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A B S T R A C T

Primary liver tissue cancer types are renowned to display a consistent increase in global disease burden and
mortality, thus needing more effective diagnostics and treatments. Yet, integrative research efforts to identify cell-
of-origin for these cancers by utilizing human specimen data were poorly established. To this end, we analyzed
previously published whole-genome sequencing data for 384 tumor and progenitor tissues along with 423 pub-
licly available normal tissue epigenomic features and single cell RNA-seq data from human livers to assess cor-
relation patterns and extended this information to conduct in-silico prediction of the cell-of-origin for primary liver
cancer subtypes. Despite mixed histological features, the cell-of-origin for mixed hepatocellular carcinoma/
intrahepatic cholangiocarcinoma subtype was predominantly predicted to be hepatocytic origin. Individual
sample-level predictions also revealed hepatocytes as one of the major predicted cell-of-origin for intrahepatic
cholangiocarcinoma, thus implying trans-differentiation process during cancer progression. Additional analyses
on the whole genome sequencing data of hepatic progenitor cells suggest these cells may not be a direct cell-of-
origin for liver cancers. These results provide novel insights on the nature and potential contributors of cell-of-
origins for primary liver cancers.
1. Introduction

Primary liver cancers (PLCs) are one part of the major cancer types
with increasing global disease burden over the years, reaching incidence
rates over 900,000 per year (Asrani et al., 2019; GBD Disease and Injury
Incidence and Prevalence Collaborators, 2016; GBDMortality and Causes
of Death Collaborators, 2016). The high morbidity and mortality asso-
ciated with PLCs is due to the complex nature of the disease and the lack
of effective diagnostics and treatments besides multi-kinase inhibitors,
thus strongly emphasizing the importance of relevant researches on early
diagnosis and extensive drug development. In line with this, several
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research programs endeavored on identifying suitable diagnostic
markers and targeted therapy-based treatments for PLCs, including the
whole genome and exome-level profiling (Ziogas et al., 2017). Recent
comprehensive efforts to investigate the genomics of PLCs have produced
novel insights onto the major mutation signatures, sub-classifications,
and recurrent somatic mutations in coding regions (TERT, TP53,
CTNNB1, KRAS, IDH1/2, etc.) and noncoding regions (NEAT1 and
MALAT1). A subset of these mutations are identified as driver mutations
and maybe associated with clinical outcomes (Fujimoto et al., 2016;
Jusakul et al., 2017). More investigations are underway to fully unveil
the mechanisms and processes underlying the progression of PLCs.
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One of the complex, unanswered questions regarding the progression
of PLCs is the nature of cell-of-origins (COOs) corresponding to the
various subtypes of PLCs. PLC comprises classical hepatocellular carci-
noma (HCC) subtype, which represents ~90% of PLCs, as well as com-
bined hepatocellular and cholangiocarcinoma (cHCC/ICC) and
intrahepatic cholangiocarcinoma (ICC), which are the two cancer sub-
types displaying biliary phenotype to different extent. The mixed subtype
(Mixed), one of the cHCC/ICC subtypes, particularly displays mixed
histological features without any clear distinctive boundary between the
HCC-like and ICC-like parts, thus posing substantial challenges in infer-
ring the COO for these tumors by either histology or other phenotypic
measurements. COOs of PLCs may depend on the location of tumors
within the liver and the differential clinical status associated with each
tumor, represented by individual-level variability of cancer progression.
So far, in-vitro and in-vivo experiments in animal models proposed
possible main COOs for different subtypes of PLCs, including hepatocytes
for HCCs, Mixed and ICCs; cholangiocytes for Mixed and ICCs; and
bipotential hepatic progenitor cells (HPCs) for HCCs and ICCs (Moeini
et al., 2016; Razumilava and Gores, 2014; Sia et al., 2017). None of these
have yet been confirmed due to the potential biases accompanied by cell
cultures and genetic manipulation-based lineage-tracing animal model
systems as well as the lack of human level studies. However, evidences
for both differentiated cells and HPCs as the predominant COO for PLCs
exist. For example, COOs for HCCs were either reported as solely hepa-
tocytes (Mu et al., 2015) or hepatocytes plus differentiated benign lesions
derived from HPCs (Tummala et al., 2017). As the COOs for ICCs, either
hepatocytes which underwent conversion into cholangiocytes (Sekiya
and Suzuki, 2012) or the biliary epithelial cells themselves (Guest et al.,
2014) were pointed out as possible options, depending on the usage of
different transgenic models. In addition, recent reports also suggest the
possibility of de-differentiation or trans-differentiation of hepatocytes
(Mu et al., 2015) and cholangiocytes (Raven et al., 2017; Russell et al.,
2019) after the liver injury as potential sources of progenitor cells and
PLCs, which further enhances the complexity for the identification of
liver cancer COOs. Efforts to extrapolate these COO-related complexities
by utilizing actual human cancer tissue data itself are scarce with one
article partly visiting this issue at a limited sample-level (Wardell et al.,
2018), and no studies were yet performed in a comprehensive,
inter-cohort manner.

Here, we performed a computational approach to dissect out the
putative COOs on each cancer subtype of PLCs and interrogated possible
individual tumor-level heterogeneity in COOs. For this, we analyzed the
whole genome sequencing data from 341 of PLCs (256 HCCs, 29 Mixed,
and 56 ICCs) and 12 extrahepatic biliary tract cholangiocarcinoma
samples (BTCAs) based on the assumption that this cancer type would
predominantly display cholangiocytic COO, and 10 of HPCs to assess the
possibility of being a common COO for PLCs, along with 423 chromatin
features at the epigenome-level (methods). Since chromatin marks were
generated from tissue-level samples, we attempted to complement our
findings on the correlations between somatic mutation landscape and
chromatin features by utilizing single cell RNA-seq (scRNA-seq) data
derived from human liver tissue (MacParland et al., 2018) to dissect out
the relationships between the gene expression features from normal liver
cell types and somatic mutation landscape of PLCs. Our study not only
confirmed the role of chromatin marks associated with possible COOs in
shaping the mutation landscape of PLCs, but also uncovering the differ-
ential contribution of each COO in different subtypes of PLCs.

2. Results

2.1. Aggregate sample-level correlations between chromatin marks and
somatic mutations of PLCs

Based on the previous findings about the associations between the
chromatin feature levels and regional variations in somatic mutation
frequencies of tumors (Polak et al., 2014, 2015) and applying this
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knowledge onto machine-learning based COO predictions on several
cancer types (Kübler et al., 2019), we first hypothesized that the
whole-genome mutation landscape of hepatocytic PLC subtype (HCCs)
would exhibit a closer relationship with liver tissue (surrogate tissue for
hepatocytes) chromatin marks, whereas the mutation landscape of par-
tial or fully biliary PLC subtypes (Mixed and ICCs) and the BTCAs would
likely to display stronger correlations with the chromatin marks from
tissues containing either cuboidal or columnar epithelium (kidney,
stomach, or intestines as representative surrogate tissues for the chol-
angiocytes), depending on the extent of biliary phenotypes and
anatomical locations. To examine differential associations among the
mutation landscape for different subtypes of PLCs and the chromatin
feature levels from normal tissues, we first employed a random-forest
based feature selection method to identify the chromatin features that
explained the possible variances in regional somatic mutation fre-
quencies. To conduct the analysis, we utilized somatic mutation fre-
quency data at a 1-megabase window for three subtypes of PLCs (HCCs,
Mixed and ICCs) and BTCAs at an aggregated sample level along with the
1-megabase window chromatin feature counts. As hypothesized, liver
tissue chromatin marks served as major features displaying significance
for HCCs, and a stomach tissue chromatin mark served as the first-rank
feature for ICCs and BTCAs (P < 2.2e-16, Mann-Whitney U-test be-
tween the first and second rank features of each PLC subtype; Figure 1a).
Surprisingly, liver tissue chromatinmarks weremajor features explaining
the regional mutation variation of Mixed subtype. This result indicates a
possible tendency of putative COO towards to the hepatocytes for the
Mixed subtype, albeit known molecular heterogeneity among individual
tumors (Moeini et al., 2017) and the partial biliary phenotypes in his-
tology. The overall lower variance explained scores for Mixed and ICCs
compared to the HCCs were at least in part likely due to the lower
number of the samples and the total mutation load (Figure S1a, b),
indicating that the actual correlation between the liver tissue chromatin
features and the somatic mutation landscape of Mixed may be similar to
that of HCCs. In line with these results, spearman correlations between
the regional mutation frequency of HCCs or Mixed and liver H3K4me1
chromatin mark level was the largest when comparing to different
chromatin marks from a possible pool of surrogate tissues, whereas
stomach H3K4me1 chromatin mark level showed the highest correlation
with the regional mutation frequency of BTCAs (Figure S2a). Spearman
correlation values among the regional mutation frequency of ICCs and
H3K4me1 of different tissues were overall low without displaying any
tissue type dependent differences, which can be due to both the lower
mutation load of ICCs and the possible intrinsic COO heterogeneity.
These correlation patterns were more exemplified when sub-setting the
genomic regions according to the top 5% difference in ChIP-seq counts
between liver and stomach H3K4me1 marks (Figure S2b). Similar to the
spearman correlation results, the regional quintile-based mean mutation
density data of HCCs and Mixed showed relatively higher association
with the liver tissue H3K4me1 level comparing to the stomach tissue
H3K4me1 level, while the mean mutation data for ICCs and BTCAs dis-
played higher association towards the stomach tissue H3K4me1, with
ICCs as a lesser extent (Figure 1b). Collectively, these results demonstrate
that COO-associated chromatin features can delineate the relationships
with the mutation landscape of PLCs and BTCAs.

2.2. Aggregate sample-level correlations between single cell RNA-seq data
and somatic mutations in PLCs

Previous publication showed that gene expression data can explain
regional somatic mutation variance, albeit at a lower level compared
with the chromatin features (Polak et al., 2015). As with any major
tissue types, liver tissue contains multiple cell subpopulations including
hepatocytes, cholangiocytes, stellate cells and other rare cell types,
which suggests a potential limitation of mixed cell subpopulations when
using traditional bulk tissue-level RNA-seq data in such analysis. In our
study, we revisited correlation levels between gene expression and the



Figure 1. Cell-of-origin chromatin features delineating relations with the regional mutation frequency of HCCs, Mixed, ICCs and BTCAs. (a) Random forest regression-
based chromatin feature selection using aggregated somatic mutation frequency data from HCC, Mixed, ICC and BTCA-SG samples. The rank of each chromatin feature
was determined by importance values. Bar length represents the variance explained scores, and the error bar shows minimum and maximum scores derived from 1,000
repeated simulations. Red lines represent the cutoff scores determined by the prediction accuracy of 423 features-1 standard error of the mean. Liver chromatin
features are green-colored and stomach chromatin features are blue-colored. (b) Normalized mean mutation density per each PLC subtype and BTCAs plotted with
respect to the density quintile groups of liver and stomach H3K4me1 marks.
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somatic mutation landscape for PLCs by utilizing recently published
human liver scRNA-seq data (MacParland et al., 2018), thus taking into
account the heterogenous cell types within a liver tissue. After
sub-selecting four cell clusters representing hepatocytes and one cluster
corresponding to cholangiocytes (methods), we first assessed the rela-
tionship between gene expression features and somatic mutation
landscape of PLCs for all of the 1-megabase genomic regions after
employing a single-cell-level RNA transcript detection rate (DR)
threshold on gene expression data (methods). Spearman correlation
values between either DR or mean detected transcript count level
(MDTC) and somatic mutation frequencies for PLC subtypes showed
significant but generally lower correlation values than when using
H3K4me1 chromatin features (spearman coefficient (absolute value) <
0.52 for HCC, < 0.45 for Mixed, < 0.32 for ICC and <0.45 for BTCA).
We next used the top 5% difference in H3K4me1 ChIP-seq counts be-
tween liver and stomach tissues, which are the most representative
regions used in the previous analysis showing differences in correla-
tions between regional somatic mutation frequencies for PLCs and
chromatin features. Results assessing the correlation between the
H3K4me1 chromatin features and DR or MDTC for these sub-selected
regions revealed that the DR values were more representative of
3

demonstrating expected correlations with chromatin features for both
tissue types (Figure S3a). A subsequent analysis was conducted to assess
the correlations between DR values from either hepatocyte or chol-
angiocyte clusters and regional somatic mutation variations of PLCs in
the subset regions. Results showed that although the correlation co-
efficients derived from DR values were less robust than the chromatin
features, (consistent with the previous report (Polak et al., 2015)), the
observed correlation tendencies were similar, especially for the somatic
mutation landscapes for ICCs and BTCAs. (Figure S3b).

Based on the results above, we next examined the possibility of using
DR value features from individual liver cell types by conducting random-
forest feature selection method (methods). Although showing lower
variance explained scores, our results displayed consistencies with the
chromatin-based feature selection results (Figure 1a) by showing hepa-
tocyte DR feature as the first rank for HCCs andMixed, and cholangiocyte
DR feature as the first rank for ICCs and BTCAs (Figure S3c).

Collectively, our results using DR gene expression feature com-
plemented the chromatin feature-based aggregate-level analyses and
further confirmed the relationship between the molecular features
derived from the putative COO and regional somatic mutation fre-
quencies of PLCs.
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2.3. Individual sample-level cell-of-origin predictions

To further assess the differential mutation landscapes and possible
COOs for PLCs and BTCAs at the individual sample level, we conducted a
random forest algorithm-based COO analysis for each sample (methods).
This individual sample-based COO analysis demonstrated the dominance
of a hepatocytic predicted COO for HCCs, in contrast to the predictions
for BTCAs, which showed stomach tissues (a proxy tissue for extrahepatic
cholangiocytes) as a major putative COO (Figure 2a). For the mixed
subtype, hepatocytic COO was solely predicted for the 8 samples that
were used for the aggregate sample-level random forest analysis. This
result was replicated for an additional 20 Mixed subtype samples from
another cohort (Xue et al., 2019) (Figure S4a), which is yet again in line
with the aggregate-level correlation results and the recent publication on
the monoclonal origin of mixed subtypes enriched with HCC-like gene
expression-level features (Xue et al., 2019). For ICCs, however, both
hepatocytes and proxy tissues for cholangiocytes (kidney and stomach)
were predicted to be possible major COOs. This COO prediction pattern
was consistent between different ICC cohorts (Figure S4b), thus
emphasizing the consistent heterogeneity of COOs and inferring that the
somatic mutation landscape can harbor the signature of cell type
trans-differentiations and plasticity involved in liver injury (Monga,
2019), which is most likely to occur prior to the development of ICCs.
4

Our results not only replicated earlier findings on the COOs of HCCs, ICCs
and extrahepatic distal cholangiocarcinoma (DCCs) (Wardell et al.,
2018), but also adding a couple of novel aspects including 1) the com-
plete predominance of hepatocytic predicted COO for Mixed tumors
(28/28) and 2) the implication of cuboidal cholangiocytes near the canal
of hering (kidney tissue chromatin mark as a surrogate) could be another
major COOs for ICCs besides the hepatocytes. In addition, six HCC
samples showed non-hepatocytic predicted COO, thus implying a
possibly distinct COO for a subset of HCCs that may be linked to differ-
ential tumor pathology. Overall, our results suggest that the predominant
COO for the HCCs and Mixed would most likely to be hepatocytes. Also,
our evidences point to the cholangiocytes as the likely predominant COO
for BTCAs, whereas the COOs of ICCs tend to vary by individual samples.
These results confirm the importance of anatomical locations on the
COOs of PLCs and BTCAs.

Next, we utilized DR gene expression features derived from human
liver tissue as an alternative to chromatin features from liver, kidney and
stomach tissues. Application of DR features from a total of 20 scRNA-seq
clusters for random forest-based COO prediction (methods) to 20 Mixed
subtype samples with positive variance explained scores cross-confirmed
the chromatin feature-based COO prediction results (18 out of 20
showing hepatocytic COO; Figure S5). For ICCs, only 5 out of 56 samples
displayed positive variance explained scores, further implicating
Figure 2. Analysis of COOs for individual
cancer samples. (a) Prediction of COO via
grouping of chromatin features for each
normal tissue type. The bar graph depicts the
percentage of samples with respect to the
assigned COO by liver tissue chromatin fea-
tures (pink), kidney tissue chromatin features
(green), stomach tissue chromatin features
(navy) or the rest (gray). (b) Principal coor-
dinate analysis of mutation frequency distri-
butions for individual cancer samples. (c, d)
Differential gene expression by non-
hepatocytic COO HCCs (n ¼ 6) comparing
to the hepatocytic COO HCCs (n ¼ 189). (c)
Volcano plot. The horizontal axis is the log-
ratio of the non-hepatocytic COO to the
hepatocytic origins. Dashed line represents
FDR ¼ 0.05. (d) Expression profile of EPCAM
and KRT19 mRNA.
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chromatin features as better predictors of regional somatic mutation
frequencies compared with the scRNA-seq based gene expression fea-
tures. This result is also in line with the aggregate-sample level correla-
tion results discussed earlier.

Along with these results, principle coordinate analysis (PCOA) result
revealed that the PLC samples with hepatocytic predicted COO tend to
aggregate as a cluster, displaying principle coordinate 1 value over
0 (Figure S6). In terms of PLC subtypes, HCCs andMixed samples were all
contained within a cluster, except for the ones with non-hepatocytic
predicted COOs, whereas the ICCs and BTCAs were more spread out
(Figure 2b), reflecting the distinct mutation landscape patterns.

To demonstrate whether HCCs with non-hepatocytic predicted COO
have a unique gene expression patterns compared with the hepatocytic
predicted HCCs, we analyzed the genome-wide gene expression profiles.
Among the non-hepatocytic- and hepatocytic predicted HCC samples,
tumor RNA-seq data were available for 6 and 189 samples, respectively
(Fujimoto et al., 2016). A comparison of gene expression levels between
them showed that 124 genes were up-regulated and 21 were
down-regulated in non-liver-origin HCCs (FDR <0.05, absolute logFC
>0.647; Table S1). Interestingly, the upregulated genes included an
epithelial cell marker EPCAM and a cholangiocyte-specific marker KRT19
(Figure 2c). Clustering analysis confirmed that HCCs with
non-hepatocytic predicted COO were enriched in a cluster that expressed
more EPCAM and KRT19 (Figure 2d). Gene set enrichment analysis
showed that molecular pathways associated with bile acid synthesis,
xenobiotic degradation, and hepatocyte nuclear factor were
down-regulated in HCCs with non-hepatocytic predicted COO
(Figure S7). This result indicates that the functional similarity to hepa-
tocytes is being less observed in HCCs with non-hepatocytic predicted
COO. Collectively, the mRNA expression in non-hepatocytic predicted
HCCs partly resembled that of biliary epithelial cells, which follows the
preceding publication about EPCAM-positive ductal cells as a possible
COO for HCCs at an inflamed condition (Matsumoto et al., 2017). We also
compared hepatocytic- and non-hepatocytic predicted HCCs in terms of
clinical features (including tumor stage and survival), but we found no
statistically significant difference in these features, which suggest that
the COO assignments for HCCs may be independent of the clinical
prognosis.

Hepatitis virus infections in ICCs have been previously reported to
display distinct clinical features and prognoses depending on which virus
type is infected (Wang et al., 2016). Since a prior publication described
the association between hepatitis virus infection status and liver COO
assignments without any subgrouping of virus types (Wardell et al.,
2018), we tested whether there are any hepatitis virus-type specific
tendencies in COO predictions and the variance explained scores for the
somatic mutation landscape of PLCs. Upon grouping PLCs with hepatitis
B virus (HBV) and hepatitis C virus (HCV) infection status, our analysis
revealed that HCCs and Mixed samples were assigned primarily to hep-
atocytic COO regardless of the hepatitis virus infection status. In contrast,
ICC samples displayed differential COO predictions based on the viral
infection status of the patients. In the case of HCV-infected ICCs, all of the
samples showed hepatocytic predicted COO (binomial probability of
0.08, two tailed), whereas HBV infected ICCs were predominantly pre-
dicted as non-hepatocytic COO (8 out of 9, binomial probability of 0.04,
two tailed) (Figure S8a, c). These results might reflect differential effects
of viral infections onto different cell types within the liver tissue and their
progression into ICCs, which would depend on the hepatitis virus types.
This implication is consistent with the previous reports on differential
ability of HBVs (positive infectivity) and HCVs (negative infectivity) to
infect cholangiocytes (Blum et al., 1983; Fletcher et al., 2015). Further-
more, spearman correlation values between the regional mutation fre-
quency of aggregated samples grouped by HBV or HCV infection status
and normal liver tissue H3K4me1 chromatin mark level was higher for
HCV-infected ICCs compared with any other ICCs with different virus
infection status, and this result was fully replicated when using H3K4me1
chromatin marks derived from HBV or HCV-infected liver tissues, thus
5

providing additional evidences (Table S2). In line with these results, and
using variance explained scores for the ICCs calculated by using a total of
9 cell or tissue types, we discovered that chromatin features with the
highest level of variance explained scores were derived from different
tissues depending on the hepatitis infection status of ICCs (HBV¼ kidney
tissue, HCV ¼ liver tissue, NBNC ¼ stomach tissue) (Figure S8b).
Although a limited number of virus-infected ICC samples, our results
indicate a potential skewness of COO of ICCs depending on the virus
infection status, and a separate cohort level study with larger number of
samples is strongly warranted.

2.4. Hepatic progenitor cells as a possible cell-of-origin for PLCs

EPCAM-positive HPCs, so called as oval cells, are a progenitor cell
type located inside the Canal of Hering. HPCs harbor differentiation ca-
pacity into both hepatocytes and cholangiocytes, and also have been
suspected to be a possible COO for PLCs. To examine the possibility of
HPCs as a possible COO for different subtypes of PLCs, we performed
random forest feature selection analysis using somatic mutation fre-
quency data for HPCs (Blokzijl et al., 2016) at an aggregate sample level.
Results from this analysis demonstrated that the mutation landscape of
HPCs cannot be explained adequately by the normal tissue chromatin
landscape, with negative-value variance explained score for the top 1st
rank chromatin feature and 25% for the total 423 chromatin features
(Figure 3a). To check whether the results from HPCs were due to the
lower mutation load or possible differences in mutation accumulation
patterns intrinsic to the adult stem cells, we utilized the mutation land-
scape data of colon stem cells (Blokzijl et al., 2016). Aggregate sample
level random forest feature selection analysis of colon stem cells dis-
played variance explained score greater than 40% for the H3K9me3
rectal mucosa chromatin mark and above 60% for the total 423 features.
Post-adjustment of mutation load for colon stem cells at the level of HPCs
still showed chromatin marks derived from the rectal mucosa tissue as a
top ranked feature, with greater than 28% variance explained score,
implying that either the lower mutation load or the stem cell specific
mutation accumulation patterns might not be a contributing factor for
the feature selection analysis results from two different adult stem cells.
These results also infer distinct mutation landscape between the HPCs
and PLCs through differential variance explained score patterns, thus
suggesting that HPCs might not be a direct COO of PLCs.

2.5. Relationship between mutation signatures and COO predictions

Previous evaluation on the mutation signature of HPCs identified a
specific age-associated mutation signature displaying a correlation with
replication timing and average chromatin levels of cell lines registered in
the ENCODE project (Blokzijl et al., 2016). Based on these findings, we
conducted mutation signature analysis on the HPCs along with the PLCs
and BTCAs to discover any relationship between the mutation signature
proportions and COO assignments. As predicted, we successfully
extracted a resembling signature (signature D) to the age-associated
signature previously identified in the HPCs with similar relative pro-
portion level, along with the other three mutation signatures
(Figure S9a-c). Next, we assessed whether the proportion of signature D
correlates with COO assignment for PLCs. As demonstrated in Figure 3b,
the relative contribution of signature D was significantly lower for
non-hepatocytic predicted HCCs and ICCs comparing to the
hepatocytic-predicted HCCs/ICCs and all of the HPCs. Moreover, several
evidences point out that the correlation between the relative proportion
of the mutation signature and the COO assignment was specific and
consistent for signature D. One is that the proportion of the other three
signatures (A, B and C) was not significantly associated with the COO
assignments for ICCs (P > 0.57), and two signatures (A, B) showed no
significant associations with the COO assignments for HCCs (P > 0.24).
Also, the mutation type patterns of HPCs were more comparable to those
of ICCs and BTCAs rather than the HCCs and Mixed, in contrast to the



Figure 3. Hepatic progenitor cells display distinct mutation landscape and mutational signature processes compared to the genomes of PLCs. (a) Chromatin feature
selection in relation to the regional mutation frequency of colon adult stem cells and hepatic progenitor cells. The chromatin features related to each tissue type are
green-colored. (b) The box plot shows the distribution of relative contribution of signature D in HCC, Mixed, ICC, BTCA and HPC samples. Samples of each tumor type
are separated based on whether they are predicted as hepatocytic COO (gray) or not (yellow). Statistical significance was calculated by using a Mann-Whitney U-test
(***, P < 0.05). BTCAs were excluded from the statistical analysis because only two samples were predicted as hepatocytic COO.
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findings on the skewness of COO assignment depending on the signature
D status. Furthermore, major proportion of the non-hepatocytic predicted
COO samples were located in the lower quartile for the signature D
proportions (Figure S9d). Collectively, these results provide a novel
perspective with respect to the importance of age-associated mutation
signature levels on COO assignment, and thus reflect the distinct muta-
tion landscapes between hepatocytic and non-hepatocytic predicted COO
samples.

3. Discussion

In this paper, we applied random-forest machine learning algorithm
and other computational analyses to whole genome sequencing data of
PLCs and epigenomics data/scRNA-seq data derived from normal tissues
to elucidate unique association patterns between the two features and
identify possible COO distribution for PLCs at the subtype and individual
tumor tissue level. Results from these analyses would help to understand
the complex and heterogeneous nature of liver cancer COOs and the
contribution of chromatin marks on differential regional somatic muta-
tion landscapes during the progression of various subtypes of PLCs.

Several recent studies support the idea of chromatin marks serving as
a crucial factor in shaping the mutation landscape for several types of
tumors (Ha et al., 2017; Polak et al., 2014, 2015). Consistent with this
idea, our results show that chromatin marks can explain the mutation
landscape of PLCs at the subtype level, displaying variance explained
scores in the range of 56% (ICCs) to 87% (HCCs). Moreover, the top
chromatin marks associated with the mutational landscape of 256 HCCs
were mostly derived from liver tissue and the top correlative chromatin
marks for 12 of BTCAs were from the stomach tissue, which are also
concordant to the previous studies on HCCs and DCCs (Wardell et al.,
2018). Also, analysis of the scRNA-seq data from human liver tissue
complemented the chromatin feature-based data by using DR value
feature data from the actual cell types inside the liver tissue. To note, a
lower level of variance explained scores were observed for ICCs
6

comparing to any other PLC subtypes, using either chromatin features or
the DR value features. We speculate that the potential contributor to
these differences in variance explained scores might be either 1) lower
mutation load or 2) the higher level of heterogeneity in COOs.

Genetically-engineered mouse model (GEMM) lineage tracing studies
reported COO-dependent discrepancies with respect to the oncogenic
alterations at the molecular level (Vicent et al., 2019). In the case of ICCs,
mouse models either utilizing thioacetamide administration or Trp53
genetic loss can direct different cell types (hepatocytes vs cholangiocytes)
into ICCs with concomitant Notch signaling activation (Guest et al.,
2014; Sekiya and Suzuki, 2012). For HCCs, most of the mouse models
revealed that this cancer subtype mainly originates from hepatocytes, but
the emergence of HPC-derived benign lesions could be identified in
conjunction with galectin-3 and α-ketoglutarate paracrine signals
(Tummala et al., 2017). Our COO prediction results not only do conform
with these reports but also stress out the importance of further large
cohort-level investigation on themajor COOs of each subtype of PLCs and
the potential COO variability, especially in the context of distinct or
co-existing molecular alterations. Altogether, these researches would
remain highly necessary for a better understanding of the cancer pro-
gression for PLCs along with the early-stage diagnosis and the treatment
selection.

Several publications provided pieces of evidence on the injury-
mediated plasticity of hepatocytes by demonstrating the ability to
transdifferentiate into cholangiocytes (Michalopoulos et al., 2005; Sekiya
and Suzuki, 2014; Yanger et al., 2013) at in vitro and/or in vivo. More-
over, several lines of lineage-tracing based evidence show that the
transdifferentiated hepatocytes can arise ICCs indifferent mouse models
(Fan et al., 2012; Sekiya and Suzuki, 2012; Wang et al., 2018). These
transdifferentiation processes are governed mainly by the activation of
Notch1/2 and Akt signaling, which is renowned to be crucial for the
formation of ICCs at least in part by direct transcription and over-
expression of cyclin E gene (Zender et al., 2013). Consistent with these
observations, our random forest-based COO predictions also point out the
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possibility that the hepatocytes are indeed one of the major COOs of ICCs,
alongside with the cholangiocytes. These results implicate that the so-
matic mutation landscape of tumors can harbor the information about
the history of cancer initiation and progression, which may enable to
detect the potential cellular transdifferentiation during the course of
cancer development and accompanied somatic mutation accumulations.

The COOs for PLCs were a subject of debate for a number of years, not
only due to the discovery of several types of HPCs (Cardinale et al., 2011;
Wang et al., 2015), but also to the facultative regeneration of hepatocytes
and cholangiocytes displaying trans-differentiation, which mainly occurs
during the inflammation or liver injury (Mu et al., 2015; Raven et al.,
2017). Our prediction results, at least, favor differentiated cells rather
than progenitor or stem cells as origins for PLCs. This conclusion is based
on the findings that 1) normal liver (representing hepatocytes), kidney,
and stomach (surrogate for the cholangiocytes) tissues can mostly
explain the COO of PLCs, and 2) the somatic mutation profile of HPCs is
not adequately explained (variance explained score <24.04) by the
normal tissue chromatin marks. Although our chromatin feature selec-
tion analysis did not contain any liver progenitor/stem cell chromatin
marks, poor correlation between the mutational landscape of HPCs and
the liver or stomach chromatin marks may imply a distinct chromatin
landscape between the differentiated cells/tissues and the progenitor/-
stem cells. Although we cannot fully reject the possibility that the HPCs
are still the very first COO of PLCs, our results at least suggest that the
major somatic mutation accumulation would most likely happen in
differentiated cells, not at the progenitor/stem cell level. Future assess-
ment on the relationship between the chromatin marks derived from the
HPCs and the mutational landscape of PLCs and HPCs could serve as a
separate confirmatory study, although the limitation on the number of
progenitor/stem cells directly from human liver and its purity are major
hurdles for ChIP-seq or any other epigenomics assays.

In summary, our results on the COO of PLCs discovered several novel
aspects of COO distribution in different PLC subtypes. We believe that
these results not only validate the in vitro and in vivo data from previous
publications on COOs of PLCs through human data but also address some
new aspects of individual-level differences in tumor biology and clinical
pathology of PLCs, and provide a robust and relevant way of studying
cancer COOs in a human system. Ultimately, our results support argu-
ments for the necessity of personalized medicine for cancer treatments,
combined with genomics and other molecular signatures.

3.1. Limitations of the study

In this study, our current standpoints for the limitations are as fol-
lows: 1) Some of our results were derived by using surrogate tissue
chromatin marks rather than the true intrahepatic cholangiocyte chro-
matin marks. Due to the technical limitations in collecting sufficient
amounts of pure intrahepatic cholangiocytes for ChIP-seq assay, we
focused our efforts to complement this issue by employing scRNA-seq
data. 2) Utilizing chromatin mark data from HPCs would have been
ideal, but technical limitations were present on purifying these cell
populations from human liver tissues with sufficient amounts for ChIP-
seq profiling. In our study, we instead analyzed the somatic mutation
landscape of HPCs to assess the somatic mutation accumulation patterns
and mutation signatures. 3) The number of samples for the HCV-infected
ICCs was too low to derive a concrete conclusion, and this was due to the
scarcity of ICC populations with HCV infection. We believe that our study
supplies scientific rationale for a further study on differential properties
of the somatic mutation landscape in hepatitis virus-infected ICCs.

4. Methods

4.1. Preprint publication

The article was previously published as a preprint in bioRxiv (Ha
et al., 2019).
7

4.2. Data

For most analyses in this study, we used somatic mutation data of
whole-genome sequencing (WGS) from the NCC-Japan liver cancer
(LINC-JP), RIKEN-Japan liver cancer (LIRI-JP), and Singapore biliary
tract cancer (BTCA-SG) projects after acquiring permission from ICGC
(http://icgc.org). LINC-JP and LIRI-JP data consisted of a total of 282
samples with the exception of some cases which displayed multifocal or
hypermutations, and these data were subgrouped according to the his-
tological types (256 HCCs, 8 Mixed, and 18 ICCs). Data from BTCA-SG
were all extrahepatic cholangiocarcinoma samples consisting of 12
samples without any particular subgroups. The raw files of these datasets
were analyzed along the standard GATK pipeline (https://www.broad
institute.org/gatk/) and somatic mutations were called with the
MuTect algorithm (http://archive.broadinstitute.org/cancer/cga/mut
ect) (Cibulskis et al., 2013). In addition to the data sets listed above,
WGS-derived somatic mutation profile from additional 31 stem/proge-
nitor samples (10 HPCs and 21 colon adult stem cells) and 38 ICCs from
previous studies (Blokzijl et al., 2016; Jusakul et al., 2017) were utilized
for the analysis related to hepatic progenitor cells (Figure 3 and
Figure S9) or as an independent cohort for predicting the COO of ICCs
(Figure S4b) and assessing viral-infection associated COO predictions for
ICCs (Figure S8a). Furthermore, additional WGS data from 21 Mixed
subtype samples from a recent study (Xue et al., 2019) were also used for
the COO prediction as another independent cohort. Somatic variants of
these samples were called from a different method that was designed in
each study comparing to the datasets we analyzed. A total of 423 epi-
genomic data for chromatin feature selections, correlation analyses and
COO prediction analyses was obtained from ENCODE (Consortium,
2012) and the NIH Roadmap Epigenomics Mapping Consortium (Road-
map Epigenomics et al., 2015). NIH Roadmap epigenomics data can be
accessed through the NCBI GSE18927 in the Gene Expression Omnibus
site (https://www.ncbi.nlm.nih.gov/geo/). Chromatin data for liver tis-
sues derived from hepatitis virus infected patients (donor HPC8 and
HPC17) were obtained from the IHEC (https://epigenomesportal.ca/ihe
c/download.html). All chromatin data applied to this study derived from
a post normalized bed file. The epigenomics data were used in previous
studies for assessing the relationship between chromatin marks and so-
matic mutation landscape of tumor (Polak et al., 2015) and pre-cancerous
lesion-tumor pairs (Ha et al., 2017). To estimate the regional mutation
density and average signal of chromatin features, autosomes were
divided into each 1-megabase region except sectors containing low
quality unique mappable base pairs, centromeres, and telomeres. Sub-
sequently, we calculated the frequency of somatic mutations and
ChIP-seq reads in each 1-megabase region to figure out the regional
mutation density and histone modification profiles. The value of DNase I
peaks and replication were also used to calculate DNase I hypersensitivity
and Repli-seq profiles in each 1-megabase region. All these calculations
were performed using BEDOPS (Neph et al., 2012).

4.3. Principal coordinate analysis

PCOA was employed to represent the similarity/dissimilarity of mu-
tation frequency landscapes among the samples. Each sample was rep-
resented in a two-dimensional space consisting of principal coordinates 1
and 2 using a dissimilarity matrix, which reflected Pearson correlation
coefficient among the samples.

4.4. Feature selection based on random forest algorithm

Our feature selection analysis applied a modified version used in the
previous study (Polak et al., 2015). Briefly, training set of each tree was
organized and the mean squared error and the importance of each vari-
able were evaluated using out-of-bag data. To determine the ranking of
importance for each variable, the values of each variable were randomly
permuted and examined to each tree. The initial importance value of

http://icgc.org
https://www.broadinstitute.org/gatk/
https://www.broadinstitute.org/gatk/
http://archive.broadinstitute.org/cancer/cga/mutect
http://archive.broadinstitute.org/cancer/cga/mutect
https://www.ncbi.nlm.nih.gov/geo/
https://epigenomesportal.ca/ihec/download.html
https://epigenomesportal.ca/ihec/download.html
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variable mwas estimated by subtracting the mean squared error between
the untouched cases and the variable-m-permuted cases. Eventually, the
ranking of each variable was determined by averaging importance values
of variable m in the entire tree. We constructed a total of 1000 random
forest trees to predict regional mutation density from a total of 423
chromatin features and employed greedy backward elimination to pick
out the top 20 chromatin marks. This method sequentially removed the
chromatin marker with the lowest rank at each step. These random forest
models were repeated 1000 times each. Generally, in our feature selec-
tion analysis, the mutation density was calculated by combining the
samples corresponding to each cancer type.

4.5. Prediction of cell-of-origin by grouping of chromatin features

To predict cell-of-origin (COO) for individual samples, chromatin
marks were subgrouped based on the aggregate sample-level feature
selection results. As a first step, we selected significant chromatin cell
types above the cutoff score from the feature selection results using
aggregated samples corresponding to each cancer type (Figure 1a).
Subsequently, we added relevant cell types and grouped the chromatin
marks according to each selected cell type to evaluate the effect of cell-
type specific chromatin on explaining variability of mutational land-
scapes among samples. For predicting the COO for HCCs, we simply
utilized the importance ranking among variables from 423 chromatin
features due to the fact that liver chromatin features were the only major
type in the aggregated feature selection results for HCCs. For our pur-
pose, we considered the samples with positive variance explained score
as relevant samples for the COO assignments.

4.6. Signature analysis of mutational processes

A nonnegative matrix factorization (NMF) algorithmwas employed to
investigate mutation signatures as described in the previous study
(Blokzijl et al., 2018). This methodology was utilized by factoring out the
frequency matrix of 96-trinucleotide mutation contexts from HCC,
Mixed, ICC, BTCA-SG and HPC samples.

4.7. Gene expression analysis

RNA-Seq experiments of HCC samples were performed previously
(Fujimoto et al., 2016), and the data has been deposited in the European
Genome-phenome Archive. The reads were aligned onto the reference
human genome GRCh37 using TopHat v2.1.1. Raw read counts per gene
were computed using HTSeq with the GENCODE v19 annotation. Dif-
ferential gene expression between hepatocytic- and
non-hepatocytic-origin HCCs was analyzed using limma-voom v3.26.9
(Ritchie et al., 2015). Gene set enrichment analysis (GSEA) was per-
formed using the GSEAPreranked v5 module on the GenePattern server
(https://genepattern.broadinstitute.org).

Assessment of relationship between aggregate sample-level somatic
mutation landscape and Single-cell RNA-sequencing (scRNA-seq) data.

Data acquirement from single cell clusters was performed by running
scClustViz algorithm (Innes and Bader, 2018) on previously generated
human liver scRNA-seq data (MacParland et al., 2018). Two central
venous hepatocyte clusters (Cluster 1 and 3), two periportal-like hepa-
tocyte clusters (Cluster 5 and 14) and one cholangiocyte cluster (Cluster
17) was selected as representative cell clusters for this analysis.
Spearman correlation level association was assessed between either of
the two gene expression factors (within-cluster level cellular transcript
detection rate, DR; mean detected transcript count for the cells harboring
detectable transcript level, MDTC) (Innes and Bader, 2018) derived from
representative clusters and chromatin features or regional somatic mu-
tation variations. For the genomic regions, we either used all of the
genomic regions or sub-selected 5% genomic regions that represent the
largest difference in the regression model between H3K4me1 liver and
stomach mucosa. Levels for expression factors (DR, MDTC) of genes in
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each cluster were aggregated by 1-megabase window for all genomic
regions with DR cutoff of >0.05 or selected genomic regions without the
cutoffs. If a particular gene spans two 1-megabase genomic regions, we
applied the aggregation of expression factor levels on the region where
the gene has a greater length proportion.
4.8. Prediction of cell-of-origin by utilizing scRNA-seq data

In order to complement the chromatin feature-based COO pre-
dictions, we applied the previous random forest algorithm by substituting
the chromatin features into the scRNA-seq data of human liver tissues.
scRNA-seq data from a total of 20 single cell clusters (6 hepatocytes
clusters, 1 cholangiocyte cluster, 3 endothelial cells clusters, 1 hepatic
stellate cells cluster, 2 B cells clusters, 3 T cells clusters, 1 NK-like cells
cluster, 2 intrahepatic monocyte/macrophage clusters, and 1 erythrocyte
cluster) generated from previous study (MacParland et al., 2018) were
used for the COO prediction, and the DR expression factor values derived
from each cluster were added up based on the gene distribution in 1-meg-
abase window (same windows as chromatin features) for all genomic
regions. Eventually, from the variables of these 20 clusters sorted by
1-megabase window, we applied greedy backward elimination to figure
out the most significant cluster for the regional mutation density of each
sample. For our purpose, we considered the samples with positive vari-
ance explained score as relevant samples for the COO assignments. In
case of predicting COO for each PLCs subtype of aggregated samples, we
applied greedy backward elimination using the average DR value of
clusters corresponding to each cell type and subsequently ranked the DR
value features for each cell type.
4.9. Data availability

The authors declare that all data supporting the findings of this study
are available within the paper and its supplementary information files.
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