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Pretreatment with Pancaspase Inhibitor (Z-VAD-FMK)
Delays but Does Not Prevent Intraperitoneal Heat-Killed Group B
Streptococcus-Induced Preterm Delivery in
a Pregnant Mouse Model
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Caspases and apoptosis are thought to play a role in infection-associated preterm-delivery. We have shown that in vitro treatment
with pancaspase inhibitor Z-VAD-FMK protects trophoblasts from microbial antigen-induced apoptosis. Objective. To examine
whether in vivo administration of Z-VAD-FMK would prevent infection-induced preterm-delivery. Methods. We injected 14.5
day-pregnant-mice with heat-killed group B streptococcus (HK-GBS). Apoptosis within placentas and membranes was assessed
by TUNEL staining. Calpain expression and caspase-3 activation were assessed by immunohistochemistry. Preterm-delivery was
defined as expulsion of a fetus within 48 hours after injection. Results. Intrauterine (i.u.) or intraperitoneal (i.p.) HK-GBS injection
led to preterm-delivery and induced apoptosis in placentas and membranes at 14 hours. The expression of calpain, a caspase-
independent inducer of apoptosis, was increased in placenta. Treatment with the specific caspase inhibitor Z-VAD-FMK (i.p.)
prior to HK-GBS (i.p.) delayed but did not prevent preterm-delivery. Conclusion. Caspase-dependent apoptosis appears to play a
role in the timing but not the occurrence of GBS-induced preterm delivery in the mouse.

Copyright © 2009 Ozlem Equils et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Preterm birth is the most common cause of death in
newborn babies worldwide [1–3]. In the US preterm delivery
is one of the most significant complications of pregnancy.
Approximately 34% of infant mortality is due to preterm
delivery in the US [4]. It has a high prevalence rate (11%),
and about 40% (> $4 billion) of all infant health care
expenditures in the US are related to prematurity [5].

Infection is the most common cause of preterm delivery
and stillbirth globally. In the US infection plays a role
in approximately 50% of total and 80% of early preterm

deliveries (<32 weeks of gestation) [6, 7]. However, despite
being one of the most important maternal-fetal problems,
there are no effective prevention strategies or treatments
for infection-induced preterm delivery, and there is no
thorough understanding of the molecular mechanisms
involved.

Thus far studies investigating the mechanisms involved in
infection associated preterm delivery have concentrated on
inflammatory signaling pathways [8]. Yet, in vivo and in vitro
human and animal pregnancy data suggest that infection can
also induce apoptosis in the placenta and the membranes [9–
23].
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Most recently, caspases were shown to be activated
upon microbial antigen treatment of human trophoblasts
[16, 17]. We have shown that in vitro pretreatment of
primary human trophoblasts and placental fibroblasts with
pancaspase inhibitor Z-VAD-FMK prevented chlamydia heat
shock protein 60-induced apoptosis [17].

Group B streptococcus is one of the most common
causes of neonatal infection and is associated with preterm
delivery [24]. Here we show that both intrauterine (i.u.)
and intraperitoneal treatment (i.p.) with heat-killed Group
B streptococcus (HK-GBS) induce preterm delivery in day
14.5 pregnant mice. We next tested whether pretreatment
with the pancaspase inhibitor Z-VAD-FMK prevents HK-
GBS-induced preterm delivery in vivo.

2. Materials and Methods

2.1. Materials and Reagents. Group B β-hemolytic strepto-
coccus (GBS) bacteria were grown to log phase at 37◦C in
Trypticase Soy Broth (Becton Dickinson), concentrated by
centrifugation at 3000 G, resuspended in PBS, quantified
by plating serial dilutions, and then heat-inactivated by
boiling for 5 minutes. Bacterial killing was verified by lack
of growth overnight in broth and solid media. Heat-killed
(HK)-GBS stock was aliquoted and frozen at −80◦C. Before
each experiment, a fresh vial of frozen heat-killed bacteria
was thawed, vortexed, diluted as necessary, and used in the
experiments.

Cell-permeable Z-VAD-FMK (BD Pharmingen catalog
number 550377) was dissolved in DMSO, aliquoted and
stored at −80◦C, and then diluted as needed in PBS for
experiments. The final concentration of DMSO in the
solution injected into the animal was less than 1%.

2.2. Model of Infection-Induced Preterm Delivery in Mice.
The NorthShore University Health System Animal Care
and Use Committee approved all animal procedures. A
model of bacterially induced preterm delivery resulting from
intrauterine inoculation has been described previously [25].

Briefly, timed-pregnant C57BL/6J mice (Jackson Lab-
oratories, Bar Harbor, Maine) on day 14.5 of pregnancy
were anesthetized with 0.015 ml/g body weight of 2.5%
tribromoethyl alcohol and 2.5% tert-amyl alcohol in phos-
phate buffered saline (PBS). A 1.5 cm midline incision
was made in the lower abdomen. The right uterine horn
was identified and injected in its mid-section with either
PBS or GBS (109 organisms) in a 100 μL volume delivered
extraovularly between fetal sacs. The incision was closed with
interrupted sutures of coated 4-0 polyglactin 910 sutures
(Vicryl, Ethicon) at the peritoneum and wound clips at the
skin. Surgical procedures lasted approximately 10 minutes.
Animals were either observed through delivery or euthanized
5 or 14 hours after HK-GBS injection for tissue collection
(placentas and membranes). These tissues were fixed in 10%
neutral buffered formalin and embedded in paraffin for
sectioning.

To assess whether pancaspase inhibitor Z-VAD-FMK
prevents HK-GBS-induced preterm delivery, unanesthetized

day 14.5 pregnant CD1 mice (Harlan Laboratories, Madison,
WI), which breed more effectively than inbred C57BL/6J
mice, were pretreated intraperitoneally with PBS, DMSO, or
Z-VAD-FMK (10 mg/kg) 30 minutes prior to intraperitoneal
injection with either 109 HK-GBS bacteria or medium.
Because there were no differences between the groups
pretreated with either PBS or DMSO (diluents for the caspase
inhibitor), these two groups were combined for the analyses.

Postoperatively, mice were observed for premature deliv-
ery (defined as the finding of at least one pup in the cage
or the lower vagina within 48 hours of the intervention, as
previously described [25]).

2.3. TUNEL Staining. Apoptosis was assessed by the in
situ terminal deoxynucleotidyl transferase- (TdT-) mediated
dUTP nick end-labeling (TUNEL) technique with the TACS
2TdT Blue Label kit (Trevigen, Gaithersburg, MD, USA)
according to the protocol supplied by the manufacturer. Pos-
itive control sections were pretreated with TACS-Nuclease
to induce DNA fragmentation before the TUNEL reaction.
Negative controls were processed in the absence of the TdT
enzyme and showed no staining. Mouse ovaries were used as
positive control tissues.

2.4. Immunohistochemistry. Paraffin-embedded tissue sec-
tions were deparaffinized in xylene, rehydrated through
a series of ethanol solutions, and then rinsed in PBS.
Sections were placed in Antigen Unmasking Solution (Vec-
tor Laboratories, Burlingame, CA, USA) and heated in a
pressure cooker for 10 minutes. Endogenous peroxidases
were quenched in a 3% H2O2/methanol solution. After 40
minutes of blocking with a 1 : 20 solution of normal goat
serum to PBS/Tween 20, sections were incubated overnight
at room temperature in a 1 : 350 dilution of an antibody
to either activated caspase-3 (R&D Systems, Minneapolis,
MN, USA) or m-calpain (GeneTex, Inc, San Antonio, TX).
The sections were then rinsed in PBS and incubated for
45 minutes at room temperature with a biotinylated goat
anti-rabbit immunoglobulin G secondary antibody (1 : 200;
Vector Laboratories). Immediately after incubation with
the secondary antibody, sections were incubated for 30
minutes at room temperature with avidin-biotin-peroxidase
solution (Vectastain elite ABC kit; Vector Laboratories).
The antigen was visualized with the NovaRed Substrate kit
(Vector Laboratories) and counterstained with hematoxylin.
Negative control sections were processed in the absence
of the active caspase-3 primary antibody. Mouse ovarian
sections containing atretic follicles were used as positive
control tissues.

2.5. Statistical Analysis. Fisher’s exact test was performed to
assess the effect of Z-VAD-FMK pretreatment on HK-GBS-
induced preterm delivery.

3. Results

3.1. HK-GBS Injection Induces Preterm Delivery in Preg-
nant Mice. Intraperitoneal inoculation with heat-killed GBS
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Table 1: Intraperitoneal HK-GBS injection leads to preterm delivery, and pretreatment with Z-VAD-FMK delays preterm delivery in mice. 109

heat killed GBS bacteria were injected intraperitoneally in day 14.5 pregnant CD-1 mice. Data from animals treated with HK-GBS without
Z-VAD-FMK (GBS alone, PBS + GBS or DMSO + GBS) were combined.

Preterm delivery <18 hours (%) Preterm delivery 18–<24 hours (%) Preterm delivery 24–36 hours (%)

GBS (n= 14) 12 (86%) 0 2 (14%)

Z-VAD + GBS (n= 6) 1 (17%) 2 (33%) 3 (50%)

P-value .0072 .079 .13

(a) Negative control (b) Positive control

(c) Media (d) HK-GBS

Figure 1: Intrauterine HK-GBS injection leads to TUNEL positive apoptosis in the membranes. Day 14.5 timed pregnant mice were injected
with either HK-GBS (panel d) or PBS (a) and euthanized at 5 or 14 hours to isolate the placenta and membranes. The sections shown were
obtained after 14 hours of stimulation. TUNEL positive apoptotic cells are stained black-brown. Slides treated with endonuclease served
as a positive control (b); animals injected with media indicate baseline apoptosis levels (c). Data shown are representative of 3 separate
experiments.

(109) in day 14.5 pregnant mice induced preterm delivery
(Table 1). No mother died during the course of the exper-
iment. Similar results were obtained in animals exposed to
intrauterine HK-GBS (data not shown). These data confirm
that HK-GBS exposure leads to preterm delivery in the
mouse pregnancy model.

3.2. HK-GBS Injection Leads to Apoptosis in the Placenta and
Membranes. The effect of HK-GBS exposure on placental
and membrane apoptosis was assessed by TUNEL assay in
day 14.5 pregnant mice euthanized at 5 (n= 4) or 14 hours
(n= 6) after intrauterine bacterial injection. Apoptosis was
detectable at membranes (Figure 1) and placentas (Figure 2)
at 14 hours but not at 5 hours after bacterial exposure.

Caspase 3 is the common executioner caspase activated
by both the extrinsic (Fas) and intrinsic (mitochondrial)

caspase machinery. Intrauterine HK-GBS exposure induced
caspase 3 activation in a time-dependent manner (i.e., at
14 hours but not 5 hours) in the fetal membranes (Figures
3; 3(a)–3(c)) and in the placenta (Figures 3; 3(d)–3(f))
as assessed by immunohistochemistry using an antibody
specific for activated cleaved caspase 3. In order to confirm
the specificity of the caspase 3 staining, we used nonpregnant
mouse ovaries as positive control tissue. As anticipated,
caspase 3 was activated in the atretic ovarian follicles
(Figure 4).

3.3. Pretreatment with Pancaspase Inhibitor Z-VAD-FMK
Delays HK-GBS-Induced Preterm Delivery. We have pre-
viously shown that in vitro pretreatment with Z-VAD-
FMK prevented Chlamydia heat shock protein- (cHSP60-)
induced apoptosis in primary human trophoblasts and
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(a) Negative control (b) Positive control

(c) Media (d) HK-GBS

Figure 2: Intrauterine HK-GBS injection leads to TUNEL-positive apoptosis in the placenta. In the mouse placenta, there was TUNEL positive
apoptosis after 14 hours of exposure to HK-GBS (d). The slides were treated with PBS for the negative control (a) and endonuclease for the
positive control (b); animals were injected with media to assess baseline apoptosis levels (c). Data shown are the representative of 3 separate
experiments.

fibroblasts [17]. Based upon that observation, we hypoth-
esized that in vivo treatment with Z-VAD-FMK would
prevent microbial toxin-induced preterm delivery in the
mouse pregnancy model. In order to test this hypothesis,
we pretreated day 14.5 pregnant CD1 mice either with
Z-VAD-FMK (10 mg/kg dissolved in DMSO/PBS) or with
medium (DMSO/PBS) intraperitoneally 30 minutes prior to
intraperitoneal HK-GBS injection. We observed the mothers
closely for delivery within 48 hours.

Pretreatment with Z-VAD-FMK significantly delayed
preterm delivery at 18 hours (Table 1; P= .007). However
at 36 hours after treatment, there were no differences
between the caspase inhibitor-pretreated and control groups
(Table 1).

3.4. HK-GBS Induces Calpain Expression in the Placenta.
GBS has been shown to induce macrophage apoptosis
in a caspase-independent manner via m-calpains, which
are calcium dependent cytosolic cysteine proteases [26].
Fettucciari et al. have shown that in vitro siRNA inhibition of
calpain prevented GBS-induced apoptosis in macrophages,
while caspase inhibition with Z-VAD-FMK did not [26].

We examined the effect of HK-GBS treatment on pla-
cental calpain expression and observed that i.u. HK-GBS
injection led to a time-dependent increase in m-calpain

expression in the mouse placenta within 14 hours of
exposure as assessed by immunohistochemistry (Figure 5).

4. Discussion

Apoptosis is proposed to be a normal developmental pro-
cess in the placenta and developing fetus and increases
throughout gestation in humans [27, 28]. Apoptosis has
been suggested to play a role in normal rupture of the
membranes during labor [29]. In addition to its physiologic
role in normal pregnancy and fetal development, there is
accumulating data on the presence of apoptosis in pathologic
pregnancies (i.e., preeclampsia [30], intrauterine growth
restriction [31], and infection associated preterm delivery
[13]).

Caspases are cysteine proteases with aspartate specificity
and are the key mediators of apoptosis. Caspase 8 mediates
the FAS-extrinsic pathway of caspase activation, whereas cas-
pase 9 mediates intrinsic-mitochondrial caspase activation.
Both caspase 8 and caspase 9 then activate caspase 3, which is
one of the executioner caspases (reviewed in [32]). Infection
leads to the expression of inflammatory cytokines such as
TNF-α, IL-1, and IL-6 as well as other factors such as FasL,
heat shock proteins, reactive oxygen species, and nitric oxide,
all of which are known to regulate caspase activation [33–35].



Infectious Diseases in Obstetrics and Gynecology 5

(a) PBS (b) HK-GBS (5 hours) (c) HK-GBS (14 hours)

(d) PBS (e) HK-GBS (5 hours) (f) HK-GBS (14 hours)

Figure 3: Intrauterine HK-GBS injection leads to caspase 3 activation in the membranes and placenta. Day 14.5 timed pregnant mice were
injected with either PBS or HK-GBS and euthanized at 5 or 14 hours to isolate fetal membranes (a–c) and placentas (d–f). Caspase 3
activation was assessed by performing immunohistochemistry analysis using an antibody against active-cleaved caspase 3. Representative
data from three separate experiments are shown. HK-GBS exposure led to an increase in caspase 3 positive cells in the membranes (c) and
above the spongiform trophoblast layer at 14 hours in the placenta (f).

Figure 4: Apoptosis in the ovarian follicle. Mouse atretic follicles are known to undergo caspase mediated apoptosis. As anticipated, caspase 3
was cleaved and activated in the atretic follicle, which were used as positive control for the caspase 3 antibody specificity. Representative data
from three separate experiments are shown.

In addition, infection can activate caspase 8 directly through
the innate immune system via toll-like receptors (TLRs)
and the adaptor molecule MyD88 [36–39]. MyD88 has a
death domain and interacts with Fas-Associated protein with
Death Domain (FADD) to activate caspase 8 [39].

In the present study, we showed that intraperitoneal
injection with heat-killed GBS leads to preterm delivery and
apoptosis in the placenta and membranes of 14.5 day preg-
nant mice. Next, we showed that HK-GBS exposure induces
caspase 3 activation in the placenta and the membranes.
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(a) PBS (b) HK-GBS

Figure 5: Intrauterine HK-GBS injection induces placental m-calpain expression in a time-dependent manner. Day 14.5 pregnant mice were
euthanized 14 hours after exposure to PBS (i) or HK-GBS (ii). Placentas were removed and stained for m-calpain. Data from a representative
of three separate experiments is shown.

These data confirm that apoptosis is a physiologic response
to exposure to GBS in the reproductive tract during preg-
nancy.

N -benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone
(Z-VAD-FMK) binds irreversibly to the catalytic site
of caspases and inactivates them. In vivo Z-VAD-FMK
administration has been shown previously to be nontoxic
and to prevent apoptosis in animal models [40–42].
Here we treated pregnant animals with Z-VAD-FMK 30
minutes prior to intraperitoneal injection with HK-GBS and
observed that Z-VAD-FMK treatment delayed, but did not
prevent HK-GBS-induced preterm delivery.

HK-GBS may induce caspase-independent pathways as
well as caspase-dependent ones [43]. Currently, there are no
data on the role of caspase-independent apoptotic pathways
in infection-associated preterm delivery. Similar to caspases,
calpains are ubiquitously expressed cysteine proteases and
play a role in caspase-independent apoptosis. In contrast to
caspases, calpains are present only in the cytoplasm (e.g.,
caspase 9 is mitochondrial), and are regulated by intracellular
Ca2+ level [44]. Calpains have been proposed to play a role in
cancer, cardiovascular disease, Alzheimer’s disease, multiple
sclerosis, and polycystic ovary syndrome [45]. After binding
to Ca2+ ions, calpains undergo a conformational change,
which initiates proteolytic activity. Calpains then proteolyse a
wide range of substrates including cytoskeletal components,
plasma membrane-associated proteins such as epidermal
growth-factor receptor and platelet derived growth-factor-
receptor, and signal transduction and calmodulin-dependent
proteins and transcription factors [44]. Shortly after sub-
strate cleavage, calpains undergo autolytic cleavage that
limits their enzymatic activity to a few minutes. Human
placenta is abundant in calpains [46]. Although the role
of calpains in the placenta is not clearly known, they were
suggested to play a role in extravillous trophoblast migration
[47]. Calpains have been shown to mediate GBS-induced
caspase-independent apoptosis in macrophages [26].

The present finding that treatment with a caspase
inhibitor delays GBS-induced preterm delivery suggests that
apoptosis plays a role in bacterially-induced preterm labor.
The fact that the delay in preterm delivery did not translate

into a diminished overall rate of preterm birth within 48
hours can be explained by the existence of alternative or
redundant pathways to caspase-dependent apoptosis that
can lead preterm labor and delivery. Literature provides
many examples of candidates for such alternate pathways,
including cytokines, prostaglandins, and matrix metallopro-
teases [48–50]. Our finding that HK-GBS exposure induces
m-calpain expression in the mouse placenta suggests the
possibility that one such alternative pathway exists within
the apoptotic mechanism itself. This observation may help
explain the inability of Z-VAD-FMK to prevent HK-GBS-
induced preterm delivery in our model. Alternatively Z-
VAD-FMK treatment of the pregnant animals, at the dosages
used, did not block caspase-3 activation which can be
assessed by Tunnel assay or immunohistochemistry. Future
experiments will explore the effect of treatment with different
concentrations of Z-VAD-FMK and combined inhibition of
caspase and calpain and their effects on preterm birth.

5. Conclusion

Here we show that intrauterine exposure to heat-killed GBS
induces apoptosis in the placenta and membranes and leads
to preterm delivery in the pregnant mouse model. HK-
GBS treatment also leads to both caspase activation and
calpain expression in the mouse placenta and membranes.
Pretreatment of the pregnant animals with the pancaspase
inhibitor Z-VAD-FMK delayed but did not prevent HK-GBS-
induced preterm delivery. Our data suggest that exposure of
placentas and membranes to microbial antigens leads to the
induction of caspase-dependent and -independent apoptotic
pathways.

Acknowledgments

The authors thank Tasha Fernando for her work in the
preparation of this manuscript and the late Professor Dr.
Darrel Goll (University of Arizona) for the invaluable
discussions. This work was supported by NIH NCRR GCRC
Grant (M01-RR00425) and March of Dimes Grant (no.-
FY06-329) to OE.



Infectious Diseases in Obstetrics and Gynecology 7

References

[1] W. Moss, G. L. Darmstadt, D. R. Marsh, R. E. Black, and M.
Santosham, “Research priorities for the reduction of perinatal
and neonatal morbidity and mortality in developing country
communities,” Journal of Perinatology, vol. 22, no. 6, pp. 484–
495, 2002.

[2] UN General Assembly 5s, “Road map towards the implemen-
tation of the United Nations Millennium declaration: report
of the Secretary General,” UN Document no. A756/326. New
York, NY, USA: United Nations, 2001.

[3] J. E. Lawn, S. Cousens, and J. Zupan, “4 million neonatal
deaths: when? Where? Why?” The Lancet, vol. 365, no. 9462,
pp. 891–900, 2005.

[4] W. M. Callaghan, M. F. MacDorman, S. A. Rasmussen, C.
Qin, and E. M. Lackritz, “The contribution of preterm birth
to infant mortality rates in the United States,” Pediatrics, vol.
118, no. 4, pp. 1566–1573, 2006.

[5] R. B. Russell, N. S. Green, C. A. Steiner, et al., “Cost of
hospitalization for preterm and low birth weight infants in the
United States,” Pediatrics, vol. 120, no. 1, pp. e1–e9, 2007.

[6] R. F. Lamont, “Looking to the future,” BJOG, vol. 110, no. 20,
pp. 131–135, 2003.

[7] R. L. Goldenberg, J. C. Hauth, and W. W. Andrews, “Intrauter-
ine infection and preterm delivery,” The New England Journal
of Medicine, vol. 342, no. 20, pp. 1500–1507, 2000.

[8] R. Romero, J. Espinoza, L. F. Goncalves, J. P. Kusanovic, L.
Friel, and S. Hassan, “The role of inflammation and infection
in preterm birth,” Seminars in Reproductive Medicine, vol. 25,
no. 1, pp. 21–39, 2007.

[9] G. C. Ulett, K. H. Maclean, S. Nekkalapu, J. L. Cleveland,
and E. E. Adderson, “Mechanisms of group B streptococcal-
induced apoptosis of murine macrophages,” Journal of
Immunology, vol. 175, no. 4, pp. 2555–2562, 2005.

[10] L.-Y. Gao and Y. Abu Kwaik, “Hijacking of apoptotic pathways
by bacterial pathogens,” Microbes and Infection, vol. 2, no. 14,
pp. 1705–1719, 2000.

[11] D. L. Rivera, S. M. Olister, X. Liu, et al., “Interleukin-10
attenuates experimental fetal growth restriction and demise,”
The FASEB Journal, vol. 12, no. 2, pp. 189–197, 1998.

[12] K. Ejima, T. Koji, D. Tsuruta, H. Nanri, M. Kashimura, and
M. Ikeda, “Induction of apoptosis in placentas of pregnant
mice exposed to lipopolysaccharides: possible involvement of
Fas/Fas ligand system,” Biology of Reproduction, vol. 62, no. 1,
pp. 178–185, 2000.

[13] A. P. Murtha, R. Auten, and W. N. P. Herbert, “Apoptosis in
the chorion laeve of term patients with histologic chorioam-
nionitis,” Infectious Diseases in Obstetrics and Gynecology, vol.
10, no. 2, pp. 93–96, 2002.

[14] D. R. Balkundi, J. A. Ziegler, J. F. Watchko, C. Craven, and
M. Trucco, “Regulation of FasL/Fas in human trophoblasts:
possible implications for chorioamnionitis,” Biology of Repro-
duction, vol. 69, no. 2, pp. 718–724, 2003.

[15] K. Asagiri, M. Nakatsuka, H. Konishi, et al., “Involvement
of peroxynitrite in LPS-induced apoptosis of trophoblasts,”
Journal of Obstetrics and Gynaecology Research, vol. 29, no. 1,
pp. 49–55, 2003.

[16] V. M. Abrahams, P. Bole-Aldo, Y. M. Kim, et al., “Divergent
trophoblast responses to bacterial products mediated by
TLRs,” Journal of Immunology, vol. 173, no. 7, pp. 4286–4296,
2004.

[17] O. Equils, D. Lu, M. Gatter, et al., “Chlamydia heat shock
protein 60 induces trophoblast apoptosis through TLR4,”
Journal of Immunology, vol. 177, no. 2, pp. 1257–1263, 2006.
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