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In recent years, machine learning techniques have been widely used in biomedical research 
to predict unseen data based on models trained on experimentally derived data. In the 
current study, we used machine learning algorithms to emulate computationally complex 
predictions in a reverse engineering–like manner and developed ContraDRG, a software 
that can be used to predict partial charges for small molecules based on PRODRG and 
Automated Topology Builder (ATB) predictions. Both tools generate molecular topology 
files, including the partial atomic charge, by using different procedures. We show that 
ContraDRG can accurately predict partial charges in a fraction of the time, because it 
exploits existing complex models with intensive calculations by using machine learning 
techniques and thus can also be applied for screening projects with large amounts of 
molecules. We provide ContraDRG as a web server, which can be used to automatically 
assign partial charges to incoming user-specified molecules by using our machine 
learning models. In this study, we compared ContraDRG with PRODRG and ATB in 
regard of predictivity by statistical methods. ContraDRG allows predicting ATB-derived 
partial charges with an R2 value up to 0.980 and for PRODRG up to 1.00. While ATB 
requires hours or days for the quantum mechanical accurate calculation and refinements, 
ContraDRG does its approximation within seconds.

Keywords: PRODRG, ATB, machine learning, molecular dynamics simulations, partial charge prediction

INTRODUCTION

In the last decades, several studies demonstrated how machine learning algorithms were able to 
create accurate predictions or classifications from experimentally derived data. The applications of 
machine learning algorithms in biomedical research are diverse (Larrañaga et al., 2006) and range 
from single-molecule interaction prediction for drug design (Lavecchia, 2015) or omics pattern 
recognition (Stanke and Morgenstern, 2005), toward the prediction of entire biological systems 
(D’Alche-Buc and Wehenkel, 2008).

However, in the current study, we used machine learning algorithms to emulate computationally 
intensive calculations. Precise determination of topology parameters for small molecules, particularly 
partial charges, is a crucial step for molecular dynamics (MD) simulations and other biochemical 
and biophysical computations. In particular, MD simulations depend heavily on the accurate 
parameterization of the molecules; otherwise, the simulations tend to be unreliable and misleading 
(Lemkul et al., 2010). One main challenge for generating reliable predictions is the ability to create 
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a force field consistent topology for new small molecules since 
the force fields theory is mostly derived from empirical analysis.

For this purpose, there are different force fields available, based 
on diverse parameters and underlying theories, such as GROMOS 
(van Gunsteren et al., 1996; Daura et al., 1998; Scott et al., 1999; 
Schuler et al., 2001; Oostenbrink et al., 2004), OPLS (Jorgensen 
and Tirado-Rives, 1988; Jorgensen et al., 1996), CHARMM 
(Patel and Brooks, 2004; Patel et al., 2004), and AMBER (Cornell 
et al., 1995; Wang et al., 2004). Parameterization for synthetic 
small molecules is supported by the general AMBER force field 
(Wang et al., 2004) and the general CHARMM force field (Patel 
and Brooks, 2004; Patel et al., 2004), in contrast to GROMOS 
and OPLS. While detailed information about the GROMOS96 
parameter sets is not publicly available, OPLS-AA reveals their 
entire parameter sets, which includes geometry optimization 
and quantum chemical calculations (Jorgensen et al., 1996; 
Kaminski et al., 2001). Thus, users of the GROMOS96 force 
field rely on empirical parameters and subsequent validations by 
thermodynamic integration (Oostenbrink et al., 2004).

Over the last years, some freely available tools were developed, 
refined, and established for automated topology generation. 
Two commonly used tools are PRODRG (Van Aalten, 1996; 
Schüttelkopf and Van Aalten, 2004) and the Automated 
Topology Builder (ATB) (Malde et al., 2011; Koziara et al., 2014; 
Stroet et al., 2018). Both are frequently used tools that receive 
user-defined small-molecule files and return parameterized 
GROMOS-compatible topology files including their partial 
atomic charges. While PRODRG partial charge determination 
is based on mapping of building blocks and charge groups onto 
a database, ATB uses quantum chemical calculations involving 
electron densities and geometry optimizations (Chandra 
Singh and Kollman, 1984). However, PRODRG is much faster 
compared to ATB and produces topologies within seconds, while 
ATB requires up to multiple days, but generates more precise, 
more reliable, and more consistent results (Lemkul et al., 2010; 
Malde et al., 2011). Both tools have been already used for protein–
peptide, protein–ligand, protein–lipid, and pharmaceutical drug 
optimizations (Santos et al., 2017). Although both tools provide 
free access for automated file parameterization, only ATB supplies 
a modern application programming interface. Additionally, there 
are several stand-alone tools, such as Open Babel (O’Boyle et al., 
2011) and AutoDock Tools (Morris et al., 2009), which can 
predict partial charges based on different methods like MMFF94 
(Halgren, 1999), based on quantum chemical calculations, or 
QTPIE (Chen and Martı, 2007), which describes the flow in 
molecules based on charge transfer variables.

While PRODRG and ATB are proprietary software, they do 
provide free access for academic purpose. Contrary to that, fully 
proprietary software like VeraChem’s VCharge or Schroedinger’s 
Maestro, which predict, among others, partial charges are 
also available. VCharge uses a method based on QM-derived 
electronegativity equalization (Gilson et al., 2003), and Maestro 
computes the charges according CM1A-BCC (OPLS3e) 
(Marenich et al., 2012; Roos et al., 2019). Additionally, there is 
proprietary software such as Amber that requires external tools for 
partial charges predictions, like the provided and recommended 
free antechamber (Wang et al., 2006). Antechamber applies 

usually the AM1-BCC method (Jakalian et al., 2002) for small 
molecules and can be optimized with provided QM calculations 
by the RESP method (Bayly et al., 1993).

Engler et al. (2019) showed recently in an innovative 
approach how to solve two common problems of partial charge 
determination: (i) the single partial-charge assignment per atom 
and (ii) the total charge determination. By transferring these 
problems into a multiple-choice knapsack problem (Dudziński 
and Walukiewicz, 1987; Kellerer et al., 2004), they were able to 
predict the partial charges automatically. Moreover, a recent 
study showed that machine learning prediction based on 
quantum-chemical calculation can be used to predict partial 
charges (Bleiziffer et al., 2018).

In the current study, we used small-molecule three-
dimensional structures files for prediction of partial charges, 
based on machine-derived data from the web tools PRODRG and 
ATB. To this end, we analyzed and compared a set of different 
machine learning methods and emulated the aforementioned 
tools. Finally, we compared our predictions with the existing 
tools. This study demonstrates the usefulness of machine learning 
models for reverse engineering of costly calculations, which are 
provided in an easy-to-use online tool.

MATeRIALS AND MeThODS

Dataset
This study is based on two different datasets, namely, the 
PRODRG dataset and the ATB dataset. The PRODRG dataset 
is based on randomly selected molecule structures from the 
PubChem database (Kim et al., 2018). These molecules were 
converted into Protein Database Bank format via Open Babel 
(O’Boyle et al., 2011) and subsequently predicted via the 
PRODRG server (v. AA100323.0717). Energy minimization 
was deactivated, and full charge prediction and chirality 
enabled. The ATB dataset was collected from the curated 
molecule and topology files from the ATB (v. 3.0) database 
(Stroet et al., 2018). We mapped the partial charge predictions 
from the topology files with the provided all-atom Protein 
Database Bank files.

We calculated the pairwise Tanimoto similarity coefficient 
via Open Babel (linear seven atoms fragments) for all files to 
ensure that a diverse set of molecules was used (Kim et al., 
2018). The Tanimoto coefficient represents a known indicator 
for molecular structure similarities (Bajusz et al., 2015). 
Therefore, we determined the coefficient by comparing every 
molecule to each other. The resulting coefficients were drawn 
into a violin plot.

Feature encoding
In the current study, we focused only on organic elements, 
namely, carbon, hydrogen, nitrogen, oxygen, phosphorus, 
sulfur, fluorine, bromine, and iodine (C, H, N, O, P, S, F, Cl, Br, 
and I). We used 61 different features for the encoding of the 
molecules, where all atoms are individually analyzed (Figure 1). 
Molecules are internally represented as a cyclic undirected graph, 
where atoms correspond to vertices, and bonds to edges. These 
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encodings include the hybridization state of carbon atoms, sizes 
and amounts of nested circles, distances to adjacent atoms, and 
presence of neighbors through a second-level path tracing. Nested 
circular structures were identified by a depth-first search derived 
from the graph theory.

To encode an entire molecule, a list of the positions of the 
atoms and an adjacency matrix for the bonds are necessary. 
Protein Database Bank files and SMILE (Weininger, 1988) files 
can be encoded in such a way easily. However, in contrast to 
existing approaches, we take explicitly the three-dimensional 
information into account, thus allowing making prediction also 
for theoretical molecules.

Machine Learning
We used the R package caret (v. 6.0-81) (Max and Kuhn, 2008) 
for building the machine learning models. We build models 
for each element independently. The datasets (one dataset for 
each element) were split into train and test data with a ratio of 
1:4. We trained different models including linear regression, 
stochastic gradient boosting (Friedman, 2002), random forests 
(RF) (Breiman, 2001), quantile regression forests (Meinshausen, 
2006), weighted k-nearest neighbors (Altman, 1992), and 
support vector machines (SVMs) (Cortes and Vapnik, 1995) with 
different kernels. RFs were trained with 500 trees and k-nearest 
neighbors were built based on k = 7 and a Minkowski distance 
of 2. All other models were trained with default parameters. All 
models were trained with the partial charge values as labels from 
PRODRG or ATB, respectively. The models are evaluated based 
on root median square error (RMSE):
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A direct comparison between the different software tools, 
respectively, the algorithms, is not possible since the applications 
are using different force fields. However, the aforementioned 
metrics enable a direct comparison of the machine learning 
predictions to the original software.

Molecular Dynamics
We tested the ATB-derived random forest models, with 50 randomly 
chosen molecules from the ATB database with experimental 
hydration free energy (ΔGhyd). Topologies and coordinate files 
were obtained by the ATB database. Parameters for the molecule 
dynamics were taken from the FreeSolv database (Mobley et al., 
2009; Mobley, 2013; Mobley and Guthrie, 2014; Duarte Ramos Matos 
et al., 2017). We used the gromos54a7_atb.ff force field according 
to ATB. Simulations were run under GROMACS (v. 2016.3) with 
NPT conditions at 298 K and 1 atm. The cutoff for the van der 
Waals (rvdw) and electrostatic interactions (rcoulomb) was set to 

FIGURe 1 | Schematic overview of the feature encoding. (A) Each atom will be selected (red dot), and encodings will be generated (B–D). (B) Overall circular 
structures (green line) and nested (colored areas) are detected by a depth-first search. (C) Distance searches with three different radii are applied. (D) Second-level 
neighbors path tracing is implemented (orange arrows, first level; green arrows, second level). Chemical structures were drawn with MolView (https://molview.org).
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1.2 nm. The simulations were performed with 20 λ-steps and 2 fs per 
time step, resulting in 12.5-ns simulations per λ-point. GROMACS 
simulations require removing all nonpolar hydrogens for a united-
atoms model. For ContraDRG, original partial charges from ATB 
were overwritten with ContraDRG predictions. Therefore, we 
summarized all removed charges into the adjacent remaining atom. 
Atom-centered partial charge predictions occasionally generate 
molecules with an excess of net total charges. The excess was 
eliminated by distributing the excess equally through a molecule. A 
comparison of the absolute errors between the experimental ΔGhyd 
free energy and ATB and that between the experimental ΔGhyd free 
energy with ContraDRG were performed by a Welch t test (Welch, 
1947). We omitted MD simulations with PRODRG topologies since 
it has been reported as inaccurate (Lemkul et al., 2010), which could 
be confirmed in our analyses.

Web Application
The web application ContraDRG is based on an Apache web server 
(v. 2.4.29) with PHP (v. 7.2.17) and R (v. 3.4.4) as background 
services. Incoming data will be filtered and converted by Open 
Babel (v. 2.4.1) into temporary internal PDB files. ContraDRG 
reads the PDB structures, performs the feature encoding, and 
applies the trained machine learning models. The final output 
will be generated by the Open Babel and remapped with partial 
charge values predicted by ContraDRG determining partial charge 
values. A two-dimensional graph of the molecule will be displayed 
after the machine learning prediction. Missing three-dimensional 
molecules structures, as provided by SMILES formatted molecules, 
will be computed by Open Babel as well. The partial charge 
prediction will be performed by the random forest models for each 
element, which have been shown to outperform the other models.

ReSULTS

Overall Approach
The current study aimed to build a reliable and fast prediction 
model for partial charges. To this end, we used machine learning 
algorithms to emulate computationally complex predictions in a 
reverse engineering–like manner and developed ContraDRG, a 
software that can be used to predict partial charge assignments 
based on PRODRG and ATB predictions. We collected thousands of 
randomly selected molecules from PubChem and the ATB database. 
Finally, we provide the freely accessible web tool ContraDRG, which 
can be used for partial charge predictions. The resulting predictions 
provide a reliable approximation of the original tools. However, 
predictions are carried out in seconds without any user restrictions.

Datasets
We collected 7,000 molecule structures from PubChem with an 
average size of 19 heavy atoms per molecule (resulting in 132,859 
atoms), which were predicted using PRODRG. Seventy percent 
of the atoms in the PRODRG dataset are carbon, and 13% are 
oxygen atoms. Moreover, we randomly collected 10,000 molecules 
from the ATB database with an average size of 25 heavy atoms per 
molecule. In this ATB dataset, 47% of the atoms are hydrogens, 
while 35% are carbons. Figure 2 represents the distribution of all 
elements in our datasets. Variances in the number of hydrogen 
atoms between both datasets are due to differences in the 
underlying model, namely, united-atoms model for PRODRG 
and all-atoms model for ATB.

To achieve a high variety of different molecules, we analyzed 
the similarities between every molecule structure to each other 
by calculating the Tanimoto coefficient in a pairwise manner. The 

FIGURe 2 | (A) The violin plots show the Tanimoto coefficient for both datasets. The plot width correlates with the relative frequencies of the coefficient. The white dot 
represents the median, while the black box represents the interquartile range, and the black lines, the 95% confidence intervals. One-sample t tests for both sets of 
Tanimoto coefficients show a p < 0.001 for a mean below 0.15. (B) The distribution of atom types for each dataset is represented by relative bar plots.
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Tanimoto coefficients and their distribution for the PRODRG 
and the ATB datasets are shown as violin plots in Figure 2. The 
coefficients of all possible pairs of molecules are relatively low, 
with a median of around 0.11 for the PRODRG and 0.08 for the 
ATB dataset, indicating a high variance between the incorporated 
molecules. We used a one-sample t test on the Tanimoto coefficients 
for testing significance against a mean value of 0.15 (p < 0.001).

Analysis of the charge distribution through all elements shows 
a variance in the charge predictions between the different datasets 
in Figure 3. Since the occurrence of molecular constitutions 
and conformations is limited, the partial charges are not equally 
distributed over the whole range. Moreover, some atoms tend to 
act as an electron-pair donor, such as oxygen. Therefore, most 
oxygen is charged negatively or neutral. Generally, the charge 
predictions differentiate heavily between the PRODRG and ATB 
datasets. PRODRGs predictions are more clustered than ATB. This 
clustering can be observed in the shape of the charge distribution 
curves by the present peaks of the PRODRG dataset in Figure 
3. One explanation for the highly clustered charges of PRODRG 
is the fact that PRODRG maps the molecule to a limited set of 
building blocks and charge groups, while ATB refines partial 
charges after an initial determination according to the Merz–
Singh–Kollman method (Chandra Singh and Kollman, 1984).

Partial Charge Prediction
We employed several machine learning algorithms for every 
element on each dataset. Depending on the number of data 
points, the machine learning algorithm training took several 
hours up to 10 days on a high-performance cluster, especially for 
the SVMs and random forest models. Linear regression models 
turned out to be most inaccurate compared to the random forest 
models, which mostly outperform all other models in both 
datasets. For this reason, the ContraDRG web application uses 
random forest models for the prediction. An exemplary direct 
side-by-side comparison of ATB-derived ContraDRG prediction 
with ATB 3.0 is provided in the Supplementary Material. For a 
set of 50 randomly chosen molecules, ATB required an average 
execution time of 8 h for generating the topology including the 
partial charges, while ContraDRG required only 9.2 seconds on 
average for the partial charge prediction per molecule.

Table 1 represents a shortened overview of the best 
prediction performance. The full-length table is provided in the 
Supplementary Material. The normalized RMSE values allow an 
easy comparison for each element since they are normalized to 
the whole range of present partial charge values. Moreover, the 
predictions for PRODRG-derived data are more accurate than for 
ATB, which can be observed particularly for underrepresented 
elements such as iodine in the ATB dataset. The mean R2 for 
PRODRG predictions is 0.962 (min. 0.791, max. 1.000) for 
random forest and 0.685 (0.010–0.985) for SVMs with linear 
kernel in comparison to the ATB predictions with a mean of R2 
0.908 (0.778–0.982) for random forest and 0.744 (0.520-0.971) for 
linear SVMs. Overall, the predictions based on the random forest 
models are more accurate than those based on the other models.

The MD analyses show that the predictions of ContraDRG’s 
ATB-derived random forest models perform as well as ATB in 

terms of the ΔGhyd free energy calculation. Furthermore, we 
compared the errors between experimental ΔGhyd values and 
those derived from ATB with the errors between the experimental 
data and ATB-derived ContraDRG prediction. No significant 
differences have been observed by using the Welch t test (p = 
0.53) (Max and Kuhn, 2008). Additional information is provided 
as Supplementary Materials.

DISCUSSION

In summary, we were able to produce partial charge predictions 
by our fast and unrestricted approach. Depending on the dataset 
and the frequency of an element in the dataset, reliable predictions 
are possible. The models for underrepresented elements such 
as chlorine, bromine, and iodine performed worse compared to 
those trained on the most abundant elements such as carbon or 
hydrogen. Surprisingly, linear regression performed better for 
iodine in the ATB dataset than the corresponding random forest 
model (see Supplementary Material). A possible explanation for 
that is the fact that iodine atoms are the most underrepresented 
elements in the ATB dataset, and the random forest models tend 
to overfit.

Generally, as Table 1 shows, our predictions for the 
PRODRG dataset are more accurate than for ATB. There are 
several possible reasons for that. First, PRODRG is based on a 
simpler method for assigning partial charges (Altman, 1992). 
Second, we used molecules from the PubChem database for the 
PRODRG dataset. The three-dimensional structures of these 
molecules are all idealized and normalized by PubChem (Bolton 
et al., 2008). Compared to that, we used curated molecules for 
the ATB dataset, which mostly originate from the manually 
curated ChEMBL database (Gaulton et al., 2012; Stroet et al., 
2018). Third, ATB performs geometric optimization and remaps 
the partial charges back to the original structures. Geometry-
optimized charges cannot be learned by our model since we 
do not take geometrical temporary changes into account. 
Additionally, as shown in Figure 3, the partial charges for 
the ATB data have a higher variance, which makes prediction 
generally more difficult.

Although our approach is biased to inherit errors from the 
original tools, the predictions achieve a reliable approximation 
with low RMSE values. Inconsistent partial charges, which can 
appear in PRODRG (Lemkul et al., 2010), are unlikely because 
our models predict the charges along with defined models without 
determinations of building blocks. Error propagation cannot be 
avoided; however, by using larger datasets and extended feature 
sets, the prediction models tend to be more accurate. Our web 
tool is freely accessible at http://contradrg.heiderlab.de.

CONCLUSION

All existing approaches of partial charges predictions for 
molecules aim at reconstructing the exact empirical-validated 
value. Thus, the computations are based on empirical determined 
data (Mortier et al., 1986; Besler et al., 1990) or on quantum 
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FIGURe 3 | Smoothed kernel density estimates represent the distribution of partial charges (units of e) for each molecule in the datasets. Distribution from 
PRODRGs dataset reveals more clustered peaks (green) than from ATB (red).
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mechanical theories (Manz and Sholl, 2010; Manz and Sholl, 
2012; Manz and Limas, 2016). However, our approach tries to 
emulate the algorithm of the predictor without implementing 
any background knowledge about the underlying theories. 
Analysis of the input and output data from the web servers 
with subsequent machine learning approaches are sufficient 
to easily compute reliable approximations. Our web tool can 
be used to assign partial charge predictions automatically 
within seconds. This allows, for example, the correction of 
precalculated topology files. In the future, we intend to improve 
our models by using more training data, in particular for those 
atoms that are underrepresented, and to extend the feature 
set. Additionally, we intend to generate GROMOS-compatible 
topology files without geometrical optimization for molecular 
dynamics simulations.
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TABLe 1 | Performance comparison for partial charge prediction (units of e) by random forest and support vector machines with linear kernel of the PRODRG and 
ATB dataset. 

PRODRG ATB

Random forest SVM linear Random forest SVM linear

RMSe NRMSe R2 RMSe NRMSe R2 RMSe NRMSe R2 RMSe NRMSe R2

C 0.011 1.443 0.989 0.054 7.073 0.738 0.069 2.398 0.961 0.152 5.268 0.810
H 0.005 2.878 0.955 0.026 13.924 0.010 0.018 2.313 0.980 0.046 5.794 0.879
N 0.048 1.986 0.990 0.249 10.374 0.730 0.113 5.391 0.919 0.163 7.772 0.834
O 0.051 3.184 0.971 0.153 9.494 0.739 0.047 4.200 0.887 0.071 6.302 0.746
P 0.002 0.152 1.000 0.073 7.157 0.965 0.075 3.712 0.892 0.097 4.803 0.823
S 0.015 0.678 1.000 0.120 5.454 0.985 0.068 3.095 0.982 0.087 3.962 0.971
F 0.003 2.436 0.993 0.007 5.184 0.968 0.017 4.179 0.897 0.037 9.205 0.520
Cl 0.004 2.724 0.980 0.020 15.293 0.415 0.030 5.490 0.895 0.054 9.796 0.705
Br 0.011 8.625 0.791 0.016 12.222 0.589 0.033 8.796 0.778 0.049 13.033 0.531
I 0.004 2.575 0.955 0.010 6.592 0.706 0.036 12.840 0.888 0.062 22.082 0.624
x̄ ) 0.015 2.668 0.962 0.073 9.277 0.685 0.051 5.241 0.908 0.082 8.802 0.744

The root median square error (RMSE) represents the quality of errors while NRMSE shows a normalized RMSE.
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