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CD154-CD40 T-cell co-stimulation pathway is a key
mechanism in kidney ischemia-reperfusion injury
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Ischemia-reperfusion occurs in a great many clinical settings
and contributes to organ failure or dysfunction. CD154-CD40
signaling in leukocyte–endothelial cell interactions or T-cell
activation facilitates tissue inflammation and injury. Here we
tested a siRNA anti-CD40 in rodent warm and cold ischemia
models to check the therapeutic efficacy and anti-inflamma-
tory outcome of in vivo gene silencing. In the warm ischemia
model different doses were used, resulting in clear renal
function improvement and a structural renoprotective effect.
Renal ischemia activated the CD40 gene and protein
expression, which was inhibited by intravenous siRNA
administration. CD40 gene silencing improved renal
inflammatory status, as seen by the reduction of CD68 and
CD3 T-cell infiltrates, attenuated pro-inflammatory, and
enhanced anti-inflammatory mediators. Furthermore, siRNA
administration decreased a spleen pro-inflammatory
monocyte subset and reduced TNFα secretion by splenic
T cells. In the cold ischemia model with syngeneic and
allogeneic renal transplantation, the most effective dose
induced similar functional and structural renoprotective
effects. Our data show the efficacy of our siRNA in
modulating both the local and the systemic inflammatory
milieu after an ischemic insult. Thus, CD40 silencing could
emerge as a novel therapeutic strategy in solid organ
transplantation.
Kidney International (2015) 88, 538–549; doi:10.1038/ki.2015.146;
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Ischemia-reperfusion injury (IRI) is a common cause of acute
kidney injury, contributing significantly to delayed graft
function and acute rejection after transplantation.1–3 The
inflammatory response has a critical role in the outcome of
IRI4 and results in endothelial activation, enhanced cell-
leukocyte adhesion, and compromised microvascular blood
flow.5 Besides the innate inflammatory immune response,
there is growing evidence that T cells also participate in IRI in
an antigen-independent manner.6 Multiple roles of T cells
have been described in several studies of ischemia, using T
cell–deficient mice with either T cell–specific depleting
monoclonal antibodies or knockout animals, combined with
adaptive transfer of purified T-cell subsets.7–9

CD40 is a co-stimulatory molecule that belongs to the
tumor necrosis factor superfamily. The CD40/CD40L dyad
participates in T-cell proliferation and in effector functions.10

Although it was first identified in B cells,11 it is also expressed
in many cell types, including epithelial tubular, endothelial,
and immune cells.12 Several studies have demonstrated the
therapeutic effects of blocking CD40–CD40L interaction in
ischemia,13 organ rejection,14 atherosclerosis15, and autoim-
mune disease.16,17 However, translation of CD40L blockade
into non-human primate and human studies revealed
thromboembolic complications.18 Thus, CD40 has become
a new emerging target. Although several anti-CD40 mono-
clonal antibodies (mAbs) have been tested as alternatives to
anti-CD40L mAbs,19 other mechanisms can be used to block
the pathway.

The RNA interference phenomenon (RNAi) is an innate
gene silencing mechanism that acts at the post-transcriptional
level and has emerged as a potent mechanism to specifically
knockdown mRNA transcripts.20 In previous studies, our
group developed a small inhibitory RNA (siRNA) against
CD40-mRNA that effectively inhibits the translation to CD40
mRNA and protein. This siRNA was used in a model of
humoral acute rejection.17 Thus, local CD40 silencing proved
to be a useful strategy to prevent Ab-mediated rejection.
Rapid degradation by exo/endonucleases constitutes a serious
challenge to the successful intracellular delivery of siRNAs
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in vivo and their ultimate biological activity.21,22 siRNA
through cholesterol conjugation has been demonstrated to
improve its distribution and cellular uptake.23 Moreover,
chemical modifications introducing phosphorothioate
linkages and O-methyl greatly prolong half-life in plasma
and increase resistance to nucleases. We used a murine-
specific siRNA anti-CD40, chemically stabilized and choles-
terol conjugated, in a model of autoimmune nephritis and
was demonstrated that systemic CD40 blockade induced
immune deactivation of the inflamed kidneys.24

In the present study, the effect of CD40 blockade
with specific siRNAs was analyzed in warm and cold
ischemia models in rodents. We hypothesized that blocking
the co-stimulatory CD40-CD40L dyad would reduce the
inflammatory response developing from IRI. We aimed
to evaluate whether the CD40 blockade interfered locally
in chemokine-attracting molecules, transduction signals,
or cell recruitment. Moreover, we assessed whether
systemic siRNA administration affected distant spleen cell
populations.

RESULTS
Efficiency of siRNA cholesterol conjugated on renal warm
ischemia in rat; dose-finding studies
After confirming the efficacy in mice and the greater
efficiency of siRNA conjugated with cholesterol (Supple-
mentary data), we further analyzed different doses to find an
optimal dosage for the transplant model. As seen in Figure 1a,
the scrambled (SC) and vehicle (Veh) groups showed
worse renal function compared with all the treated groups.
The higher doses were the most effective. Urea data showed
parallel results. Again, the higher doses were the most
effective (Figure 1b).

Examination of renal tissue revealed that Veh and SC
groups had severe kidney injury, as evaluated by ischemic
damage overall scores of 8.3 and 9.0, respectively (Figure 1c).
In contrast, this ischemic injury was less severe in all treated
groups in a dose-dependent way. Conventional histology
showed well-preserved renal architecture in the group treated
with 500 μg siRNA (Figure 2).

Assessment of CD40 expression on the renal warm ischemia
model
To assess the activation of the CD40 co-stimulatory pathway,
kidney RNA expression was measured. CD40 in Veh and SC
groups was overexpressed 2.2-fold and 1.8-fold, respectively,
compared with healthy kidneys. CD40 gene silencing
effectively reduced CD40 expression in all treated groups
(Table 1).

CD40 protein expression and location in renal tissue were
analyzed by immunostaining. The CD40 overexpression
pattern differed in the diverse compartments of the warm
ischemic kidneys (tubuli, glomeruli, and vessels). A reduction
in CD40 expression was seen in all compartments in the
treated groups, with the highest dose being the most effective
(Figure 1).

Modulation of renal inflammatory status after warm ischemia
by gene silencing
To better characterize the inflammatory cell infiltration
observed by conventional histology, CD68 (macrophages)
and CD3 (T cells) surface markers were analyzed (Figure 2).
CD68 immunostaining revealed a lower degree of macro-
phage infiltration in siRNA CD40–treated groups, which was
significant in those treated with higher siRNA doses. More-
over, CD3 immunostaining showed a significant reduction in
CD3+ T cells in all treated groups (Table 1).

Given the innate immune response, gene expression of
both pro-inflammatory and anti-inflammatory renal media-
tors was measured. For Toll-like receptor (TLR)-4, classically
related to ischemia damage, there were no differences
between groups (not shown). Conversely, TLR2 was reduced
in all treated animals. Furthermore, systemic injection of
siRNA did not appear to activate the local innate immune
response as TLR3 expression was not overexpressed.

The downstream nuclear factor, NF-KB expression, had a
similar outcome to TLR2 and CD40. Thus, there was a 2.4-fold
overexpression in Veh-treated animals, with a clear reduction
in treated kidneys. CD40 silencing induced a significant
overexpression of the anti-inflammatory cytokine IL-4 only
in animals receiving the highest siRNA dose (Table 1).

We also assessed the expression of chemokines involved in
ischemic damage. CXCL9, CXCL10, and CXCL11 were
significantly lower after siRNA-CD40 treatment than in the
Veh and SC groups. After reperfusion, Veh and SC groups
expressed higher levels of CCL2, CCL3, CCL4, and CCL5,
which were clearly reduced by CD40 gene silencing (Table 1).

CD40 gene silencing modulates transduction factors
triggered by warm ischemia
The previous PROLIGEN study (Supplementary data) defined
a gene list relating regeneration versus injury after ischemia
insults. There, we validated the renal expression profile of a
subset of genes involving defense, immune response,
inflammation, and chemotaxis after rat warm ischemic insult.

In present study, we found overexpression of Socs3––a
Jak-Stat pathway component––and of several genes related to
cell cycle, growth, and cell communication, such as Emp1,
Emp3, Fcnb, Reln, and Tnfrsf12a in Veh and SC animals
compared with siRNA CD40–treated animals (Figure 3).

In particular, the Ca2+-binding S100 protein family
members (S100a6, S100a8, and S100a9), involved in the
regulation of neutrophil chemotaxis and inflammation, were
overexpressed due to ischemia but were significantly down-
regulated by CD40 treatment. Moreover, the expression of
galectin family genes (Lgals1, Lgals3), with immune regulatory
functions, was also significantly reduced by siRNA CD40
administration. Neither the S100 nor the galectin gene
families had been previously related to CD40 signaling.

We were interested in substantiate changes in the Galectin
family, and thus we analyzed protein expression. As shown in
Figure 4, galectin 1 and 3 were reduced by CD40 gene
silencing in the western blot analysis, with no significant
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differences. Interestingly, a reduction in cells expressing
galectin was seen, which was clearly significant at higher doses.

Assessment of distant immune-modulatory effects of CD40
silencing after renal warm ischemia
Analysis of the B- and T-cell phenotype in splenocytes
population by flow cytometry did not reveal differences in
SC or gene silencing–treated rats, 48 h after ischemia (not
shown). In treated animals, there were fewer monocytes (ED9)
than in Veh and SC groups. Moreover, a positive double-
stained CD43high/CD161 monocyte population was over-
expressed in Veh and SC rats. Interestingly, this cell population
clearly decreased in rats after CD40 gene silencing (Figure 5).

To further analyze the systemic inhibitory effect of gene
silencing, CD40 expression in spleen B cells (CD45+) was
measured. Renal ischemia in SC-treated rats induced CD40

overexpression in non-circulating spleen B cells. Those rats
suffering from warm ischemia and treated with siRNA-CD40
had lower CD40 expression, reaching similar values to the
healthy group (not shown).

Although no differences in spleen T-cell frequency were
observed, intracellular cytokine production was analyzed by
flow cytometry. SC-treated splenocytes, obtained 48 h after
ischemia, revealed TNFα overproduction in CD3+ cells than
splenocytes from healthy rats. In CD3+ T-cell subpopula-
tions, the TNFα secretion levels doubled in the CD4+ cells,
whereas the increase in CD8+ cells was lower. Gene silencing
caused a decrease in TNFα production in CD3+ T cells,
reaching similar levels to that in healthy rats. Apparently, CD4
+ T cells were less responsive to gene silencing, as the
reduction was modest. Instead, in CD8+ T cells TNFα levels
returned to healthy values (Figure 6).
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Figure 1 |Renal function and histopathology in warm ischemia studies. Serum creatinine (a) and urea (b) levels of rats after 40 min of renal
warm ischemia. Groups treated with siRNA CD40 showed better renal function compared with Veh (Vehicle) and scrambled (SC) groups. (c)
Overall score of different histological injury markers. siRNA treatment ameliorates renal histopathology. (d) Immune location and quantification
of CD40 protein in different kidney compartments. siRNA CD40 reduced its expression in all treated groups in contrast to SC and Veh groups.
Data are expressed as a mean± s.e.m. a, Po0.05 vs. Veh; b, Po0.05 vs. SC.
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Effects of CD40 gene silencing in cold ischemia
The effect of CD40 silencing was also analyzed in our well-
established model of renal cold ischemia, with renal
transplantation. As shown in Figure 7a, in the syngeneic
Lew-Lew studies, the group treated with our siRNA-CD40
improved renal function, as seen by the reduction in
creatinine values. In contrast, Veh and SC groups had worse
renal function. According to the histopathological evaluation,
all ischemic parameters, which were increased in Veh or SC

groups, were improved by CD40 gene silencing. Although
only acute tubular necrosis was strongly reduced in the
treated group, the overall score denoted improvement in the
ischemic injury (Figure 7b).

In the allogeneic Wist-Lew studies, there was an initial
renal dysfunction peaking on day 1 and decreasing on day 3,
indicating the cold ischemic damage. As shown in Figure 8,
creatinine values in siRNA-CD40-treated animals were lower
than the other groups. From day 5, a further decrease in renal
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Figure 2 |Representative photomicrographs of hematoxilin & eosin (H&E), CD68 (macrophages), and CD3 (T cell)-positive cells in
kidneys, for sham, scrambled (SC), and CD40-500. Original magnification, × 200.

Table 1 |Kidney gene expression and inflammatory cell infiltration characterization

Cells/hpf Sham Veh SC CD40-15 CD40-50 CD40-150 CD40-500 P-value

CD68 10.2± 0.8 20.6± 4.9 16.3± 3.4 12.2± 1.66a 15.9± 2.6 5.2± 1.2a,b 8.8± 1.9a 0.010
CD3 0.9± 0.2 4.8± 0.7 3.3± 1.1 1 ±0.3a,b 0.8± 0.1a,b 0.5± 0.2a,b 0.6± 0.2a,b 0.0001

Folds/18s
CD40 1.2± 0.2 2.2± 0.6 1.8± 0.2 0.8± 0.2a 0.9± 0.3a 1.0± 0.1a 0.9± 0.2a 0.060
TLR3 0.6± 0.1 1.1± 0.1 0.4± 0.1 0.7± 0.2 0.7± 0.8 0.6± 0.8 0.8± 0.1 0.007
TLR2 0.7± 0.5 3.6± 1.1 3.7± 0.6 2.6± 0.7 2.3± 0.6 2.6± 1.3 1.8± 0.3 0.280
NF-Kβ 1.7± 0.3 2.4± 0.4 2.5± 0.4 1.8± 0.3 1.1± 0.2a 1.6± 0.3 1.7± 0.3 NS
IL-4 2.6± 0.9 2.1± 0.9 4.0± 0.7 3.9± 0.9 3.2± 0.7 5.0± 0.8a 5.8± 1.2a 0.101
CCL2 0.4± 0.1 3.5± 0.9 3.0± 0.4 1.6± 0.7a 2.6± 0.7 2.7± 0.4 2.6± 0.5 0.064
CCL3 0.6± 0.1 1.5± 0.3 1.2± 0.5 0.5± 0.1a 0.9± 0.3 0.8± 0.1 0.9± 0.1 NS
CCL4 1.2± 0.1 1.9± 0.4 1.7± 0.4 0.6± 0.2a,b 1.1± 0.3a 0.8± 0.1a 0.8± 0.2a 0.025
CCL5 0.8± 0.1 1.0± 0.2 1.3± 0.2 0.5± 0.1a,b 0.4± 0.1a,b 0.5± 0.1a,b 0.7± 0.1a 0.001
CXCL9 0.5± 0.1 0.7± 0.2 0.8± 0.2 0.3± 0.1a,b 0.4± 0.1 0.6± 0.1 0.5± 0.1 NS
CXCL10 1.8± 0.2 3.7± 0.7 3.2± 0.7 1.1± 0.4a,b 1.2± 0.3a,b 1.9± 0.6a 1.7± 0.5a 0.014
CXCL11 0.8± 0.1 2.8± 0.6 2.5± 0.7 0.9± 0.3a 1.3± 0.3a 2.2± 0.4 2.1± 0.2 0.037

Abbreviations: SC, scrambled; Veh, vehicle. siRNA anti-CD40, especially knocked-down CD40 expression, as well as other pro-inflammatory and chemokine-related genes.
CD68 and CD3 were also reduced by CD40 silencing. Data are expressed as mean± s.e.m. a, Po0.05 vs. Veh; b, Po0.05 vs. SC.
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function occurred indicating the acute renal rejection. Thus,
in Veh and SC groups, the mean survival time was 12 and
15days due to severe renal dysfunction. In contrast, the renal
dysfunction in siRNA-CD40 treated group was less intense
with somewhat prolonged survival to 17 days. Animals
receiving cyclosporine survived the 21 days of follow-up,
with an almost normal renal function. The histological
analysis showed severe Banff inflammatory parameters in
Veh and SC groups. Those animals that were treated with
siRNA-CD40 and survived more than 18 days presented a less
severe inflammatory pattern. The cyclosporine animals
presented a conserved histological pattern.

DISCUSSION
In vivo protection by co-stimulatory molecule blockade in IRI
models has scarcely been reported,25,26 although promising
therapeutic effects on organ function have been suggested.
In the present study, we show that IRI induces CD40

overexpression and that CD40 gene silencing in vivo prevents
IRI in native and grafted kidneys, as made clear by
amelioration in renal function, preserved renal integrity,
decreased local myelo-monocytic and lymphocytic infiltra-
tion, reduced local inflammatory milieu, and distant spleen
cell activation. By demonstrating that silencing the CD40-
CD154 dyad prevents IRI in rodent models of renal ischemia,
our results provide the rationale for novel therapeutic
approaches utilizing CD40 gene silencing17 to maximize
donor organ use and function in humans.

We first began studies using mouse warm ischemia models
to prove the concept that silencing the CD40 costimulatory
pathway was effective in kidney function and morphology
protection. In the nineties, Sayegh’s group showed that the B7
costimulatory pathway has a critical role in organ dysfunction
after renal cold IRI.26 Later, Kupiec-Weglinski’s group13

modulated cold liver IRI by targeted gene therapy with a
CD40Ig-hybrid molecule. Although the effectiveness of the
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CD40-ligand blockade using monoclonal antibodies has been
confirmed on preclinical models, thromboembolic events
obscured its translation to the clinic.27 Our group has recently
reported encouraging experimental results that showed that

CD40 silencing reduces the progression of lupus nephritis by
modulating both local milieu and systemic mechanisms.24

We later moved to the rat warm ischemia model aiming to
confirm the efficacy and dose dependency of gene silencing in
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another rodent species, using a different siRNA sequence. As
stated in the Results section, the highest doses of siRNA
exerted the most robust protection in all analyzed functional,
morphological, and inflammatory parameters. As the doses
were reduced, there was a gradual loss in their beneficial
effects, also indicating that gene inhibition completely
covered the critical period of post-ischemic inflammatory
response.

In liver ischemia, CD40-CD40L signaling, but not IFN-γ
signaling, has been reported as important for T-CD4+ cell
function without the requirement of de novo Ag-specific
activation.28 Our group previously described how CD40
silencing in vitro modulates several genes involved in different
processes such as innate immune response, signal transduc-
tion, and apoptosis.29 In the present in vivo study, we
confirmed that CD40 silencing modulated the downstream
signal transduction cascade in the ischemic-inflammatory

environment. In particular, CD40 silencing modulated TLR
expression in kidney tissue. It is known that TLRs participate
in IRI, especially TLR 2 and 4, acting as tissue damage sensors,
activating innate immunity through pro-inflammatory tran-
scription factors such as NF-kB.30–32 CD40 silencing was
shown to inhibit TLR2 activation selectively and therefore to
reduce NF-kB expression.

Chemokines act as potent attractants of inflammatory cells
in ischemia injury.33 CCL2, CCL3, and CCL4 enhance the
recruitment of macrophages and neutrophils within the tissue.
CCL5 is involved in the migration of T cells, monocytes,
natural killer, and dendritic cells. CXCL9, CXCL10, and
CXCL11 elicit T-cell chemoattraction by interaction with the
chemokine receptor CXCR3. Here we showed that all these
chemokines were downregulated by CD40 gene silencing.
Therefore, the CD40 signaling pathway proved a key
contributor to the inflammatory molecular mechanisms
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induced by ischemia. In particular, the above chemokine
modulation could be instrumental in the reduction of
infiltrating T cells and macrophages seen in the CD40
siRNA–treated groups.

Furthermore, we report for the first time two new
downstream CD40 signaling target families, which might be
critical effectors of the pro-inflammatory response to the
ischemic insult. Thus, CD40 gen silencing downregulated
the expression of S100 and galectin protein families. The
Ca2+-binding S100 proteins participate in innate and adaptive
immune responses to cell migration, chemotaxis, and
inflammation.34 CD40 silencing knocked down the expres-
sion of calcyclin (S100a6) known for its potential role in cell
responses to various stress stimuli and apoptosis. Moreover, a
recent study has shown its involvement in the regulation of
endothelial cell cycle progression and senescence.35 The
downregulation of S100a8 and S100a9 also contributes to
inflammatory modulation through reduction in oxidative
stress and neutrophil chemotaxis.36 Galectins are a group of
lectins that act as potent immune regulators in inflammatory
diseases or acute renal failure.37–39 In an inflammatory milieu,
galectin 1 promotes chemo-attraction and retention of
macrophages and neutrophils.40 The spectrum of galectin 1
and 3 overexpression in our ischemic kidney reflects their
activation in the ischemic inflammatory milieu. Their RNA
and protein downregulation by CD40 gene silencing even-
tually amplified the effect of chemokine reduction, with
further decrease in immune cell recruitment. Additional genes
downregulated by CD40 silencing in ischemic kidneys include

the epithelial membrane proteins (Emps) 1 and 3,41 Fn14
(Tnfrsf12A), which triggers activation of the NF-kB pathways
and rises in inflammatory diseases and ischemia,42 ficolin B
(Fcnb), a lectin pathway recognition molecule, and suppres-
sor of cytokine signaling 3 (SOCS-3), a major regulator of
inflammation.43 Indeed, significant upregulation of SOCS-3
in renal tubular cells during IRI has been described, whereas
SOCS-3-knockout mice in proximal tubular cells had better
renal function, increased tubular cell proliferation, and shifted
to M2 macrophages.44

Several studies demonstrated that organ ischemia induces
distant inflammatory changes in other organs, such as
lungs.45,46 Results showed that, although there was no increase
in spleen T–cell frequency, ischemic insult induced an increase
in intracellular TNFα production in CD3+ splenocytes from
the SC-treated group, an especially great increase in the CD4+
subset. This represents distant T-cell activation pattern after
renal ischemia. Similar functional changes have been described
in kidney-infiltrating ischemic CD3 cells, without increasing
the number of resident CD4+ or CD8+ T cells.47 Accordingly,
intravenous siRNA CD40 delivery reduced TNFα production
in CD3+ splenocytes, suggesting that CD40 silencing greatly
affects the systemic immune system and consequently the
activation of CD3 effector cells.

Concomitantly, an increase in the spleen CD43highCD161
monocyte population in the Veh and SC groups was observed.
This result corroborates the observations made by Heitbrok’s
group,48 who described CD43+ as pro-inflammatory and
CD161 as an immune-activator.49 Reduction in this popula-
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tion by CD40 gene silencing also contributed to decreasing
the systemic inflammatory response.

Finally, we analyzed the usefulness of CD40 gene silencing
after cold ischemia in the renal transplantation model to
approach the clinical application. Results showed a protection
both functionally and histologically in the two studied
models––allogeneic and syngeneic. To our knowledge, there
are no substantial differences from literature in the mechan-
isms implied in cold or warm ischemia. In contrast, it is still
controversial whether allogeneic environment amplifies
innate damage in IRI to an adaptive immune response.50–52

In our allogeneic model, the observed reduction in acute
rejection may occur because of a direct inhibition of
alloresponse by the CD40 blockade, but this warrants future
research.

In summary, knocking down the co-stimulatory CD40
signaling by species-specific siRNAs protects against both
warm and cold IRI in rodent kidney models, modulating
inflammatory pathways initiated by ischemia. Nowadays,
there is a renewed interest in treating ischemic acute renal
failure in clinical ground, with many new clinical trials. Our
findings may suggest that CD40-gene silencing arise as a new
hopeful target to be assayed in patients.

MATERIALS AND METHODS
siRNA design
In this study, two different anti-CD40 siRNA sequences were used,
previously described by our group.17 A mouse-specific siRNA: (sense
5′-GUGUGUUACGUGCAGUGACUU-3′; antisense 3′-GTCACACA
AUGCACGUCACUG-5′), and a rat-specific siRNA: (sense 5′-GGC
GAAUUCUCAGCUCACUUU-3′; antisense 3′-GTCCGCUUAAG
AGUCGAGUGA-5′).

The rat siRNA was chemically stabilized with a partial
phosphorothioate backbone and 2′-O-methyl sugar modifications
on the sense and antisense strands. Moreover, a cholesterol molecule
was conjugated to the 3′-end of the siRNA sense strand by means of
a pyrrolidine linker (Microsynth, Switzerland). A scrambled siRNA
(SC), also chemically stabilized, was used as a control.

Animals and surgical procedures
All procedures followed the Guidelines of the European Community
Committee on Care and Use of Laboratory Animals and Good
Laboratory Practice. Animals (Charles River, Spain) were housed at
constant temperature with a 12 h-light/12 h-dark cycle. Rats
were fed standard diet and tap water ad libitum. For all rat
surgical procedures, a mixture of ketamine (75 mg/kg), atropine
(0.05 mg/kg), and valium (5 mg/kg) was used. After surgery, a single
intramuscular dose of ciprofloxacin (5 mg) was administered.
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In warm studies, Wistar rats received different siRNA doses
administered intravenously 1 h before 40 min bilateral renal
ischemia, as follows: CD40-15 (n= 6), 15 μg; CD40-50 (n= 6),
50 μg; CD40-150 (n= 7), 150 μg; CD40-500 (n= 6), 500 μg. Another
group received 500 μg (n= 5) of a nonspecific, scrambled siRNA
(SC); PBS-treated animals were used as controls (n= 9, Veh). Two
groups treated with naked scrambled siRNA (n= 4, SC-naked) and
treated with naked siRNA CD40-500 (n= 4, CD40-naked) were used
to compare the efficiency of cholesterol-conjugated siRNAs. The
follow-up was 48 h.

For cold ischemia studies, the renal heterotopic transplantation
model in male rats was used.53 In brief for harvesting, a cannula was
introduced into the aorta to the ostium of the left renal artery. After a
single dose of sodium heparin (1000UI), the kidney was washed with
Euro-Collins solution (4ml, 4 °C, 20ml/h). The renal artery was
excised with an aortic patch, the renal vein cut proximal to its origin
and the ureter next to the bladder. Kidneys were preserved for 2.5 h in
Euro-Collins solution at 4 °C. For transplantation, the host left kidney
was nephrectomized and the ureter cut next to the pelvis. The recipient
major vessels were occluded with vascular clamps, and the donor
artery and vein were anastomosed to the receptor aorta and cava,
respectively. After the vascular clamps were removed, allowing the
graft to be reperfused, the ureter was anastomosed end-to-end with
four individual 11-0 monofilament stitches. Reanastomosis took no
more than 30min, and total surgical time did not exceed 60min.50,51

The siRNAs (500 μg) were administered 1 h before nephrectomy
in the donor and before reperfusion in the recipient. The distribution
of the groups was as follows: three groups in the syngeneic model
(Lewis–Lewis): sy-Veh (PBS, n= 12), sy-CD40 (n= 7), and sy-SC
(n= 5); and four groups in the allogeneic model (Wistar–Lewis): Al-
Veh (PBS, n= 9), Al-CyA (Cyclosporine, n= 5), Al-CD40 (n= 6),
and Al-SC (n= 5). The follow-up was 96 h in the syngeneic and
21 days in the allogeneic. The cyclosporine group received a single
daily dose (5 mg/kg, in olive oil) by oral gavage (Sandimmun Neoral,
Novartis, Spain). Al-CD40 and al-SC received (intravenously) 150 μg
of siRNA twice a week.

Blood samples were obtained from the tail vein at time zero and
on daily basis. Animals were killed under anesthesia, blood was
obtained by aortic puncture, and spleen and kidneys were processed.
Serum creatinine and urea measurements were performed following
Jaffe’s and GLDH reactions (Olympus Autoanalyzer AU400,
Hamburg, Germany) in the Veterinary Clinical Biochemistry
Laboratory of Universitat Autonoma de Barcelona.

Histological and immunohistochemistry studies
For conventional histology, coronal 1–2 mm thick kidney slices were
fixed in buffered 4% formalin, embedded in paraffin, and stained
with H&E. Light microscopy sections were examined by a blinded
pathologist, evaluating tubular cell necrosis, dilation, interstitial
edema, and cellular infiltrates. Abnormalities were graded on a semi-
quantitative scale (0–4): 0, no abnormalities; 1, changes o25%; 2,
changes 25–50%; 3, changes 50–75%; and 4, changes 475%. An
overall score was attained by adding up all the individual parameters.
For allogeneic studies sections were analyzed for tubulitis, interstitial
infiltration, vasculitis, glomerulitis, tubular necrosis, and glomerular
necrosis, following the Banff criteria for acute/active lesions scoring.54

Paraffin tissue sections were stained for CD40, L-Galectins 1&3,
CD3 (Abcam, Cambridge, UK), and CD68 (AbD Serotec, Raleigh,
NC). Sections were immune peroxidase labeled and revealed
by diaminobenzidine (Sigma, Madrid, Spain). To measure CD40

expression, a semi quantitative score from 0 to 3 in the kidney
compartments (glomeruli, vessels, and interstitium) was used. For
measuring CD3, CD68, and galectins at least 10 hpf were counted
and the mean value expressed. Immunostained-matched sections
without primary antibodies were used as negative control.

Quantification of gene expression in kidneys
Snap-frozen rat kidney was stored at − 80 °C. RNA was extracted
with the PureLinkTM RNA MiniKit (Invitrogen, Madrid, Spain). All
samples had an A260/280 ratio of ∼ 1.8. Five hundred nanograms of
RNA was used for reverse transcription with the High-Capacity
cDNA reverse Transcription Kit (Applied Biosystems, Madrid,
Spain) following the manufacturer’s instructions.

Tissue expression of immune-inflammatory mediators was
quantified by TaqMan real-time PCR using the comparative CT
method: CD40/TLR2/TLR3/TLR4/NFkβ/IL4/CCL2/CCL3/CCL4/
CCL5/CXCL9/CXCL10/CXCL11 (Applied Biosystems).

Moreover, those genes validated in the PROLIGEN study
(Supplementary Data) were quantified by Taqman Low Density Array
microfluidic cards (ABI-PrismH-7700, Applied Biosystems): Emp1/
Emp3/Lgals1/Lgals3/Reln/S100A6/S100A8/S100A9/Socs3/Tnfrsf12a/
Fcnb, and eukaryotic 18S as endogenous reference. Controls, which
were composed of distilled water, were negative for target and
reference genes.

Galectin 1 and 3 western blot analyses in kidneys
Renal tissues were homogenized using a Potter (Sartorius) homo-
genizer in 10 mM Tris–HCl (pH 7.5) and 100mM NaCl buffer with
protease inhibitors. Subsequently, RIPA detergent was added to the
lysis solution and incubated for 15 min, 4 °C. The homogenates were
pelleted at 18,000 g, 4 °C, 15 min, the supernatant collected and, after
quantifying the protein concentration, loaded onto a SDS electro-
phoretic gel. We then performed a western blot; after blocking,
membranes were incubated overnight with antibodies L-galectins 1
and 3. Secondary antibodies were used in 1:10,000 dilutions and
revealed with ECL Plus (GE Healthcare, Uppsala, Sweden) in a
LAS-3000 (Fujifilm, Tokyo, Japan) apparatus, with the software
MultiGauge to visualize and quantify the bands.

Spleen lymphocyte characterization by flow cytometry
Lymphocytes were isolated from spleen by Ficoll (GE Healthcare)
density gradient and cryopreserved at − 180 °C. Cells were thawed,
washed, and recovered by standard methods. Splenocytes were
incubated (25min, RT, dark) with different monoclonal antibodies.
The study used a BD FACS Canto II Cytometer and was analyzed
by using an FACS DIVA software (BD Biosciences, San Jose, CA).
Fluorochrome-conjugated antibodies were appropriately titrated,
mixed together, and formulated for optimal staining performance:
anti-CD3-FITC (G4.18), anti-CD4-APC (OX-35), anti-CD8a-PerCP
(OX-8), anti-CD3-PerCP-efluor710 (G4.18), anti-CD40-APC (HM40-
3), anti-CD45R-FITC (HIS24), anti-CD43-PE (W3/13), anti-CD161-
AF647 (10/78), and anti-172a-FITC (ED9) (BD Biosciences & Millteny
Biotec, Madrid, Spain).

Determination of IFNγ and TNFα secretion in T lymphocytes
by flow cytometry
Isolated splenocytes were stimulated with 5 ng/ml of PMA and
500 ng/ml ionomycin in the presence of monensin (10 μg/ml).
Samples were incubated for 4 h at 37 °C in a 5% CO2-humidified
atmosphere. The surface of stimulated cells was stained for 20 min at
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RT with different mAb. Then, cells were permeabilized with
perm/wash solution for 1 h and stained with PE-conjugated mAb
anti-TNFα or anti-IFNγ or the appropriate isotype-matched control
for 30 min.

The fluorochrome-conjugated anti-rat mAbs used for intracellular
flow cytometry analysis were anti-TNFα-PE (TN3-19), anti-IFN-γ-PE
(DB-1), PE-conjugated anti-IgG isotype control (eBio299Arm), and
PE-conjugated anti-IgG1 isotype control (MOPC-21).

Statistical analysis
For statistical analysis, Student’s t-test compared two conditions,
whereas ANOVA was employed for comparison of multiple
conditions. Nonparametric analysis was used as needed. Survival
analysis was performed by the Kaplan–Meier’s method. A value of
Po0.05 was considered significant. Data are given as a mean± s.e.m.
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