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a b s t r a c t

Phosphoglucose isomerase (PGI) catalyzes the interconversion between glucose 6-phosphate and
fructose 6-phosphate in the glycolysis pathway. In mammals, the enzyme is also identical to the
extracellular proteins neuroleukin, tumor-secreted autocrine motility factor (AMF) and differentiation
and maturation mediator for myeloid leukemia. Hereditary deficiency of the enzyme causes non-
spherocytic hemolytic anemia in human. In the present study, a novel interaction between GTP and
human PGI was corroborated by UV-induced crosslinking, affinity purification and kinetic study. GTP not
only inhibits the isomerization activity but also compromises the AMF function of the enzyme. Kinetic
studies, including the Yonetani-Theorell method, suggest that GTP is a competitive inhibitor with a Ki

value of 63 μM and the GTP-binding site partially overlaps with the catalytic site. In addition, GTP
stabilizes the structure of human PGI against heat- and detergent-induced denaturation. Molecular
modelling and dynamic simulation suggest that GTP is bound in a syn-conformation with the
γ-phosphate group located near the phosphate-binding loop and the ribose moiety positioned away
from the active-site residues.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Phosphoglucose isomerase (PGI, EC 5.3.1.9), ubiquitously pre-
sent in cytoplasm of most organisms, catalyzes the interconversion
between glucose 6-phosphate (G6P) and fructose 6-phosphate
(F6P) (Fig. 1) in the glycolysis and gluconeogenesis pathways. In
mammal, PGI exhibits diverse functions. It is secreted as neuro-
leukin by lectin-stimulated T cells to promote the survival of
specific embryonic and sensory nerves [1,2]. It is also identical to
the autocrine motility factor (AMF) that triggers tumor cell
migration [3,4] and a differentiation and maturation mediator
that is implicated in the differentiation of myeloid leukemia H-60
cells to terminal monocytic cells [5].

The crystal structures of PGI from a wide range of organisms
have been determined [6–11], all folding into a similar architec-
ture. Human PGI (hPGI), for example, is a dimer comprising two
identical subunits of �63 kDa [8]. The individual subunit contains

a large and a small domain, each having a parallel β-sheet core
surrounded by α-helices. The catalytic site for phosphosugar
isomerization is located at a cleft between the large and small
domains and is composed of residues from the two neighbouring
subunits. A comparison between the native and inhibitor-bound
rabbit PGI structures revealed the movement of two loops slightly
closer toward the active site upon inhibitor binding [7]. The
catalytic site and the region responsible for the AMF function
probably overlap because substrate analogues, such as erythrose
4-phosphate and 5-phospho-D-arabinonate, inhibited not only the
protein's enzymatic activity but also the AMF function [4,12].
Moreover, a mutation at active-site R273 abolished the enzymatic
activity [13] as well as attenuated the cell migration-stimulating
function of hPGI [14].

hPGI deficiency shortens the lifespan of red blood cells, causing
hereditary non-spherocytic hemolytic anemia (HNSHA). Erythro-
cytes are a specific cell type due to the absence of nucleus and
mitochondrion; therefore, the cells depend on anaerobic conver-
sion of glucose by glycolysis pathway for the generation of NADH
and ATP [15]. NADH can be used to reduce methemoglobin to
hemoglobin by NADH-cytochrome b5 reductase. ATP provides
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energy for membrane ion pumps to maintain the electrolyte
gradient between plasma and red cell cytoplasm. ATP is also
needed for glutathione synthesis and plays a crucial role in
nucleotide metabolism. Approximately thirty genetic mutations
associated with this genetic disorder have been identified [16,17];
they cause either unstable proteins or proteins impaired in
isomerization activity [13,18]. Without the continuous supply of
PGI, due to the absence of nucleus, the red blood cells carrying the
deficient versions of hPGI would have shorter lifespans, leading to
haemolytic anemia.

ATP participates in the activity regulation of a couple of key
enzymes in sugar metabolic pathways. It exerts an allosteric
inhibition on the activity of phosphofructokinase [19] and pyr-
uvate kinase [20], thus reducing the flux of glycolysis when the
cellular ATP concentration becomes ample. The activity of glucose
6-phosphate dehydrogenase (G6PDH) in the pentose phosphate
pathway is also inhibited by ATP [21,22] and, to a lesser extent,
CTP and GTP [22]. In this study, GTP was found, for the first time,
to bind to hPGI. Effects of the GTP binding on the structural
stability and catalytic function of hPGI were investigated. The
possible GTP-binding mode on hPGI was modelled with the
docking software and molecular dynamic simulation.

2. Materials and methods

2.1. Protein preparation

The cDNA of hPGI was obtained by PCR from a human liver cDNA
library (Stratagene) as described previously [13]. The cDNA was
inserted into plasmid pETDuet (Novagen), and the recombinant
plasmid was transformed into E. coli BL21(DE3). To express the N-
terminally His-tagged hPGI, IPTG (final 10 μM) was added into a
500 ml LB culture when the OD600 reached �1.0; the incubation
was continued at 18 1C for 16 h. After recovery by centrifugation,
the cell pellet was suspended in 20 ml lysis buffer (40 mM TRICINE,
pH 7.5) and homogenized by sonication at 4 1C. The clarified
supernatant was loaded onto a 5 ml Ni2þ-NTA column, followed
by wash and elution with 20 mM and 500 mM imidazole-con-
taining lysis buffer, respectively. The collected protein solution was
passed through a DEAE-Sepharose column (12 � 2.5 cm), and the
flow-through was loaded onto a Sephacryl S-300 gel filtration
column (60 � 1.6 cm) for the further purification of hPGI. The
protein concentrations were determined using a Coomassie protein
assay kit (Pierce) with bovine serum albumin as the standard.

2.2. Activity assay for isomerization

The enzyme-coupled assay using G6PDH is commonly used to
measure the activity of PGI for converting F6P to G6P [13].
However, this method is not applicable to study the inhibition
effect of GTP or 6-phosphogluconate (6P-GA) on hPGI, because GTP
inhibits G6PDH [22], and so does 6P-GA (data not shown). In this
study, the catalytic rate of converting F6P to G6P was determined
by an end-point assay. hPGI was first incubated with the indicated
amounts of F6P and inhibitors in 1 ml 20 mM HEPES buffer, pH 7.5,
at 30 1C for 2–3 min. The reaction was stopped by incubation at
100 1C for 10 min, followed by centrifugation at 13000 � g. The
amount of G6P produced in the isomerization step was then
determined by incubating an aliquot of the reaction solution with
10 units of Leuconostoc mesenteroids G6PDH (Sigma-Aldrich) and
2 mM β-NADþ in 1 ml HEPES buffer. The increase in the OD340 was
monitored until it reached a plateau, and the change in the OD340

was used to calculate the G6P concentration according to the
extinction coefficient of NADH (ε340 ¼ 6220 M-1cm-1). The amount
of hPGI used in the isomerization step was subjected to change to
assure that the production of G6P was in the linear range within
the incubation period. The apparent kinetic parameters, Km and
Vmax, were determined according to the dependence of the
conversion rate on the F6P concentration using Grafit software
(Erithacus Software Ltd., UK). Since both GTP and 6P-GA behaved
as competitive inhibitors, their Ki values were calculated based on
the plot of the inhibitor concentration versus the apparent Km. The
dependence of the binding sites for GTP and 6P-GA was investi-
gated by the Yonetani�Theorell graphical method [23].

2.3. GTP binding assays

To perform UV-induced crosslinking assay, hPGI (0.7 μg) was
mixed with 1 μCi [α-32P]GTP (3000 Ci/mmol/) in an 18 μl solution
and placed on ice for 20 min. The reaction mixture was irradiated
with UV light (254 nm) for 2 min at a distance of 8 cm using
CL1000 ultraviolet crosslinker (UVP, Upland, California). The irra-
diated product was separated on a 12% SDS-polyacrylamide gel,
followed by autoradiography using BAS-2500 Phosphorimager
(Fujifilm, Tokyo, Japan).

For GTP-Sepharose binding assay, hPGI (�1 mg) was load onto
a 1 ml GTP-Sepharose column (Jena Bioscience, Jena, Germany)
that had been equilibrated with 40 mM TRICINE buffer, pH 7.5.
After extensive wash with the equilibrium buffer, the protein
bound to the column was eluted with the equilibrium buffer that
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Fig. 1. The isomerization reaction catalyzed by PGI and structures of GTP and 6P-GA.
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contained 5 mM GTP. The presence of hPGI in every fraction was
analysed by SDS-12% PAGE. A parallel experiment using a Sephar-
ose column was conducted as the control.

2.4. Instrumental analyses

To perform circular dichroism (CD) spectropolarimetry, hPGI
was adjusted to 40 μg/ml in 2 mM HEPES, pH 7.5, and mixed with
the indicated concentration of GTP. The spectrum data, 200–
320 nm in 1 nm steps, were obtained using a 0.1-cm pathlength
cuvette at 25 1C with a CD spectrometer (J-815, Jasco, Japan).

Differential scanning calorimetry (DSC) was performed using
N-DSCIII calorimeter (TA Instruments, New Castle, Delaware). hPGI
was dialyzed against 40mM TRICINE buffer, pH 7.5, and adjusted to a
concentration of 0.4mg/ml with the indicated concentration of GTP,
which was prepared in the used dialysis buffer. The protein sample and
the used dialysis buffer were loaded into the sample and reference cells,
respectively. The scanning temperature started from 20 to 80 1C at the
rate of 1 1C/min. Data were analysed with NanoAnalyze Software v2.2.0.

2.5. Blue native polyacrylamide electrophoresis

The stability of the dimeric structure of hPGI against SDS was
analyzed by blue native PAGE, which has been used to characterize
the oligomeric state of protein complexes [24]. hPGI (10 μg) was
mixed with the indicated amounts of SDS and GTP in protein
loading buffer, and the protein mixture was incubated at 25 1C for
15 min prior to electrophoresis. The monomer fraction shown on
the gel was estimated as pixels with Multi-Gauge software V3.0
(Fujifilm, Tokyo, Japan).

2.6. Cell migration assay

HepG2 hepatoma cells were placed on the top chamber of a
transwell cell culture chamber (Corning, New York), fitted with a
polycarbonate filter with an 8-μmpore size, at a dose of 2 � 104 cells
in 100 μl DMEM supplemented with 10% fetal bovine serum. The
bottom chamber was filled with the same medium. After incubation
at 37 1C for 24 h, the bottom medium was replaced with the fresh
medium that contained 0.16 μM hPGI and/or 100 μM GTP. The cells
were allowed to grow for another 16 h. The filter was removed and
fixed in 4% paraformaldehyde for 10 min and stained with 0.2%
crystal violet for 30 min. The cells on the lower filter surface were
counted using an inverted microscope.

2.7. Ligand docking and molecular modelling

The crystal structure of hPGI (PDB ID: 1JLH) [10] was used for the
docking experiments. The coordinates of GTP were obtained from
PubChem database [25] through the unique chemical structure
identifier CID: 6830. The grid box (30 � 30 � 30Å) was centered
at the catalytic site of hPGI. To increase the chance of obtaining the
best binding mode, 100 hPGI conformers were randomly built with
different side-chain orientations in the catalytic site using MODELLER
9v12 [26]. Each conformer was subjected to GTP docking using
AutoDock Vina version 1.1.2 [27]. Each docking run produced 20
binding modes under the exhaustiveness value of 64, and the
binding modes were ranked based on their predicted binding affinity
(in kcal �mol-1). The top ranked results were visualized and analyzed
with PyMOL [28] and its AutoDock plugin [29].

To improve the model quality, the complex model with the best
binding affinity score was subjected to molecular dynamics (MD)
simulation using GROMACS version 4.6.5 [30] with charmm27
force field. The topology and parameters of GTP compatible with
charmm27 force field was generated by SwissParam [31]. The
initial structure was immersed in an orthorhombic water box and
the net charge was neutralized by the addition of sodium or
chloride ions (at 150 mM salt concentration). Long range electro-
statics were handled using the particle mesh Ewald method. The
steepest descent energy minimization was used to remove possi-
ble bad contacts from the initial structures until energy conver-
gence reached 1,000 kJ �mol-1 �nm-1. The system was subject to
equilibration at 300 K and normal pressure constant (1 bar) for
100 ps under the conditions of position restraints for heavy atoms
and LINCS constraints. The equilibrated structure was used to
perform the production run with LINCS constraint acting on bonds
with hydrogen atoms. The time step of the simulation was set to
2 fs, and the coordinates were saved for analysis every 100 ps.

3. Results

3.1. GTP binds to hPGI

In a UV-induced crosslink experiment aimed to study the GTP-
binding activity of a viral mRNA capping enzyme [32], the
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N-terminally His-tag fused hPGI, used as an experimental control,
was found linked covalently to [α-32P]GTP after UV irradiation
(Fig. 2A). To confirm this unexpected binding activity, the purified
hPGI was loaded onto a GTP-Sepharose column, followed by wash
and GTP elution (Fig. 2B). The loaded hPGI was fully recovered
from the elution fractions, indicating that hPGI could bind to GTP.
In a parallel experiment, hPGI passed directly through the Sephar-
ose column. The untagged hPGI, produced in PGI-deficient E. coli
DF2145 strain and purified using conventional chromatographic

columns as described previously [13], was found also able to link
covalently to [α-32P]GTP after UV irradiation (data not shown),
indicating that the linking between hPGI and GTP was not an
artefact due to the presence of the N-terminal His tag.

3.2. GTP competitively inhibits the catalytic activity of hPGI

To determine the significance of the interaction between hPGI
and GTP, we first inquired whether hPGI can hydrolyze GTP. hPGI
was incubated with [α-32P]GTP in the presence of Mg2þ , and the
reaction products were analyzed by thin layer chromatography
(TLC) using a polyethyleneimine-cellulose plate. GTP hydrolysis,
which could be evidenced by the presence of [α-32P]GDP or [α-32P]
GMP on the TLC plate, was not detected after incubation up to 4 h
(data not shown). Next, we examined whether GTP affects the
isomerization activity of hPGI. The activity assay was performed by
incubating 10 ng hPGI with 80 μM F6P and 150 μM GTP in 1 ml, pH
7.5 HEPES buffer at 30 1C for 3 min. The G6P produced during this
period of time was quantitated by L. mesenteroids G6PDH, which
catalyzes the oxidation of G6P, accompanied by the reduction of β-
NADþ . Under the reaction condition, GTP decreased the hPGI

Table 1
Effects of a variety of nucleotides on the isomeriza-
tion activity of hPGI.

Nucleotide Relative activity (%)a

none 100
GTP 5272
GDP 8272
GMP 9774
ATP 9171

a The activity was measured by incubating
10 ng hPGI with 80 μM F6P and 150 μM nucleotide
at pH 7.5, 30 1C. The data are the mean of three
independent measurements.
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activity by approximately 50% (Table 1), whereas the inhibitory
effects of GDP, GMP, and ATP were minor, indicating that the
inhibition caused by GTP was specific.

To elucidate the inhibition mode of GTP, kinetic constants of the
hPGI-catalyzed reaction were determined in the absence or pre-
sence of GTP (Fig. 3A). In the absence of GTP, Km and kcat were
calculated to be 28 7 4 μM and 608 7 36 sec-1, respectively,
comparable to those for the untagged hPGI [13]. The presence of
GTP, at concentrations of 30, 45, or 60 μM, increased the value of Km

but kept kcat at an approximately constant magnitude. The higher
GTP concentration, the greater value of Km was obtained. These
results suggest that GTP is a competitive inhibitor of hPGI. Accord-
ing to the plot of apparent value of Km versus GTP concentration,
the inhibition constant (Ki) of GTP was calculated to be 63 μM. In
this study, the inhibitory effect of 6P-GA, presumably a transition
state analogue, on the activity of hPGI was also examined (Fig. 3B).
As expected, 6P-GA behaved as a stronger competitive inhibitor for
hPGI with an apparent Ki of 12 μM.

3.3. The binding sites for GTP and 6P-GA are partially overlapping

Although GTP behaved as a competitive inhibitor, the likelihood
of its complete binding to the catalytic site of hPGI was doubted,
because GTP structurally differs from F6P and G6P in many ways
(Fig. 1). To investigate whether GTP binds to a region overlapping

with the catalytic site, the Yonetani�Theorell double-inhibition
experiment was carried out by using GTP and 6P-GA as the
inhibitors. In the Yonetani�Theorell model, the inhibitor depen-
dence of the velocity (v) follows the eq. (1), in which Ki1 and Ki2 are
the inhibition constants for inhibitor 1 and 2, respectively [23]. A α
value approaching infinity indicates mutually exclusive inhibitor
binding, 1 4 α 4 1 suggests a negative effect between the
bindings, and α ¼ 1 indicates that the two inhibitors bind to the
enzyme independently. The reaction velocity of hPGI was first
determined at different concentrations of GTP, in the absence or
presence of 10 μM 6P-GA simultaneously (Fig. 4A). The plot of the
inverse velocity (1/v) versus GTP in the absence or presence of 6P-
GA led to two intersecting lines (they would be parallel if the value
α is infinity). The abscissa of the intersecting point equals the
negative value of α times Ki(GTP); accordingly, α was calculated to be
1.8. Similarly, the velocity of hPGI was determined at different
concentrations of 6P-GA, in the absence or presence of 60 μM GTP
simultaneously (Fig. 4B). The plot of 1/v versus 6P-GA suggested
that α is about 1.6. The α values indicate that GTP and 6P-GA have
slightly negative effects on each other's inhibition function, sug-
gesting that the binding sites for GTP and 6P-GA may overlap partly.
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3.4. The binding of GTP enhances the structure stability of hPGI

It was of interest to ascertain whether the binding of GTP
would affect the conformation of the protein. To answer this
question, the influence of GTP on the far- and near-UV CD spectra
of hPGI was investigated. The far-UV CD spectrum reflects the
secondary structure of the protein, while the near-UV CD
spectrum indicates the local conformation around tryptophan
and tyrosine. GTP did not affect the far-UV spectrum until its
concentration was increased to 100 μM, under which a slight
change was observed (Fig. 5A), suggesting that the overall folded
structure of hPGI was not significantly affected by the GTP binding.
However, the near-UV spectrum changed with the increase
of GTP (Fig. 5B). Taken together, a local conformational change
might be induced upon the GTP binding. The structural
stability of hPGI upon GTP binding was investigated by DSC, a
technique that measures the changes of heat capacity during the
protein thermal denaturation process, from which the protein
melting point (Tm) can be determined. The denaturation of hPGI
was monitored from 20 to 80 1C in the absence or presence of
200 μM GTP (Fig. 6A). The presence of GTP increased the Tm from
53 1C to 56.8 1C, indicating that the binding of GTP could
stabilize the protein structure against thermal denaturation.
Because the isomerization activity of hPGI relies on its dimeric
structure, the effect of GTP on the dimer stability was also
investigated. The enzyme was incubated with different SDS con-
centrations (0.01–0.1%) and 100 μM GTP for 15 min, and the
mixture was then subjected to blue native PAGE, which had been
used to analyze the monomer fraction of hPGI [13]. The monomer
fraction shown on the gel increased with the increase of SDS;
however, the presence of GTP reduced the degree of monomer
dissociation (Fig. 6B).

3.5. GTP interferes with the AMF function of hPGI

The down-regulation of hPGI induced a mesenchymal-to-
epithelial transition and suppression of the metastasis of lung
fibrosarcoma [33], osteosarcoma [34], and breast cancer cells [35].

Hence, it was important to determine whether GTP affects the
AMF function of hPGI. The motility of HepG2 cells was assayed
using a transwell cell culture apparatus in response to 0.16 μM
hPGI and 100 μM GTP, at which the viability of HepG2 was not
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Fig. 7. Suppression of the hPGI-induced cell migration by GTP. (A) HepG2 cells migrating across the filter and shown on the lower filter surface. Approximately 2 � 104 cells
were placed in the top section of the transwell chamber, and 0.16 μM hPGI and/or 100 μM GTP were added to the lower section. After 16 h of incubation, the cells that
migrated across the filter were stained and observed using light microscopy. (Scale bar: 100 μM.) (B) Relative migrations of HepG2 cells after the various treatments. Bars
show the mean 7 S.E.M. of triplicate experiments. *po0.05, **p o0.01 (T-Test).

Fig. 8. Analysis of molecular dynamics trajectories generated by GROMACS.
Trajectories for (A) interaction energy, (B) root mean square deviation (RMSD) of
residues (Arg96, Gly156, Ile157, Gly158, Gly159, Ser160, Ser210, Lys211, Thr218,
Asp268, Gln512, and His389*) in the binding site, (C) RMSD of GTP are shown. The
interaction energy was estimated as the sum of Coulombic and Lennard-Jones
interaction energies between hPGI and GTP.

H.-Y. Lin et al. / Biochemistry and Biophysics Reports 2 (2015) 14–22 19



affected. As expected, hPGI at the tested concentration increased
the number of cells that migrated across the filter by a factor of
approximately 2 (Fig. 7). GTP alone did not significantly affect the
motility of HepG2, yet it compromised the migration-stimulating
effect of hPGI. This observation, reminiscent of the simultaneous
inhibition of the catalytic activity as well as the AMF function of
PGI by substrate analogues [4,12], implying that the binding of GTP
should involve or alter the substrate-binding pocket. In addition,
the ability of GTP to interfere with the AMF function of hPGI raises
an interesting question as whether the extracellular GTP concen-
tration is implicated in the metastasis of tumor cells. The relevance
between GTP and the malignancy of cancer may deserve a further
investigation.

3.6. The docking model of the hPGI-GTP complex

To gain more molecular insight into the inhibitory mechanism
of GTP on hPGI activity, the molecular docking study was carried
out on the published crystal structure of open form hPGI (PDB ID:
1JLH) [10]. AutoDock Vina [27] docked GTP into the catalytic site
with a binding free energy of �10 kcal �mol-1. Early reports
indicated that upon ligand binding, local conformation changes
(from open to closed form) occur around the catalytic site [10,36–
38]. Therefore, MD simulation was conducted after docking in
order to sample the most probable docking poses coupled with the
conformational changes. A significant drop in the interaction
energy was observed within 1 ns during the simulation,

Fig. 9. The predicted binding mode between hPGI and GTP. (A) hPGI complexed with GTP modelled in this study. (B) The crystal structure of mouse PGI complexed with the
inhibitor 6P-GA (PDB ID: 2CXR) [35]. (C) The crystal structure of mouse PGI complexed with the substrate F6P (PDB ID: 2CXS) [35]. In panel A-C, subunit A of PGI is colored as
green, subunit B as cyan. His389* denotes that the residue His389 comes from subunit B. The ligand is shown as a stick model (ivory, carbon; blue, nitrogen; red, oxygen).
Residues involved in ligand binding are shown as stick models. The black dashed lines represent the polar contacts between the ligand and amino acid residues. (D) Frames
of GTP in the binding site of hPGI during 5 ns of MD simulation. The black dashed lines represent the polar contacts inside the GTP molecule. (E) The timeline of hydrogen
bonds formed in the binding site during 5 ns of MD simulation. The hydrogen bonds formed between hPGI and GTP are depicted in grayscale lines. The grayscale represents
the hydrogen bond distance which gives some indication of the bond strength.
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presumably due to conformation changes in the GTP-binding site
(Fig. 8). Because the interaction energy and the conformation of
binding site became steady after 5 ns, the simulation was stopped
at 10 ns and the trajectory of the final 5 ns was analyzed.

In the binding mode after MD simulation, GTP adopts a syn-
conformation and the γ-phosphate moiety is located near the
phosphate-binding loop (residues 210–216) by virtue of hydrogen-
bond interactions to the side chains of Ser210, Thr215 and Thr218
of hPGI (Fig. 9A). In the structure of mouse PGI complexed with
6P-GA (Fig. 9B) or F6P (Fig. 9C), the phosphate group of the ligands
also interacts with the phosphate-binding loop by hydrogen-
bonding to the side chains of Ser160, Ser210, Thr212 and Thr215
and the main-chain amide groups of Lys211 and Thr212. None-
theless, a couple of differences are notable in the case of GTP
binding; the side chain of Thr212 moves away and is not involved
in phosphate binding and that of Lys211 bents down about 601 to
interact with the α and β phosphates of GTP (Fig. 9A). The sugar
moieties of the bound 6P-GA and F6P are positioned near His389n
(comes from the adjacent subunit) [36–38]. Other critical residues
involved in the sugar moiety-binding are Arg273, Gln354, Glu358
and Lys519 (Fig. 9B and C). Instead, our docking model shows that
the ribose moiety of GTP is located away from His389n and
stabilized by a hydrogen bond between its O2' hydroxyl group
and the main chain carbonyl group of Ser210 (Fig. 9D).

The residues involved in the recognition of GTP base moiety are
Arg96, Asp268 and Gln512 according to the model (Fig. 9A). Based
on the 5 ns MD trajectory (Figs. 9D, 9E), the guanidinium group of
Arg96 interacts with the O6 carbonyl group of GTP by hydrogen
bonds. Gln512 side-chain amide group is able to form hydrogen
bonds to N1 amine, N2 amine and/or O6 carbonyl group of GTP.
Asp268 is close to the N7 amine group of GTP. However, the role of
Asp268 might be minor, because the Asp residue seldom forms a
hydrogen bond to an amine group at physiological pH. Thus, it
seems likely that Arg96 and Gln512 constitutes the structural basis
for the specificity of PGI for GTP. In summary, the triphosphate
moiety of GTP may occupy the phosphate-binding pocket of the
catalytic site and this would drive a movement of the phosphate-
binding loop, leading to a closure of the catalytic site, and thus
hindering the entry of substrate.

4. Discussion

The overall velocity of glycolysis has been known to be
regulated by three rate-determining enzymes, which are hexoki-
nase, phosphofructokinase, and pyruvate kinase. The activity of
hexokinase is subjected to feedback inhibition by G6P and this
inhibition is relieved by inorganic phosphate [39]. Phosphofructo-
kinase is allosterically inhibited by ATP, with a Ki value of 0.1 mM
at physiological pH [40]. AMP exerts a counteraction to reverse the
inhibition. Pyruvate kinase is also regulated by ATP in an allosteric
mode. Approximately 30% activity of the enzyme isolated from
erythrocytes was inhibited by 0.7-1.3 mM ATP [41]. ATP also
regulates the flux of pentose phosphate pathway by competitively
inhibiting the activities of G6PDH and 6-phosphogluconate dehy-
drogenase (6PGD). The Ki value for ATP toward the reaction
catalyzed by G6PDH isolated from erythrocyte is about 1.03 7
0.17 mM [42]. In this study, a specific interaction between hPGI
and GTP was identified for the first time. GTP inhibits the activity
of hPGI by acting as a competitive inhibitor with a Ki value of
63 μM. In addition, GTP moderately suppresses the AMF function
of hPGI. Given the physiological concentration of GTP in mamma-
lian cells being 468 7 224 μM [43], GTP might be a factor affecting
the various biological functions of hPGI by different extents. This
proposition deserves being considered in future research regard-
ing this moonlighting protein.

The value of α in the Yonetani-Theorell double-inhibition
experiment in this study was approximately 1.7, suggesting that
GTP and 6P-GA have a great chance to interfere with each other for
the binding to hPGI. The docking model suggests that the binding
of the triphosphate moiety of GTP not only triggers the movement
of the phosphate-binding loop to the closed form but also induces
the bending of Lys211, through which the loop closure is further
enforced. GTP binding would therefore block the access of the
phosphosugar substrate or 6P-GA to the catalytic site. Nonetheless,
this GTP-binding mode remains speculative until the crystal
structure of hPGI complexed with GTP is determined.

5. Conclusion

Human phosphoglucose isomerase (hPGI) is a moonlighting
protein, performing diverse physiological functions such as cata-
lyzing the isomerization between glucose 6-phosphate and fruc-
tose 6-phosphate and promoting the migration of certain cancer
cells. This study evidenced a specific binding between GTP and
hPGI. To the isomerization activity, GTP acts as a competitive
inhibitor. GTP also suppresses the tumor cell migration-stimu-
lating function of hPGI. The Yonetani-Theorell double-inhibition
experiment using GTP and 6-phosphogluconate as inhibitors in the
isomerization reaction suggested that the GTP-binding site par-
tially overlaps the catalytic pocket of hPGI.
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