more than half of them are not the predominant-to-Europe
subtype B [24,25].

HIV-1 subtype C was isolated from the first known patients diagnosed with HIV/AIDS
in Bulgaria during the early years of the epidemic circulating in the HET population and
thus differed from those in Western Europe [21]. The further spread of these strains was
fueled by the continuous introduction of new viral variants from different parts of the
world and subsequently distributed unevenly in geographical regions of the country. Until
today, unlike subtype B, CRF01_AE, and CRF02_AG, which are mainly circulating among
MSM and PWIDs, subtype C has only limited prevalence predominantly within HET
populations [24]. Here, we present the first in-depth evolutionary history of the introduction
and dissemination of HIV-1 subtype C in Bulgaria using the Bayesian coalescent-based
approach and molecular clock methods.

2. Materials and Methods
2.1. Study Design and Specimen Preparation

In this nationwide study, all available blood samples from 37 individuals diagnosed
with HIV-1 subtype C between 1986 and 2017 were collected during clinical follow-up at
the National Reference Confirmatory Laboratory of HIV (NRCL of HIV) Sofia, Bulgaria.
Demographic and epidemiological information were collected using patient self-assessment
interviews following national regulations. Plasma samples were stored at −80 ◦C and
linked to demographic and clinical data through an anonymous numerical code following
the ethical standards of Bulgaria and information on the geographic origin, and sampling
date were retained as previously described [21,22].

2.2. Sequence Analysis and Data Set

The HIV-1 pol gene was sequenced using the Viroseq HIV-1 Genotyping Test (Abbott,
Chicago, IL, USA) and/or TruGene DNA Sequencing System (Siemens Healthcare, Erlan-
gen, Germany) and either the Applied Biosystems 3130xl genetic analyzer or an OpenGene
DNA sequencing system following the manufacturer’s protocol [24]. HIV-1 subtype C of
the analyzed sequences was determined using the automated tool COMETv2.2 [26], REGA
HIV-1 subtyping tool version 3.0 [27], and jpHMM [28] as well as by manual phylogenetic
analysis using reference sequences downloaded from the Los Alamos sequence database
(http://www.hiv.lanl.gov/, accessed on 22 December 2021). Phylogenetic relationships

http://www.hiv.lanl.gov/
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of the 37 Bulgarian sequences with 39 HIV-1 subtype reference sequences were inferred
using the maximum likelihood (ML) method in IQ-TREE v1.6.11 Web Server. Stability of
the ML tree topologies was tested using ultrafast bootstrap (1000 replicates) [29,30]. For
the implementation of the extended phylogenetic analysis, all available HIV-1 subtype C
sequences with known sampling year and country of origin were downloaded from the
Los Alamos sequence database (http://www.hiv.lanl.gov/). Individual BLAST searches of
all 37 Bulgarian sequences were performed, and the most similar GenBank sequences were
retrieved for further analysis. The sequences were downloaded and then selected on the
basis of the following inclusion criteria: (1) sequences already published in peer-reviewed
journals (except for the new sequences described below); (2) no uncertainty about subtype
assignment; (3) exclusion of putative recombinant sequences; and (4) known sampling time
and city/state of origin were clearly established in the original publication.

Sequence alignments containing the Bulgarian sequences, BLAST search sequences,
and the worldwide representatives from the Los Alamos database were performed us-
ing the MUSCLE algorithm implemented in AliView version 1.23 [31,32]. Additional
quality control of the subtype purity and the possible presence of sequence gaps was
performed. Duplicate sequences were removed for computational efficiency. After the
clean-up and preliminary quality analysis, the complete dataset (Dataset-1) contained
1768 sequences, including the 37 new Bulgarian isolates. Twenty-three codons with drug-
resistance mutation (detected by Stanford University HIV drug-resistance database avail-
able from https://hivdb.stanford.edu/, accessed on 22 December 2021) were manually
removed from the alignment to avoid the confounding factor of convergent evolution
in the phylogeny inference. The final alignment, comprised of 723 nucleotides in length
(HXB2 positions 2280→ 3242), is available from the authors upon request. All Bulgarian
HIV-1 subtype C sequences were deposited in GenBank with the following accession num-
bers: EF517409, JQ259060, EF517413, KJ765393, EF517416, KJ765400, KJ765476, KJ765556,
KJ765557, JQ259067, EF517445, JQ259079, EF517468, KJ765568, KJ765574, JQ259151, KJ765434,
and OK587312-OK587331.

For the subsequent analysis, two datasets referred to as Dataset-1 and Dataset-2
were used. Dataset-1, including all 1768 sequences, was used to infer an initial ML
phylogenetic tree, with IQ-TREE (available from http://www.iqtree.org/, accessed on
22 December 2021) and the best-fitting model of nucleotide substitution [29,30], to investi-
gate the relationship between Bulgarian sequences and HIV-1 subtype C strains isolated
worldwide. Since the new Bulgarian strains did not cluster within a single monophyletic
clade (see Results), implying multiple transmission events from foreign countries at dif-
ferent time points, Dataset-2, a reduced dataset of 300 sequences, was also generated to
investigate HIV-1 subtype C phylodynamic patterns in-depth with the Bayesian coales-
cent framework implemented in BEAST v1.8.3 (http://beast.bio.ed.ac.uk/, accessed on
22 December 2021) [33,34]. After conducting advanced pre-analysis for the Dataset-2, the
subset included 263 randomly selected HIV-1 subtype C sequences phylogenetically close
to the Bulgarian strains in the initial ML tree as well as Bulgarian strains.

2.3. Likelihood Mapping and Temporal Signal Analysis

The phylogenetic and temporal signals were evaluated for Dataset-2 intended for
evolutionary rate estimates and time-scaled phylogeny reconstruction. The phylogenetic
signal was investigated by likelihood mapping analysis of 10,000 random quartets gener-
ated using the TreePuzzle 5.3 program [35]. The presence of a temporal signal in Dataset-2,
necessary for the calibration of a reliable molecular clock (see next section), was assessed
by inferring an ML phylogenetic tree with IQ-TREE program and analyzing the linear
correlation between tip-to-root distances and sampling time of each strain in the tree with
the TempEst v1.5.1 software (available from http://tree.bio.ed.ac.uk/software/tempest/,
accessed on 22 December 2021) [36].

http://www.hiv.lanl.gov/
https://hivdb.stanford.edu/
http://www.iqtree.org/
http://beast.bio.ed.ac.uk/
http://tree.bio.ed.ac.uk/software/tempest/
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2.4. Bayesian Phylogenetics and Molecular Clock Calibration

Bayesian phylogenies and mean evolutionary rate were estimated for Dataset-2 by
using the Bayesian Markov chain Monte Carlo (MCMC) sampler implemented in BEAST
v1.8.3, using the HKY + G nucleotide substitution model and empirical base frequencies.
Two demographic priors, constant size and Bayesian Skyline Plot (BSP), were compared
by Bayes factors, enforcing in each case either a strict or relaxed (lognormal distributed
rates) molecular clock. Proper mixing of the MCMC was achieved after running 1.5 billion
generations and sampling every 150,000 generations. Proper mixing was assessed by
calculating the effective sampling size (ESS) with Tracer v. 1.5 (http://tree.bio.ed.ac.uk/
software/tracer/, accessed on 22 December 2021), with ESS > 200 for all parameters
estimates (after 10% burn-in) considered acceptable. The maximum clade credibility (MCC)
tree was chosen from the posterior distribution of sampled trees with TreeAnnotator v1.8.3
in the BEAST package, specifying a burn-in of 10% and median node heights [33]. Statistical
support for specific clades was obtained by calculating the posterior probability of each
monophyletic clade. Uncertainty in the estimates was indicated by 95% highest posterior
density (95% HPD) intervals. The phylogenetic tree was edited graphically in FigTree v1.4.2
(available from http://tree.bio.ed.ac.uk/software/figtree/, accessed on 22 December 2021)
for display purposes. Marginal likelihood estimates using path sampling and stepping-
stone methods [37] of a different clock/demographic models were compared by Bayes
Factors (BF), wherein a null hypothesis was compared to the alternative hypothesis as
follows: 2lnBF < 2 indicates no evidence; 2–6-weak evidence; 6–10-strong evidence; and
>10 indicates very strong evidence [38].

2.5. Metapopulation Analysis

HIV-1 gene flow (migration) events among distinct HIV-1 sub-populations within
different geographic regions and cities in Bulgaria and neighboring countries were traced
in Dataset-1 (1768 sequences) by most parsimonious reconstruction (MPR) of ancestral
locations (internal nodes of the tree) followed by a count of migration events to/from
different viral subpopulations, using the MacClade version 4 program (Sinauer Associates,
Sunderland, MA, USA). Specific migrations among different countries (character states)
were traced with the State changes and stasis tool (MacClade software), which counts
the number of changes in a tree for each pair-wise character state. When multiple MPRs
were present (as in our datasets), the algorithm calculated the average migration count
over all possible MPRs for each pair. The resulting pair-wise migration matrix was then
normalized, and a randomization test with 10,000 matrices obtained from 10,000 random
trees (by random joining-splitting of the original tree) was performed to assess the statistical
significance of the observed migration counts.

2.6. Ethics Statement

This study was approved by the Ethical Committee at the National Centre of Infectious
and Parasitic Diseases, Sofia, Bulgaria (NCIPD IRB 00006384).

3. Results
3.1. Study Population Demographics

In this nationwide study, 37 individuals diagnosed with HIV/AIDS between 1986
and 2017 were analyzed. Men and women were equally represented with, respectively,
19 (51.4%) men and 18 (48.6%) women (Table 1). The majority of individuals n = 34 (91.9%)
attributed their infection to heterosexual contact, while one individual (2.7%) reported
he was MSM, one was a hemophiliac (2.7%) infected in the early years of the epidemic,
and one was a newborn (2.7%) infected by vertical transmission (Table 1). The youngest
individual in the study population was a newborn, the oldest was 62 years old, and the
mean age of the population studied was 34.3 years. According to patient data, 28 (75.7%)
were suspected of being infected in Bulgaria, whereas nine (24.3%) reported it likely that
they were infected abroad while traveling or living outside the country in, for example,

http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/figtree/
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Germany (n = 2), South Africa (n = 1), or Congo (n = 1), while one patient was a refugee
from Somalia. Four individuals did not indicate the alleged country where the infection
occurred. Five of the individuals were diagnosed between 1986 and 1995, 11 between 1996
and 2005, and 21 between 2006 and 2017 (Table 1).

Table 1. Study populations characteristics.

Patients Characteristics Patients with HIV-1 Subtype C
(n) (%)

Total 37 100
Men 19 51.4

Women 18 48.6

Age (years)
≤20 1 2.7

20–29 15 40.5
30–39 8 21.6
40–49 8 21.6
≥50 5 13.5

Mean age (years) 34.3

Likely country of infection
Bulgaria 28 75.7

Other country
9 (2 Germany, 1 Somalia,
1 South Africa, 1 Congo,

4 Uncnown)
24.3

HET 34 91.9
MSM 1 2.7

Blood transfusion 1 2.7
Mother to child 1 2.7

Diagnosis period
1986–1995 5 13.5
1996–2005 11 29.7
2006–2017 21 56.8

3.2. Introduction and Distribution of HIV-1 Subtype C in the Country

The first HIV/AIDS cases in Bulgaria were detected in 1986 in HET individuals and
patients with hemophilia [21]. Later, one of them was tested for antiretroviral resistance
and found to be infected with HIV-1 subtype C. During the first five years from 1986 to
1990, a total of 87 individuals were diagnosed with HIV-1 in the country (1986 n = 3, 1987
n = 34, 1988 n = 26, 1989 n = 17, and 1990 n = 7). In 15 of these patients, the virus was
isolated and genotyped, and a wide variety of HIV-1 subtypes were found including five
(33.3%) individuals infected with HIV-1 subtype C, followed by three (20.0%) with subtype
A1, three (20.0%) with subtype B, and by one of each (6.7%) with subtype F1, H, CRF04_cpx,
and one unclassified clade.

These results of the study indicate that subtype C was one of the first HIV-1 strains in-
troduced in Bulgaria (Figure 1A). Additional epidemiological information on the residence
of individuals infected with that particular strain reveals that HIV-1C has been spreading
unevenly among distinct regions of the country (Figure 1B). Curiously, the largest cities
were not the most affected, while there were specific areas of sparsely populated regions
where HIV-1 subtype C was probably introduced by chance with a relatively larger number.
One possible explanation could be the fact that HIV-1 subtype C is detected only in HET
individuals with a single exception of one MSM, whereas the three major HIV-1 strains
in the country, subtype B, CRF01_AE, and CRF02_AG, are found mostly in MSM and
PWID, respectively.
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Figure 1. Distribution of HIV-1 subtype C in Bulgaria. (A) Number of individuals with HIV-1
subtype C by year of diagnosis. (B) Distribution of HIV-1 subtype C in different regions of the country.
Population % represents the percentage of the population in the respective district of the country.

3.3. Multiple Introductions of HIV-1 Subtype C in Bulgaria, Countries of Origin, and
Transmission within the Country

The phylogenetic relationships of the Bulgarian and subtype reference sequences
indicated that Bulgarian sequences were grouped into a separate phylogenetic cluster >99%
ML bootstrap support, and the reference subtype C sequences branched of the Bulgarian
cluster, indicating high phylogenetic similarity (Supplementary Figure S1).

To further investigate the potential origin of HIV-1 subtype C in Bulgaria, we inferred
alignment composed of 1768 globally selected HIV-1 pol sequences. This Dataset-1 combines
37 Bulgarian sequences together with 1731 specially selected HIV-1 subtype C sequences
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from the global search, 1532 of which originated from Africa, 98 from Europe, 67 from
Asia, and 34 from North America and South America (Supplementary Table S1). An ML
tree was then inferred to identify pol sequences from worldwide reference strains closely
related to the Bulgarian isolates (Figure 2). Bulgarian sequences were dispersed across
the entire phylogenetic tree, dismissing the scenario of a single founder event followed
by regional dissemination but compatible with the hypothesis of multiple introductions
from different countries over an extended period of time. The majority of the Bulgarian
sequences (n = 21), isolated from 13 men and 8 women, were closely related to sequences
from a different country from Africa, the Americas, Asia, and Europe, indicating multiple
introductions followed by subsequent transmission to a limited number of partners. Only
two highly supported (100% bootstrap) monophyletic clades with >2 Bulgarian sequences
were identified in the ML tree. One cluster included strains isolated from two men and
one woman from the Gabrovo and Lovech regions, while the other one was composed of
sequences isolated from three women, all from the Blagoevgrad region. The phylogenetic
tree also showed five highly supported (98–100% bootstrap) clades of related sequence
pairs: two clades including pairs isolated from individuals in Sofia, two in Gabrovo, and
one in Blagoevgrad.

Figure 2. Global maximum likelihood phylogenetic tree of HIV-1 subtype C in Bulgaria. The tree
reconstruction was inferred using Dataset-1 containing 37 Bulgarian sequences and 1731 specially
selected HIV-1 subtype C sequences from the global search. A total of 1532 sequences originated
from Africa, 98 from Europe, 67 from Asia, and 34 from North America and South America. The
red dots on the circle indicate the position of the Bulgarian sequences on the phylogenetic tree. The
colors of the branches of the phylogenetic tree correspond to the color chart on the relevant continent.
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3.4. Time-Scale of HIV-1 Subtype C Introductions in Bulgaria

Bayesian time-scaled phylogenies were inferred from the HIV-1C reduced Dataset-2,
which included all 37 new isolates, after checking the presence of sufficient temporal signal
(root-to-tip distance vs. time regression and indicated positive slope in TempEst v1.5. pro-
gram). Comparison of the marginal likelihoods of the MCMC runs under the different clock,
and demographic models showed that the uncorrelated relaxed clock and BSP demographic
priors were the ones best fitting the data (Supplementary Table S2). Thus, the maximum
clade credibility tree was calculated from the posterior distribution of trees inferred with
the selected model (Figure 3). The root of the tree traced back to the time of the most recent
common ancestor (tMRCA) of the HIV-1C subtype, to the year 1954 (95% HPD: 1939–1966),
which is in agreement with other estimates [15,39,40]. As expected, Bulgarian sequences
were inter-dispersed in the tree due to numerous independent introductions from various
geographic regions of the world.

Figure 3. Bayesian molecular clock analysis of HIV-1 subtype C in Bulgaria. Bayesian maximum
clade credibility tree and the time of the most recent common ancestor (tMRCA) estimation. The tree
reconstruction was inferred using Dataset-2 consisting of 300 sequences, 37 of which were Bulgarian,
and 263 were selected from the global search. Clades with posterior probabilities ≥90% are indicated
by black dots. Red dots at the end of the red lines indicate Bulgarian sequences. Scale years are
reported at the bottom of the figure. Some branches are collapsed for better visualization.

The in-depth analysis revealed statistically significant (p > 0.9) clades containing only
Bulgarian sequences as well as mixed clusters of Bulgarian and non-Bulgarian sequences
(Figure 4A,B). Five clades contained only sequences isolated in Bulgaria (Figure 4A). Clade 1
included two sequences (both from women from different regions) with the tMRCA dating
back to 2013.6 (95% HPD: 2010.1–2015.0); Clade 2 included three sequences (two from
women and one from a man from two regions), tMRCA 2013.8 (95% HPD: 2010.4–2015.8);
Clade 3 included two sequences (from women and man who have indicated they are
partners), tMRCA 1980.3 (95% HPD: 1963.1–1991.5); Clade 4 included two sequences (from
women and man who have indicated they are partners), tMRCA dating back to the year
2003.5 (95% HPD: 1996.6–2006.9); and Clade 5 included two sequences (from women and
man who have indicated they are partners), tMRCA year 2004.7 (95% HPD: 1998.0–2008.4).
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Figure 4. Statistically significant clusters with posterior probability >90% in the Bayesian maximum
clade credibility tree. (A) Clusters involving sequences isolated in Bulgaria and (B) mixed clusters
consisting of Bulgarian and non-Bulgarian sequences. Sequences from Bulgaria (BG) are represented
in red color, South Africa (ZA) pink, Romania (RO) light blue, Zambia (ZM) orange, and Sweden (SE)
dark blue.

Statistically significant mixed clusters consisting of Bulgarian and non-Bulgarian se-
quences were also identified (Figure 4B). One of them included three Bulgarian sequences
and one sequence from South Africa; one cluster included one sequence from Bulgaria and
one from South Africa; one cluster included two sequences isolated from a neighboring
country (Romania) and one Bulgarian sequence; one cluster included one sequence from
Bulgaria and one from Zambia; and the last one included one sequence from Bulgaria, one
from South Africa, and one from Sweden. Overall, the data showed that of all currently
available HIV-1 subtype C strains isolated in Bulgaria, 29 (78.4%) were most likely intro-
duced from abroad, while only eight (21.6%) were the result of subsequent local spread
(Figure 5). The overall, phylogeographic dissemination pattern inferred from both ML
and Bayesian analysis indicates at least seven countries as the likely source of multiple
introductions of HIV-1 subtype C in Bulgaria. Most of the strains came from Zambia n = 9,
followed by South Africa n = 8, Tanzania n = 5, Sweden n = 3, Malawi n = 2, Brazil n = 1,
and the neighboring country of Romania n = 1 (Figure 5).

Figure 5. The introduction and dissemination of HIV-1 subtype C in Bulgaria. The blue arrows represent
the introduction of strains from abroad into Bulgaria, and the red arrows represent the spreading of strains
within the country. Country codes: ZM, Zambia; ZA, South Africa; TZ, Tanzania; SE, Sweden; MW,
Malawi; BR, Brazil; RO, Romania. n, the number of the introduced strains in Bulgaria.
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The coalescent-based population dynamics analysis of the isolates forming the HIV-1
subtype C clade was made using a non-parametric coalescent model-BSP to estimate past
changes in effective population size. The BSP (Figure 6) demonstrates an upward and
downward trend starting with an exponential phase from the late 1960s to 1980, followed
by a constant phase up to about 2004 and a short decline followed by a constant phase.

Figure 6. Bayesian skyline plot showing the inferred growth of the HIV-1 subtype C. Inferred effective
population sizes (Ne) over time in years are on the y- and x-axes, respectively.

4. Discussion

In this nationwide study, we analyzed the origin and introduction of HIV-1 subtype C,
one of the early detected subtypes, in the HIV/AIDS epidemic in Bulgaria. The recon-
struction of a Bayesian time-scaled phylogenies showed that several Bulgarian strains
segregated together in small but highly significant clusters, while others were intermixed in
larger clades containing strains isolated from both European and non-European countries.
The analysis revealed the potential exporting countries from which the viral strains were
introduced in Bulgaria. The present results extend those reported previously by our group
that identified multiple subtypes in Bulgaria caused by viral inflow from European coun-
tries, USA, and Africa [22,24]. Our in-depth phylogenetic and phylogeographic analysis of
all currently available HIV-1 subtype C sequences from Bulgarian patients is compatible
with a scenario of multiple early introductions in the country during the 1970s, followed by
limited local distribution in the subsequent years. Indeed, despite the limited availability
of epidemiological data, about a quarter of individuals diagnosed during the period of this
study (1986–2017) self-reported that they had likely acquired the infection abroad.

Available subtype C Bulgarian strains remained with limited distribution in the coun-
try and were almost exclusively detected in the heterosexual population and equally
distributed among the sexes. In the phylogeny reconstruction, the clustering pattern of
Bulgarian clearly indicated multiple introductions followed by transmission to a limited
number of partners. This is probably related to the rapid and adequate measures taken by
health authorities in the country in the late 1980s, with mass screening being conducted
on large groups of the population, including Bulgarian citizens who had worked abroad.
These measures allowed a significant number of infected individuals to be diagnosed
for a short time in the early years of the epidemic (1987–1990). Urgent and large-scale
measures have been taken by the Ministry of Health and the Government to limit the
spread of HIV among the general population. The detection of a significant number of
HIV-infected individuals in the first years and the subsequent decline in the number of new
cases later showed that the virus was spread to a limited scale in Bulgaria without allowing
underhanded development of the epidemic. However, the constant arrival of new strains
from abroad raises concerns that these viruses could spill into vulnerable transmission
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groups, including MSM and PWIDs, causing outbreaks in these at-risk populations that
were already reported with other viral strains, such as CRF01_AE and CRF02_AG, in our
previous studies [21,24,25,41,42].

The analysis of the population dynamics represented on the Bayesian skyline plot
showed a 2/3-log increase in the effective number of HIV-1 subtype C infections in between
the second half of the 1960s (when the exponential growth began) and the early 1980s, when
the plot reached a plateau until 2005, and then, the effective number of infections decreased,
reaching a plateau that still persists today (Figure 6). This period can be coincident with
a considerable policy of prevention, improving the number of safe medical procedures,
such as blood transfusions and unsafe therapeutic injections, which are considered to be
one of the causes of the spread of HIV together with unprotected sex [43]. The frequently
asymptomatic infections induced by HIV probably helped to disguise the outbreak and its
spread to other countries.

Interestingly, based on our previous and current analyses, the growth of the epidemic
was not equally gradual for all HIV-1 subtypes, and Bulgaria experienced the explosive
expansion of subtype B, CRF01_AE, and CRF_02_AG, mainly associated with MSM and
PWIDs, which in turn are also most vulnerable to other bloodborne pathogens but not
to subtype C, which was identified in HET individuals [44]. In fact, our epidemiological
observations and phylodynamic analyses on the HIV/AIDS epidemic reviewed the lack
of explosive spread of HIV-1 subtype C in Bulgaria, which could be explained by several
possible reasons. First of all, the timely and large-scale efforts of health authorities to limit
the spread of HIV/AIDS in the early years of the epidemic (when the first strains of this
subtype were introduced) prevented its widespread dissemination. The second premise is
that subtype C was introduced by heterosexual individuals who most often pass the virus
only to their partners, and the infection ended in a dead-end without leading to ongoing
transmission in the general or vulnerable populations. It is very likely for these reasons
that the clusters formed by the Bulgarian isolates are composed of only a few sequences
without an epidemic outbreak. In contrast, possibly by chance, other viral strains have
come into populations at risk for blood- and sexually transmitted infections, such as PWIDs
or MSM, which in turn quickly disseminated the virus [24,25]. However, our studies have
already shown that there may be bridges between different groups, indicating that there
is a risk of transmission of viral strains from one group to another, which gives rise to
serious concerns.

5. Conclusions

In conclusion, the Bayesian framework, which allows a spatiotemporal reconstruction
of phylogeny and an estimate of population dynamics using a coalescent-based approach,
indicates that the first HIV-1 subtype C strains entered Bulgaria in the late 1970s and early
1980s as a result of multiple independent events. The intermixing clades indicate a different
way of introductions over time, followed by the formation of clusters of the Bulgarian
strains in separate monophyletic groups, suggesting the development of independent viral
circulation of the HIV-1 subtype C epidemic in the country. It is important to note that only
a small proportion of infections have been carried out within the country, most of which by
means of a heterosexual road and probably as a consequence of the comprehensive actions
for prevention and mass screening of the population in the early years of the HIV epidemic
in Bulgaria.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/v14020263/s1, Table S1. Specially selected HIV-1 subtype C sequences
from the global search; Table S2. Bayes factor (BF) comparison of the nested molecular clock and
Bayesian demographic models. The natural logarithm of the BF was used for comparison of the
strict clock (SC) and uncorrelated relaxed lognormal clock (RC) models and the constant and non-
parametric Bayesian skyline plot (BSP) demographic models within BEAST 1.8.3; Figure S1. Inferred
phylogenetic relationships of Bulgarian HIV-1 and subtype reference sequences.
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