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In-stent neoatherosclerosis (NA), characterized by a relatively thin fibrous cap and large volume of yellow-lipid accumulation after
drug-eluting stents (DES) implantation, has attracted much attention owing to its close relationship with late complications, such
as revascularization and late stent thrombosis (ST). Accumulating evidence has demonstrated that more than one-third of patients
with first-generation DES present with NA. Even in the advent of second-generation DES, NA still occurs. It is indicated that
endothelial dysfunction induced by DES plays a critical role in neoatherosclerotic development. Upregulation of reactive oxygen
species (ROS) induced by DES implantation significantly affects endothelial cells healing and functioning, therefore rendering
NA formation. In light of the role of ROS in suppression of endothelial healing, combining antioxidant therapies with stenting
technology may facilitate reestablishing a functioning endothelium to improve clinical outcome for patients with stenting.

1. Introduction

The emergence of first-generation drug-eluting stents (DES)
has greatly minimized the limitations of bare metal stents
(BMS); however, concern about in-stent neoatherosclerosis
(NA) has attracted much attention owing to its close associa-
tion with late complications such as revascularization and late
stent thrombosis [1-3]. NA is characterized by accumulation
of yellow-lipid-laden foamy macrophages within neointima
with or without necrotic core and/or calcification after stent
implantation [4]. Pathological studies have revealed that
advanced NA with neointimal rupture and thrombosis is
the most common mechanism of definite vary late stent
thrombosis and is also associated with a high frequency of
ST-segment elevation myocardial infarction [5, 6].
Theoretically, accomplishing endothelial coverage after
stenting is considered to be safe to prevent against vascular
pathological changes, including thrombosis and inflamma-
tion. Nevertheless, “neointima” of DES seems not effective
as normal because recent studies have reported that patients
with first- and second-generation DES have a high frequency
of NA, which was less seen in bare metal stents (BMS) [7, 8].
DES-induced endothelial dysfunction plays a critical role in

NA formation [9, 10]. Here, we try to describe the detailed
pathological and cellular mechanisms for DES-induced
NA.

2. Clinical Evidence of Neoatherosclerosis

Traditionally, promoting stent coverage after stenting is con-
sidered as an important index to evaluate efficacy and safety
of current or advanced stents. However, neointimal function
after stenting seems anxious for the emergency of NA. Data
from the CVPath (Gaithersburg, Maryland) stent registry,
including 209 first-generation DES (103 sirolimus-DES [SES]
and 106 paclitaxel-DES [PES]) and 197 BMS with implant
duration of >30 days, showed that the incidence of NA was
greater in DES (30%) than in BMS (16%; P < 0.001) [1].
Furthermore, Ali et al. [7] analyzed 65 symptomatic patients
with in-stent restenosis (ISR) 33 months of follow-up, finding
that optical coherence tomography- (OCT-) verified NA was
greater in first-generation DES than with BMS (68% versus
36%, P = 0.02). These results suggest that NA is more prev-
alent in first-generation DES when compared with BMS.
The advent of second-generation DES, including everoli-
mus-eluting stents (EES) and zotarolimus-eluting stents
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TaBLE 1: Different characteristics of NA between BMS and DES.

Neointima of BMS

Neointima of DES

. Smooth muscle cells and
Tissue components

Lipid-laden plaque Small
Inflammatory cell infiltration ~ Less Inflammatory cell infiltration

Developing time Slow (>1 year after stenting)

Type of NA Less of thin-cap NA
Progression Slow or disappeared
Prognosis Relatively stable

proteoglycans-rich extracellular matrix

Fibrin deposition; proteoglycan deposition; larger necrotic;
calcified components; and less smooth muscle cells

Large

Many kinds of inflammatory cells: macrophages, multinucleated
giant cells, lymphocytes, and granulocytes

Rapid (<1 year after stenting)
Thin-cap NA
Growing

High frequency of late stent failure

(ZES), has been improved with more biocompatible poly-
mers and thinner strut stent backbones than those with
first-generation DES [11]. Neointimal growths developed
within those second-generation DES have been documented.
Kim et al. [12] reported that second-generation DES (ZES;
Endeavor) facilitated strut coverage and reduced rate of
malapposed strut compared with first-generation DES. In
contrast, results from another multicenter OCT analysis,
including 212 patients with first- or second-generation DES
(second-generation DES: 40 zotarolimus, 36 everolimus,
and 35 biolimus; first-generation DES: 65 sirolimus and 36
paclitaxel), showed that the second-generation DES was not
more protective against NA than the first-generation DES
[13]. Even second-generation cobalt-chromium EES (CoCr-
EES), possessing greater strut coverage with lower incidence
of late/very late stent thrombosis than SES and PES in human
autopsy analysis, findings showed that the frequency of NA
in CoCr-EES was not statistically different when compared
with first-generation devices [14]. These results indicate that
“neointima” of DES is not functional as normal vessels, and
further examination of the neointimal components of DES is
needed.

3. Pathological Characteristics of Neointima

Neointima of DES has several features distinguishing from
these of BMS, including its components, developing time,
progression, and prognosis. Pathological studies, including
coronary angioscopy, intravascular ultrasonography (IVUS),
histological analysis, and OCT researches, have been per-
formed to investigate the features of neointima in both DES
and BMS-associated segments, as shown in Table 1.

Early histopathologic studies revealed that neointimal
components of DES lesion were similar to those in BMS
where the neointima was mainly composed of proliferative
smooth muscle cells with proteoglycans-rich extracellular
matrix. However, emerging evidence suggests that neointimal
components of DES are of obvious difference compared to
BMS. Hara et al. [15] conducted a rabbit study by using
intravascular near-infrared fluorescence (NIRF) molecular
imaging (high-resolution imaging of fibrin) in combination
with simultaneous OCT, showing greater fibrin deposition
and fibrin persistence in DES than in BMS at 7 and 28 days,
respectively. Moreover, neointimal tissue of DES (n = 34)

and BMS (n = 27), identified in 61 lesions by using iMap
IVUS which allows identifying neointimal tissue components
in vivo, showed that the neointima in DES placement showed
smaller fibrotic component (67% versus 78%, P < 0.0001),
larger necrotic (14% versus 9%, P < 0.0001), and calcified
(15% versus 7%, P < 0.0001) components compared to BMS
[16]. These results suggest that fibrin deposition rather than
endothelial cells is a major surface component for DES-neo-
intima [17], indicating that neointima with less endothelial
cells in DES does not possess its native functions.

Lipid deposition within neointima of DES is one of the
most characteristics which differs from BMS, where the latter
is mainly composed of smooth muscle cells. Nakano et al.
[18] examined the neointimal characteristics of both DES and
BMS and demonstrated that neointimal compositions of DES
restenosis showed greater proteoglycan deposition and less
smooth muscle cellularity over time, whereas BMS showed
greater cell density and collagen deposition. Furthermore, Ali
et al. [7] reported the findings using OCT and NIFS with
IVUS for patients with ISR, finding the total lipid core burden
index and the density of lipid core burden index (34 versus 9,
P < 0.001;144 versus 26, P < 0.001, resp.) to be higher in DES
than in BMS. Similarly, Yonetsu et al. [19] revealed a greater
incidence of lipid-laden plaque (37% versus 8%, P = 0.02)
and a higher percentage of lipid-rich plaque (12.9% versus
1.2%, P = 0.01) that were found in DES compared to BMS
within 9 months. Interestingly, a significant difference in the
regression of NA is notable in DES and BMS. Awata et al.
[20] reported a serial angioscopic evidence of neointima after
SES and BMS up to 2-year follow-up, revealing that yellow
plaques were exposed in 71% of SES at the first follow-up
(3.6 + 1.1 months) and remained exposed until the third
follow-up (21.1 + 2.2 months), whereas yellow plaque in
BMS has disappeared by the time of the second follow-up
(10.5+ 1.6 months). Of note, to assess neointimal hyperplasia
after DES placement, data from a clinical study including 37
angina patients undergoing repeated percutaneous coronary
intervention showed that the late phase (mean follow-up, 40+
23.9 months) had a greater percentage of lipid components
and relative larger necrotic volume compared to the early
phase (<1 year), suggesting that lipid plaque of DES grew
persistently and rapidly with time [21]. Lipid deposition
within neointima in DES segments seems to increase risks of
adverse events. On the one hand, the prevalence of thrombus
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was significantly higher on the yellow than on the white
neointimal area [22]. On the other hand, patients with yellow
plaque after stenting showed great frequency of late stent
failure, including cardiac death, acute myocardial infarction
or unstable angina, or need for revascularization associated
with stent site, compared to those without yellow plaque (8.1%
versus 1.6%, Log rank P = 0.02) [23].

Clinical reports and pathological findings from patients
with DES postulate a hypersensitivity inflammation as an
important factor in neoatherosclerotic development [23, 24].
Potential culprits responsible for hypersensitivity include
arachidonic acid metabolites, proteolytic enzymes, and
inflammatory cells such as macrophages, T-lymphocytes,
mast cells, and eosinophils [25]. Pfoch et al. [24] reported that
patients with a polymer-based PES (Taxus, Boston Scientific)
presented with characteristics of hypersensitivity: dissemi-
nated wheals, pruritus, bronchial asthma, and synovitis and
were cured by initial intravenous injection followed by oral
antihistamine treatment for 1 month until paclitaxel was
eluted totally. Moreover, in noninjured coronary arteries of
domestic swine (n = 58), overlapping stents (SES, PES, and
BMS) were implanted to detect circumferential granuloma-
tous inflammation, defined as inflammation consisting of
macrophages, multinucleated giant cells, lymphocytes, and
granulocytes, including many eosinophils in stented seg-
ments. Results showed that circumferential granulomatous
inflammation was more prevalent in SES (9 of 23, 39%)
compared with BMS (0 of 44) in the combined 90- and
180-day cohort. Recently, Niccoli et al. [26] considered that
mammalian target of rapamycin- (mTOR-) inhibited DES
stent type is associated with an increase of eosinophil cationic
protein in serum levels of patients undergoing stent implan-
tation, possibly triggered by permanent polymer. However,
Fu et al. [27] analyzed neointimal coverage of polymer-
free sirolimus-DES in coronary arteries of 8 normal swine;
lymphocyte infiltration of peristrut was more frequently seen
in heterogeneous sections than in homogeneous sections.
And Cooketal. [28] reported histology findings in 54 patients
with DES (28 patients with very late DES stent thrombosis
and 26 controls), suggesting that very late DES thrombosis
was associated with histopathological signs of inflammation,
and eosinophilic infiltrates were more common in thrombi
harvested from very late DES thrombosis. These results
suggested that antiproliferative drugs-mediated DES may
play a role in hypersensitivity, partly contributory to promote
progression of NA.

NA is classified as I (thin-cap NA), II (thick-cap NA), and
IIT (peristrut NA) types, topographically. The types of NA
between DES and BMS are discrepant. Ali et al. [7] detected
the cap neointima of both DES (n = 51) and BMS (n = 14) in
65 patients with in-stent restenosis (ISR) at 33-month follow-
up and suggested that the type 1 thin-cap neoatheroma was
greater in DES than BMS (20% versus 3%, P = 0.01). Simi-
larly, Ando et al. [29] also found this phenomenon in patients
with ISR after SES (n = 20) or BMS (n = 34) implantation,
finding that a smaller fibrous tissue percentage in neointimal
tissue by integrated backscatter IVUS was observed in SES
than in BMS (72.6% versus 82.0%, P = 0.011). Moreover,
Kang et al. [30] analyzed 50 patients (30 stable, 20 unstable

angina) with 50 DES-ISR with 32.2-month follow-up, reveal-
ing that 52% of lesions had at least 1 OCT-defined in-stent
thin-cap fibroatheroma- (TCFA-) containing neointima, and
patients presenting with unstable angina showed a thinner
fibrous cap (0.55 mm) and higher incidence of OCT-defined
TCFA-containing neointima compared to stable patients.
Like vulnerable plaque characterized by a thin cap of lesions
(<0.65 mm), these results suggest that NA of DES is responsi-
ble for late complications for its favor of rupturing over time.

4. Cellular Mechanisms of Neoatherosclerosis

Many pathological factors have been elucidated as indicators
of NA, such as delayed arterial healing [12], hypersensitivity
[26], stent types, stent age, and patient characteristics [31,
32], including current smoking and chronic kidney disease.
Antiproliferative drugs-induced incomplete reendothelial-
ization plays a key role in neoatherosclerotic development.
Nakazawa et al. [33] analyzed 44 New Zealand White rabbits
with induced atheroma by bilateral iliac artery stents to
evaluate endothelial coverage between DES (SES, ZES, and
EES) and BMS. Findings showed a significant lower level of
endothelial nitric oxide synthase (eNOS) expression in DES
than BMS, although endothelial coverage was comparable
between DES and BMS, suggesting that regenerated endothe-
lium was dysfunctional in DES. Therefore, antiproliferative
drugs such as sirolimus and paclitaxel inhibit endothelial
cells proliferation and induce endothelial dysfunction which
contributes to NA.

4.1. Reactive Oxygen Species (ROS) Production Induced by
Antiproliferative Drugs. Jabs et al. [8] analyzed the effect of
sirolimus in vascular dysfunction using Wistar rats undergo-
ing infusion (5 mg/kg/day) for 7 days for mimicking the con-
tinuous sirolimus exposure of a stent vessel. Results showed
that sirolimus caused a marked endothelial dysfunction and
a desensitization of the vasculature to the endothelium-
independent vasodilator nitroglycerin; moreover, upregu-
lated superoxide production was observed, in part by nicoti-
namide adenine dinucleotide phosphate (NADPH) oxidase
via stimulating of p67phox/racl expression and increased racl
membrane association. Similarly, paclitaxel also increases
ROS production via activation of NADPH oxidase, including
p47 (phox) mRNA and gp91 (phox) mRNA in arteries and
human coronary artery endothelial cells, while the level of
nitric oxide (NO) is reduced [34]. In view of the ROS pro-
duction, evidence suggests that ROS may mediate endothelial
caveolae-mediated transcytosis [35] and paracellular pathway
[36] which are potentially associated with neoatherosclerosis
development. Detailed explanations will be discussed in the
following sections.

Transcytosis of vascular endothelial cells is a basic process
for maintaining vascular homeostasis [6]. Caveolae-mediated
transcytosis is a major conduit for transporting macro-
molecules (>3 nm of molecular radius), including albumin,
insulin, and LDL, from one side of a cell to the other via
membrane-bounded caveolae [37-39]. Known that many
excellent articles about caveolae structure and functions have
been introduced in detail [40, 41], our focus is on the effects



of ROS on neoatherosclerotic development via caveolae-
mediated transcytosis pathway.

4.2. ROS Promote Lipid Uptake via Caveolae-Mediated Tran-
scytosis. Impairment of endothelial barrier function is impli-
cated in many vascular disorders. One prevalent mech-
anism of endothelial dysfunction is an increase in ROS
under oxidative stress. As mentioned in pathological studies,
both sirolimus and paclitaxel-eluting stents are associated
with increased vascular level of ROS, consequently altering
endothelial function in the treated artery [42]. Although
there is no direct evidence to demonstrate the effects of DES
in increasing lipid uptake, ROS-associated lipid deposition in
vessels is widely described. By exposing an aortic endothelial
smooth muscle cell bilayer to a free-radical generating system
to detect the influence of superoxides in lipid permeability
and uptake, increased level of '*’I-LDL uptake was observed
via transcellular pathway [43]. Moreover, transcytosis of
FITC-labelled LDL simulated by C-reactive protein (CRP)
was examined in human umbilical vein endothelial cells
and ApoE(—/-) mice, pointing out that CPR-stimulated LDL
uptake within in vitro and in vivo was increased closely
associating with increased ROS production. This action was
blocked by an NADPH oxidase inhibitor (inhibition of ROS
production) [44]. Therefore, these results indicate that ROS
production stimulate lipoprotein uptake in endothelial cells.
ABC transporters (such as ABCAl and ABCGI) play an
important role in cholesterol homeostasis, especially in liver.
In contrast to smooth muscle cells and macrophages that
form the atherosclerotic plaque, neither ABC transporters
nor scavenger receptor B-Iis required for vascular endothelial
cholesterol efflux, indicating that other pathways may be
involved in the lipid transport for endothelial cells [45].
Caveolae-related transcytosis and their generated channels
are the main cellular instruments for trafficking cargoes
in endothelial cells. Endothelial-specific cav-1 expression is
essential for the progression of atherosclerosis [46]. cav-1,
as a primary structural protein of caveolae, greatly regulates
caveolae formation and caveolae-mediated endocytosis and
transcytosis in microvascular endothelial cells [47]. Many
studies have already investigated the relationship between
ROS and cav-1-mediated caveolae pathway [48, 49].
Evidence showed that ROS upregulate cav-1 protein
expression via increasing binding of Spl to the cav-1 promoter
region containing the two GC-rich boxes [49]. Overexpres-
sion of cav-1 inhibits thioredoxin reductase-1 (TrxRl), an
important antioxidant enzyme that controls cellular redox
homeostasis. Lack of TrxR1, which fails to localize to caveolae
and binds to cav-1, constitutively induces oxidative stress-
mediated endothelial dysfunction [50]. Some key signaling
pathways, including activation of Src kinase family members
and extracellular signal-regulation kinases (ERK1/2), have
been specifically incriminated in ROS-mediated barrier dis-
ruption. Src signaling has been demonstrated to be a crucial
“switch” in the regulation of caveolae-mediated transcellular
transport via phosphorylation of cav-1at tyrosine 14, followed
by phosphorylation of dynamin-2 to fission of caveolae. P90
ribosomal S6 (p90RSK) is a potentially important down-
stream effector of Src and ERK1/2. H, O, activates p90RSK by
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ROS via Fyn and Ras to activate several transcription factors
[51]. The nuclear erythroid 2 p45-related factor-2 (Nrf2), a
transcription factor that mediated cytoprotective response
against stress, is inhibited by expression of cav-1[52], leading
to alteration of endothelial barrier.

ROS not only induce cav-1 upregulation, but also cause
phosphorylation of cav-1 via activation of c-Abl, an upstream
kinase of cav-1[53, 54], to promote the growth of microscopic
voids (caveolae formation) within the cellular bilayer [55].
Prdxl is one of the antioxidant enzymes that plays a protective
role in cells against oxidative stress. In cytoplasm, Prdxl exists
as a protein complex with c-Abl-SH domain and protects c-
Abl from phosphorylation. Under oxidative stress, oxidant
dissociates Prdxl and c-Abl complex and then induces c-
Abl phosphorylation [56], therefore leading to caveolae
formation. In addition, Jin and Michel found [57] that
actin-binding protein myristoylated alanine-rich C-kinase
substrate (MARCKS), an important mediator of the oxidative
stress (H,0,), could induce endothelial permeability change
by regulating cytoskeletal reorganization in endothelial cells
via a signaling cascade from Racl to Abl, phospholipase Cy1,
and PKCS, eliciting altered endothelial permeability.

Fission of caveolae is an important progress in migration
of caveolae to the basal membrane for endothelial cells. The
GTPase dynamin on oligomerization plays a crucial role in
transcytosis for triggering fission by constriction of caveolae
necks. Dynamin-2 is mainly involved in the scission of newly
formed caveolae from the membrane by self-assembles to
form spiral structures on the neck of invaginated pits during
endocytosis by stimulating its GTPase activity. Activated
Src kinase increases dynamin-2 phosphorylation, promotes
association with cav-1, and localizes dynamin to caveolae,
hence increasing macromolecule transports [58]. Oxidative
stress-induced ROS cause recruitment of dynamin 2 and c-
Abl to caveolin-enriched microdomains [59]; c-Abl tyrosine-
phosphorylated dynamin 2 enhances p47phox/dynamin 2
association, therefore increasing the number and fission of
caveolae formation and leading to increased lipid uptake and
retention within vessels [59], as shown in Figure 1.

4.3. Paracellular Transport Pathway. Under physiological
conditions, endothelial cell-cell contacts and vascular endo-
thelial barrier integrity are mediated by tight junctions,
adherens junctions, and gap junctions to regulate physiologi-
cal process, especially inhibiting inflammatory cell tran-
sendothelial migration (TEM). Opening of interendothe-
lial cell-cell junctions or disruption of endothelial-matrix
contacts within the vasculature after DES placement has
a pivotal role in inducing inflammatory cell infiltration,
including macrophages, eosinophils, multinuclear giant cells,
and lymphocytes [60, 61]. Antiproliferative drugs, potent
mTOR inhibitor, may be important in disrupting cell-cell
conjunctions [62].

Vascular endothelial- (VE-) cadherin and its associated
catenins are important to form adherens junction complexes
for controlling endothelial cell-cell adhesion. Data from
mTORC2 deficient mice showed that a blocking mTOR or
the upstream kinase phosphoinositide 3-kinase (PI3K) dose-
dependently decreased VE-cadherin mRNA and protein
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FIGURE 1: Caveolae-associated transcytosis. Dysfunctional endothelial cells increase lipoprotein uptake by increased cav-1 expression and

phosphorylation induced by DES-mediated ROS production.

expression [63]. Furthermore, prolonged rapamycin treat-
ment significantly decreased cytoskeletal adaptor protein Nck
by reducing the expression of total mTOR, rictor expression,
and mTORC2 formation, finally leading to high permeability
[64]. This concept has been confirmed by Walid et al. [65]
who clarified that rapamycin, a specific mTOR inhibitor,
damaged cell junctions and subsequent tubule formation,
facilitating inflammatory cell TEM.

Oxidative stress-induced endothelial cell filamin translo-
cation (from the membrane to the cytosol), cytoskeletal
rearrangement, and intercellular gap formation are related to
increased monolayer permeability, which contribute to desta-
bilization of junctions [66]. As mentioned above, sirolimus-
and paclitaxel-DES induced increase in ROS production may
be associated with disruption of endothelial integrity, as
shown in Figure 2.

VE-cadherin plays a key role in maintaining cell-cell
integrity. The VE-cadherin cytoplasmic tail is highly homol-
ogous to other cadherins and binds f-catenin or y-catenin.
B- or y-catenin binds a-catenin to stabilize the adherens
junction anchorage to the actin cytoskeleton. In addition,
confocal images and coimmunoprecipitation technology
show significant colocalization of cav-1and f-catenin at cell-
cell borders in a nonphosphorylated state [36]. Disruption
of binding between [-catenin and VE-cadherin interferes
with the association of adherens junctions with the actin
cytoskeleton, therefore resulting in decreased cell adhesion
strength and subsequent barrier disruption [67]. H,O,
induces the disassociation between cav-1 and f-catenin at
the endothelial cells borders in cav-1 phosphorylated state.
B-catenin is tyrosine phosphorylation by ROS via redox-
sensitive proline-rich tyrosine kinase 2 [68]. Then, the asso-
ciation of VE-cadherin and f3-catenin is reduced upon H,0,
stimulation [69], and f-catenin translocates into cytosolic

compartment, resulting in endothelial barrier disruption.
These results suggest that loss of cell-cell conjunctions
is partly induced by disruption of f-catenin/VE-cadherin
complexes via oxidant-induced paracellular pathway. In the
bEnd3 monolayer of mouse endothelial cells, elevated level
of cellular ROS led to VE-cadherin and zona occludens-
1 (ZO-1) disruption, whereas antioxidant (N-acetylcysteine
and tempol) treatment significantly lowered the permeability
induced by ROS [70].

In addition to decreasing assembly of adherens junctions,
ROS also affect the formation of endothelial tight junctions.
Under pathological conditions, ROS significantly contribute
to blood-brain barrier dysfunction and inflammation in
the brain by enhancing cellular migration, paralleling with
cytoskeleton rearrangements and redistribution of disappear-
ance of tight junctions proteins claudin-5 and occludin [71].
Production of ROS induced by HIV-transactivator of tran-
scription/cocaine activates Ras/Raf/ERK1/2 pathway con-
tributing to disruption of tight junction protein [72]. Hence,
opening of tight junctions after endothelium damage facil-
itates inflammatory cell migration. Conversely, the NADPH
oxidase inhibitor DPI reversed the events, including impaired
tight proteins ZO-1and claudin-5, decreased transendothelial
electrical resistance, and significantly increased cytosolic
ROS in brain endothelial cells, indicating that ROS play a key
role in this process [73].

Immunofluorescent staining for the tight junctional pro-
tein occludin and ZO-1 demonstrated that oxidant challenge
caused a loss of endothelial tight junction organization.
Protein phosphatase 2A (PP2A) interacts with epithelial
tight junctions and negatively regulates the integrity of the
tight junctions. PP2A-calpha protein and PP2A activity were
coimmunoprecipitated with occludin, and this coimmuno-
precipitation was rapidly increased by H,O,. H,0,-induced
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inflammatory cell migration.

dephosphorylation of occludin on threonine residues and
redistribution of occludin and ZO-1 from the intercellular
junctions is caused by a Src kinase-dependent mechanism
[74]. Rhodamine phalloidin staining of the actin cytoskeleton
showed that H,O, stimulated increased stress fiber formation
with concomitant gap formation between adjacent endothe-
lial cells [75]. In addition, ROS could activate myosin light
chain kinase, followed by decreased tight junction complex,
while providing antioxidant prevented brain endothelial
injury [76].

Connexins (Cx) are recognized as structural constituents
of gap-junctional intercellular communication (GJIC).
Downregulated Cx43 expression and damaged GJIC function
in HUVECs along with intracellular ROS production were
observed by asymmetric dimethylarginine (ADMA), whereas
these events could be attenuated by NADPH oxidase inhibi-
tor [77].

Adhesion molecules that localize at endothelial cells junc-
tions or cell-cell contracts regions are essential to the process
of TEM. Activated endothelial cells presented with cell-
surface adhesion molecules expressions [78] cause mono-
cytes fixed adhesion on the endothelium, facilitating TEM
via paracellular pathway. These molecules include platelet/EC
adhesion molecule-1 (PECAM-1), CD99, junctional adhesion
molecules A and C (JAM-A and JAM-C), and JAM-like
protein (JAML) [79]. Among these adhesion molecules,
PECAM-1 acts as a sensor of oxidative stress during the pro-
cess of TEM. PECAM-1-mediated TEM is dependent on its

tyrosine phosphorylation. An inducer of oxidative stress (t-
BuooH) in HUVECs caused twofold increase in the TEM of
monocyte like HL-60 cells and a fivefold increase in PECAM-
1 phosphorylation [80]. H,O, supports PECAM-1/SHP-2
complex formation via an “oxidative burst” and sufficiently
high concentrations of H,O, for a sufficiently long period
of time [81], a process that is similar to DES implantation.
Conversely, antioxidant enzyme and superoxide dismutase
conjugated with antibodies to PECAM-1 quench the cor-
responding ROS and alleviate vascular oxidative stress and
inflammation.

ROS disassemble the endothelial cell actin dense periph-
eral band, followed by an increase in the number and diam-
eter of intercellular gaps. Millimolar concentrations of reac-
tive oxygen metabolites lead to nonspecific endothelial cell
injury, and micromolar concentrations activate inflammatory
second messenger cascades which produce distributional
changes in endothelial cell cytoskeletal proteins, causing
translocation of filamin, attributed to rearrangement of the
dense peripheral band of F-actin [82].

5. Biodegradable Polymer Stents and
Drug-Eluting Absorbable Stents

The slow and often incomplete endothelial regrowth after
injury is the primary cause of serious short- and long-term
complications, including thrombosis and neoatherosclerosis.
Rapid endothelium restoration has the potential to prevent
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these sequelae [83]. The emergence of biodegradable poly-
mer stents seems attractive because its polymer degrades
and eliminates itself from the body leaving the permanent
metallic stent without polymer, which would facilitate reen-
dothelialization. Karjalainen et al. [84] performed a clinical
study enrolling 44 patients with acute coronary syndrome
receiving either a biodegradable polymer-based SES (BP-SES)
or durable polymer-based ZES (DP-ZES). Results showed
that BP-SES provided better stent strut coverage at 3 months
compared with the DP-ZES group, although neither was fully
covered. However, a 5-year follow-up research, in which 30
patients with 33 stents (10 with 12 biodegradable polymer
biolimus-eluting stents [BES], 10 with 11 SES, and 10 with 10
BMS) showed that lipid-laden neointima with BES had no
statistical discrepancy when compared with those with SES or
BMS, respectively [85]. Therefore, the safety of biodegradable
stents should still be further developed.

Several prospective, multicenter, clinical trials have been
performed to directly investigate the effect of bioabsorbable
stents on neointimal function. Mattesini et al. [86] designed
a clinical study in which 100 complex coronary lesions
were treated with a bioabsorbable vascular scaffold (BVS)
or second-generation DES. The findings showed that the
BVS group had a higher tissue prolapsed area and greater
incidence of incomplete strut apposition at the proximal edge
compared to the DES group. Furthermore, Christiansen et
al. [87] published the results of the SORT OUT V trial in
which 2468 patients received either BVS or SES, showing
that significantly more patients in the BVS group had definite
thrombosis at 12 months than those in the SES group (risk
difference, 0.6%; P = 0.034), suggesting that the effects of
biodegradable stents on vascular reendothelialization merit
further validation.

Endothelial dysfunction or damage by oxidants is asso-
ciated with an enhanced risk of platelet activation and sub-
sequent atherothrombotic complications [88]. To investigate
the biocompatibility of biodegradable polymers, cultured
monocytes differentiated into functional macrophages were
incubated with various polymers including poly-L-lactide,
polycaprolactone, or poly-D,L-lactide-co-glycolide for up
to 5 days and showed that biodegradable polymers were
associated with macrophage adhesion, NADPH oxidase-
induced generation of ROS, and excess apoptosis [89]. Fur-
thermore, Hietala et al. [90] examined the possible differ-
ences between biodegradable polylactide (PLA) and stainless
steel (SS) stents in platelet attachment and morphology after
whole blood perfusion. Results revealed that more platelets
deposited on PLA stents than on SS stents under all study
conditions (P < 0.03), while among all biodegradable stents,
the braided PLA stent coated with PCL-PLA-heparin accu-
mulated the fewest platelets (P < 0.02), indicating that mate-
rials, design, and coating techniques of biodegradable stents
must be further developed.

ROS could activate platelets, increasing their adhesion
to the vascular wall. Evidence showed that platelet recruit-
ment (PR) inhibited by rosuvastatin was associated with
downregulation of platelet release of the prothrombotic
molecule CD40L, lower production of platelet ROS and iso-
prostane, and activation of the glycoprotein IIb/IIIa. Detailed

mechanisms revealed that platelet isoprostane formation,
platelet CD40L, and sNOX2-dp mainly depend on NADPH
oxidase, and inhibition of NOX2-derived oxidative stress
could impair platelet activation [91]. Moreover, the soluble
CD40L (sCD40L)/CD40 axis is a thromboinflammmatory
mediator that affects platelet and endothelial functions.
Khzam et al. [92] found that pretreatment of early out-
growth cells (EOCs) with sCD40 reduced their inhibitory
effect on platelet aggregation. In contrast, blockade of ROS
reversed the effects of sCD40-treated EOCs on platelet
aggregation. Similar results were observed in disease of
anoxia-reoxygenation, where platelets undergoing anoxia-
reoxygenation simultaneously increase ROS, thromboxane
(Tx) B,, and isoprostanes. These events were associated with
NOX2 activation and could be inhibited by NOX2-blocking
peptide, vitamin C, and the inhibitor of phospholipase A,
[93]. Therefore, production of ROS is an important factor in
platelet recruitment and thrombotic events, and strategies to
decrease oxidative stress can encourage reendothelialization
and reduce the incidence of NA.

6. Effects of Antioxidants on
Reendothelialization after Vascular Injury

Targeting of endothelial function by antioxidants may be
promising to promote endothelial healing and to prevent
against NA formation after stent implantation. Early trial of
probucol (an antioxidant) administration in animal models of
stent implantation showed antirestenosis and antithrombotic
properties, which are related to promoting in-stent reen-
dothelialization [94]. Moreover, in another study, animals
of expanded polytetrafluoroethylene grafts in the abdom-
inal aorta were treated with probucol, showing increased
endothelial cell coverage and decreased intimal hyperplasia,
suggesting that reducing oxidative stress promotes healing of
prosthetic grafts [95]. The mechanisms involved beneficial
effects on oxidative stress and improvement of endothe-
lial functional activities and reduced LDL oxidative state
[96].

Hanratty et al. [97] found that low flow resulted in
greater lumen loss in segments form the same vessel subject
to balloon injury, by greater enhancement, whereas the
antioxidant pyrrolidine dithiocarbamate effectively reduced
intima formation and inward remodeling after balloon-
injured vessels. Cicero et al. [98] performed a crossover,
double-blind, placebo-controlled randomized clinical trial to
detect if a short-term treatment with monacolins combined
with antioxidant, red yeast rice, improves lipid pattern and
endothelial function in a small cohort-moderately hyper-
cholesterolemic subjuncts. Results showed that monacolin
treatment with red yeast rice appeared to safely reduce
cholesterolemia, hs-CRP, and improve endothelial function.
The detailed mechanisms for improvement of endothelial
function are via inhibiting of oxidative stress, downregulating
cav-1, upregulating eNOS expression, and decreasing whole
blood viscosity [99]. These data suggest that strategies that
promote functional healing of vascular endothelium may be
cardinal methods, consequently decreasing the risks of late
complications [100].



7. Conclusion and Perspectives

In summary, it is already demonstrated that reendothelializa-
tion with complete function is essential to maintain safety
and performance of coronary stents. ROS are released fol-
lowing PCI and are closely associated with neoatheroscle-
rosis formation, which is one of the main mechanisms for
late thrombosis. The use of antioxidants may inhibit such
complications, by encouraging endothelial coverage, improv-
ing endothelial function via mediating lipid uptake and
inflammation. Although the current DES and advanced
biodegradable stents have tried their best to reduce the rates
of adverse cardiac events, including nonfatal myocardial
infarction, stroke, repeat target vessel revascularization, or
death, inadequate endothelial healing in stented segments
plays a key role in the dilemma. It is likely that stents which
conquer the overwhelming influence of ROS on the arterial
healing process will gain a delighted achievement.
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