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ABSTRACT

An integrative multi-omics database is needed
urgently, because focusing only on analysis of
one-dimensional data falls far short of pro-
viding an understanding of cancer. Previously,
we presented DriverDB, a cancer driver gene
database that applies published bioinformatics al-
gorithms to identify driver genes/mutations. The
updated DriverDBv3 database (http://ngs.ym.edu.tw/
driverdb) is designed to interpret cancer omics’
sophisticated information with concise data visu-
alization. To offer diverse insights into molecular
dysregulation/dysfunction events, we incorporated
computational tools to define CNV and methylation
drivers. Further, four new features, CNV, Methylation,
Survival, and miRNA, allow users to explore the re-
lations from two perspectives in the ‘Cancer’ and
‘Gene’ sections. The ‘Survival’ panel offers not only
significant survival genes, but gene pairs synergistic
effects determine. A fresh function, ‘Survival Analy-
sis’ in ‘Customized-analysis, allows users to investi-
gate the co-occurring events in user-defined gene(s)
by mutation status or by expression in a specific pa-
tient group. Moreover, we redesigned the web inter-
face and provided interactive figures to interpret can-
cer omics’ sophisticated information, and also con-

structed a Summary panel in the ‘Cancer’ and ‘Gene’
sections to visualize the features on multi-omics lev-
els concisely. DriverDBv3 seeks to improve the study
of integrative cancer omics data by identifying driver
genes and contributes to cancer biology.

INTRODUCTION

With the advanced development of next generation se-
quencing (NGS) technology and progressively decreasing
economic cost and time, the amount of sequencing data
has led to the era of ‘big data science’ (1). Several large se-
quencing projects have been accomplished in recent years,
such as the 1000 Genome Project, The Cancer Genome At-
las (TCGA), and the International Cancer Genome Con-
sortium (ICGC) (2). TCGA is one of the most compre-
hensive and largest sequencing projects, which the National
Institutes of Health (NIH) launched in 2006. TCGA con-
tains multi-omics data at different molecular levels, and pro-
vides >10 000 patients with approximately 33 types of can-
cer (3). Further, the 21 European members have just signed
the 1 million genome project that is intended to be com-
pleted in 2022 (4). These projects offer an excellent oppor-
tunity to disclose diverse molecular signatures in various
disease types. The application of precision medicine to var-
ious cancer patients has become critical because of the dis-
ease’s heterogeneous functions and morphology (5). Inte-
grating multi-omics data is the key to link cancer genetics,
clinical, and epidemiological information to ensure that pa-
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tients obtain effective and proper diagnosis and therapeu-
tics in precision medicine (6), and genomics data’s utility
has the potential to transition from research alone to wide
use in healthcare (4). Apparently, the pressing challenge as-
sociated with the implementation of precision medicine is
the way to integrate different multi-omics data to build a
comprehensive picture of genomic biology.

Thus, an integrative multi-omics database is needed
urgently because focusing only on analysis of one-
dimensional data falls far short of providing an understand-
ing of the entire cancer environment. Few databases have
offered certain investigative approaches and visualizations
to link different omics data, including LinkedOmics (7),
TCOA (8), MEXPRESS (9) and cbioportal (10,11). How-
ever, many current studies still are addressing the need for
varied interpretation and integration because of the dis-
ease’s complexity. Hence, contributions in the field of inter-
preting multi-omics data stand in need of different perspec-
tives.

Survival analysis is the foundational indicator of the
clinical outcome in investigating the importance of spe-
cific molecules, and the extensive TCGA data also have
the potential to establish the associations between molecu-
lar events and clinical use (3). Various databases, including
PROGgene (12), PrognoScan (13) and SurvExpress (14),
have contributed to single gene survival analysis based on
RNA expression profiles, yet few databases have provided
clinical information for user-defined subgroups of specific
cancer patients. Further, analyses of a single target gene fre-
quently are inadequate in cancer research, because a large
number of studies has shown co-occurring events of two or
more targets in aberrant expression that lead ultimately to
poor survival outcomes (15-19). Amelio et al also devel-
oped aweb tool, SynTarget, to examine the synergistic effect
between two genes based on survival outcomes in several
cancer datasets (20). However, there is no current data por-
tal to explore the complicated relations between two/more
gene targets and clinical outcome in a sub-group of patients.

DriverDB is a cancer driver gene database featured pre-
viously in 2014 and 2016, which applies published bioinfor-
matics algorithms to dedicated driver gene/mutation identi-
fication. In this updated version, our goal is to interpret can-
cer omics’ sophisticated information through concise data
visualization. There are four major improvements in this
version: First, we collected ~11,000 copy number variation
(CNV), ~12 000 methylation, and ~11 000 smRNA-seq
datasets from the public domain. Further, 3000 RNA-seq
and 2000 exome-seq datasets have been incorporated newly
into DriverDBv3. Second, to offer diverse insights into
molecular dysregulation/dysfunction events, we incorpo-
rated four computational tools that define CNV and methy-
lation drivers, as well as multiple mutation tools into our
analysis pipeline. Third, four new features, ‘CNV, ‘methy-
lation,” ‘survival,” and ‘miRNA,’ in the ‘Cancer’ and ‘Gene’
sections allow users to obtain a more comprehensive picture
of the relations from two perspectives. ‘CNV’ and ‘methy-
lation’ display the tool-defined drivers in various cancers.
‘Survival’ offers not only significant survival genes, but gene
pairs that have been determined to have synergistic effects.
In ‘miRNA, cancer-related miRNAs are gathered to depict
their interactions with driver genes Fourth, a new function,

‘Survival Analysis’ in ‘Customized-analysis,” allows users to
investigate user-defined gene(s)’ survival significance by mu-
tation status or by expression in a specific group of patients
users can define according to dozens of clinical criteria. This
new function allows users to establish the connection be-
tween molecular events and clinical practice. Moreover, we
redesigned the DriverDB web interface and provided inter-
active figures that allow users to explore the information
when the mouse moves to specific regions of an interactive
plot. Users can investigate the data from different perspec-
tives to produce views that are informative and easy to inter-
pret. Further, our database incorporates the cancer-related
genes that are defined in CGC (21) and NCG6.0 (22) to pro-
vide better illustrations of driver gene identification and in-
crease our interpretation’s importance.

MATERIALS AND METHODS
Data collection

TCGA’s updated RNA sequencing and exome sequenc-
ing data were collected from the GDC data portal (https:
/lportal.gdc.cancer.gov/), for which the data pre-processing
approach is described in previous publications (23,24).
Level 3 CNV data were downloaded by applying the
TCGA2BED tool (25). Level 3 Methylation data were
collected from firchose (https://gdac.broadinstitute.org/).
TCGA clinical data were downloaded using an R pack-
age, “TCGADbiolinks’ (26). In addition, cancer-related genes
are defined according to CGC, which was downloaded
from COSMIC (https://cancer.sanger.ac.uk/census) and the
NCG6.0 database.

Synergistic survival analysis

A synergistic effect of co-expression genes is defined as that
in which two high-level genes co-expression results in very
poor outcomes in survival, which has been observed in
much research (15-19). Thus, we incorporate synergistic ef-
fect to improve the understanding of the relationships be-
tween genes and clinical outcome. To determine the genes
with significant synergistic effects in expression level, we
established an analytic model to evaluate the synergistic
effects between co-expression driver genes and identified
them according to the following two steps. Firstly, to filter
the proper candidates for further calculation, three criteria
were applied: (i) genes with a basal expression level were
included, meaning that gene expression actually affects sur-
vival; (ii) the coefficient of gene expression variation (CV,
defined as the standard deviation normalised to expression
mean) > 1, which is used to represent a larger dispersion in
the sample variability and is used frequently to filter candi-
dates, such as in Shukla et al.’s study (27) and (iii) single gene
survival is significant with a log-rank P-value <0.05. By fol-
lowing these criteria, genes with basal expression, and sig-
nificant variation and survival are filtered out. Secondly, to
define the synergistic survival effect further, we considered
the definition from previous studies and incorporated the
difference when the hazard ratio (HR) between two genes
combined is >1.5-fold of each gene. Because HR is a com-
mon indicator used to denote increased survival probability,
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we considered that the difference in the HR is able to inter-
pret the level of relative risk (28). Hence, by filtering highly
distinguishable shifts in HR, the synergistic pairs can be de-
fined.

CNYV, MET and miRNNA—define dysregulation events

The previous DriverDB focused on driver mutation identi-
fication, and was concerned with gene ‘dysfunction’ events
in cancer studies. However, now we have included ‘dysreg-
ulation’ events by integrating multi-omics data, including
CNYV, methylation, and miRNA datasets. To characterise
the ‘dysregulation’ event, aberrant molecular mechanisms,
such as abnormal DNA methylation, plays the primary role
in altering the transcription level (29,30). To define CNV
and methylation dysregulation events, only tools that take
both features, aberrant shifts and changes in gene expres-
sion, into consideration are applied. Therefore, iGC (31)
and DIGGIT (32) are used to identify CNV dysregulation
events, while methylmix (33,34) and ELMER (35) are used
to define methylation dysregulation events. Our database in-
tegrates computational algorithms of CNV and methyla-
tion and presents them in different interpretations. More-
over, abnormal miRNA regulations’ role has been stud-
ied well in cancer research for years, and thus, we incor-
porated the data from our previous database, YMS500, to
DriverDBV3 to establish the relations with negative correla-
tion coefficients between driver genes and miRNA (36-38).

WEB INTERFACE

To investigate cancer’s different molecular features, three
main functions— ‘Cancer, ‘Gene’ and ‘Customized-
analysis’—are characterised in our web interface. These
functions are provided to help users study multi-omics
data from different perspectives. In addition, cancer-related
genes from CGC and NCG6.0 database are provided in ev-
ery network to allow users to inspect the relations between
those cancer genes.

Cancer

The ‘Cancer’ function summarizes the results of driver
genes’” different molecular features calculated by pub-
lished bioinformatics algorithms/tools for a specific cancer
type/dataset. As shown in Figure 1, we offer multiple new
sections of omics features and a summary in the first panel
in the web. We present an outlined network that gathers
mutation, CNV, methylation, and miRNA drivers defined
in each feature and marked by different colors in the node
(Figure 1A). Different panels by features, including muta-
tion, CNV, methylation, survival, and miRNA, offer further
the details and visualizations analyzed for a specific cancer
type. Supplementary Figure S1 shows the top 30 crucial mu-
tation drivers that multiple computational algorithms iden-
tify, including the following new tools: CoMET (39), Mu-
tex (40) and DriverML (41). Novel features characterised,
CNYV, and Methylation panels demonstrated in similar fash-
ion, are shown in Figure 1B, C, and D. We also highlight the
top 30 drivers by using heatmap (Figure 1B) and percent-
age barcharts (Figure 1C), and perform locus enrichment to
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understand those regions that contain CNV /differentially
methylated events, as shown in Figure 1D. Unlike determin-
ing cancer drivers, as previously mentioned, the ‘Survival’
panel in the ‘Cancer’ section provides distinct networks con-
structed by applying the gene pairs with synergistic effects
to illustrate the synergistic relations between genes (Fig-
ure 1E). The survival genes with HR >1 and HR <1 are
denoted as orange and green nodes, respectively. The two
genes with synergistic effect defined in ‘Synergistic Survival
Analysis’ are connected with a grey line. Kaplan Meier plots
of each synergistic survival event also are provided, and are
shown from two approaches: all high vs. others and four
groups based on expression (all high, high/low, low/high,
and all low), as shown in Figure 1F. The ‘miRNA’ panel is
designed to illustrate the relation between differentially ex-
pressed genes and miRNAs (Supplementary Figure S2A).

Gene

The ‘Gene’ section is designed to illustrate different features
of a user-selected gene at multi-omics levels. Compared to
the previous DriverDB, we also provide four additional
panels: ‘CNV, ‘Methylation,” ‘Survival’ and ‘miRNA.’ Fig-
ure 2 incorporates visualizations added recently in the
‘Gene’ section. Figure 2A illustrates the summary features
in the various cancer types for a single target gene selected.
The ‘CNV’ and ‘Methylation’ panels exhibit bioinformatic
algorithms’ combined analytical results, which are shown
in Figure 2B and Supplementary Figure S3A, respectively.
As shown in Figure 2C, the scatter plot illustrates the corre-
lation between gene expression (y-axis) and CNV value (x-
axis). The left boxplot indicates the expression levels, as well
as the bottom boxplot displays CNV values in each CNV
type. The ‘Methylation’ panel also displays the relation be-
tween gene expression and beta value in a similar fashion
(Supplementary Figure S3B). The ‘Survival’ panel manages
single gene survival and survival of two genes with syner-
gistic effects. The network of synergistic effects for a sin-
gle target gene also is provided, as Figure 2D shows. The
width of the lines indicates the number of cancers in which
two genes have synergistic effects. The two directions of the
HR (>1 or <1) areillustrated in grey and pink, respectively.
The ‘miRNA’ panels displays the miRNAs regulating the
selected target gene (Supplementary Figure S2B).

Customized analysis

‘Customized Analysis’ is a unique function provided in our
database to investigate a specific group of patients by ‘Sur-
vival analysis’ and ‘Driver gene identification’ (Figure 3A).
This allows researchers to select well-defined cancer sam-
ples based on one or multiple clinical criteria, and the selec-
tion panel for user-defined samples allows genes, datasets,
and clinical criteria to be filtered (Supplementary Figure
S4A). In contrast with the function of ‘Driver gene identi-
fication’, which was the ‘Meta-analysis’ function in the pre-
vious DriverDBv2, ‘Survival analysis’ helps researchers in-
vestigate the co-occurring events that affect patients’ sur-
vival. Here, we provide different insights into survival anal-
ysis through two approaches, which are to stratify patients
‘By expression’ level or ‘By mutation’ status of the user-
selected gene(s) in user-defined patients (Figure 3A). The
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Figure 1. Omics features provided in the ‘Cancer’ section. (A) A network in ‘Summary’ panel illustrates mutation, CNV, methylation and miRNA drivers
which are presented by different color grids in the node. The interactions between nodes are protein-protein interactions (PPI) in STRING database and
synergistic effect gene pairs. (B) A heatmap in the ‘CNV’ panel is the display of the top 30 CNV drivers. (C) A percentage barchart in the ‘CNV’ panel
represents the top 30 CNV drivers’ sample proportions. (D) A circle graph in the ‘CNV’ panel marks the drivers’ loci on each chromosome using a red dot
based on the result of locus enrichment analysis. (E) A network illustrates the synergistic effect gene pairs defined in the ‘Survival’ panel with two directions
(HR > 1 and HR < 1). The orange nodes indicate the synergistic effect genes in HR >1; the green nodes represent HR <1 genes. The larger nodes in the
networks represent more synergistic effects defined. (F) Kaplan—Meier plots of each synergistic survival event are shown by two approaches: all high versus

others (left) and four groups based on the expression (right).

analysis of ‘By expression’ allows researchers to investigate
the co-expression events that affect patient survival by en-
tering more than one target and defining a subgroup of spe-
cific patients. If more than one gene is selected for survival
analysis by expression, we provide three stratification meth-
ods (all high versus others, high versus low, num. of high),
as shown in Supplementary Figure S4B. In addition, we
also provide four categories of survival time in this func-
tion (Supplementary Figure S4C), including overall sur-
vival (OS), progression-free interval (PFI), disease-free in-
terval (DFI), and disease-specific survival (DSS), previously
defined in the Liu ef al study (3). Alternatively, we offer a
‘By mutation’ function, which helps users investigate in a

similar sense. After submitting the final request, the user re-
ceives a notification email with a Result ID that allows them
to explore the results of ‘Customized-analysis’ in the ‘Re-
sult and Download’ when the calculation is finished (Sup-
plementary Figure S5).

DISCUSSION

Although cancer hallmarks with different molecular fea-
tures have been discovered at multi-omics levels, including
genome, epigenome, and transcriptome, integrative omics
research’s importance on the basis of system biology is still
the crucial issue at present. Vasaikar et al. presented Linke-
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dOmics, which explores the associations and interpretations
between different omics data for single gene-based stud-
ies (7). TCOA (8) and cbioportal (11) offer the ability to
query omics data and establish the relations among them,
while MEXPRESS (9) provides advanced visualization to
combine omics data. In this updated version of DriverDB,
we integrated multi-omics information and used published
bioinformatic algorithms/tools to address the cancer driver
events at distinct molecular levels (Figures 1 and 2). To
interpret cancer omics’ sophisticated information, we also
designed ‘Summary’ panels in the ‘Cancer’ (Figure 1A)
and ‘Gene’ (Figure 2A) sections to visualize the features
at multi-omics levels concisely. To the best of our knowl-
edge, no other database provides similar characteristics to
define cancer driver genes and visualize cancer omics data
concisely.

Various survival relevant databases indicate the impor-
tance of using survival analysis in cancer research. We have
endeavored to enhance survival analysis’ feasibility and
scope of application. Firstly, not only is single gene survival
provided in the ‘Gene’ section, but synergistic effects of two
significant survival genes are illustrated in both the ‘Can-
cer’ and ‘Gene’ sections. Then, to cope with different clin-
ical circumstances, we provide four clinical endpoints (OS,
PFI, DFI and DSS) for a single gene survival analysis in the
‘Gene’ section.

Further, ‘Survival Analysis’ in the ‘Customized-Analysis’
has achieved a new step that allows researchers to address
a variety of requirements. ‘By expression’ function offers
the possibility to reveal other co-occurring events that are
not included in the ‘Gene’ and ‘Cancer’ sections because
of the strict criteria in ‘Synergistic Survival Analysis.” Some
research requires several targets to be simultaneously exam-
ined, and this function allows users to enter single or mul-
tiple genes. More importantly, a subgroup of patients, such
as those with triple negative breast cancer, can be identi-
fied easily by dozens of clinical characteristics (Supplemen-
tary Figure S4A). In addition, we provide complex analyti-
cal reports in customized survival analysis to address multi-
ple possibilities. The analytical report consists of four cate-
gories of clinical endpoints (OS, PFI, DFI, and DSS), three
stratification methods (All high versus others, high vs. low,
and num. of high) and two intervals (5 years and all), as
shown in Supplementary Figure S4B. Supplementary Fig-
ure S4C displays four survival endpoints, which can be ap-
plied in different clinical trials depending upon the research
purpose. Another remarkable contribution of this function
is that it provides three different stratification methods,
which have not been incorporated in other databases. All
high vs. others are used most frequently in co-expression
survival studies (Figure 3B) (15). High versus low, which
stratifies patients by applying the median/mean of the z-
score, the normalized value of variance, helps researchers
evaluate the survival risk based on two equal groups (Fig-
ure 3C) (42). Num. of high usually is used to investigate
the trends in gene modules’ power (Figure 3D) (16). Stated
simply, if researchers can discover the true targets, more
gene combinations lead to a worse likelihood of survival.
As shown in Figure 3B-D, not only the three stratification
methods’ outcomes show clearly that the co-occurrence of a
high level of ACTN4 and RELA leads to a poor prognosis

(18), but we have indicated that a significant survival dif-
ference is observed by the method of ‘the number of high.’
This demonstrates that different numbers of high level ex-
pressions of ACTN4 and RELA can contribute to different
survival outcome, which data strengthen the verification of
the study further, as well as provide different perspectives.

The importance of co-occurring mutation events in can-
cer biology also have been addressed in numerous studies
(43-45). Those genomic alteration events have become in-
creasingly important because many studies have demon-
strated that co-mutations of crucial oncogenes, such as
KRAS, affect the cancer microenvironment severely and in-
fluence therapeutic responses (45). To address this issue,
the ‘By mutation’ function in ‘Survival Analysis’ in the
‘Customized-analysis’ allows co-mutation genes to be ex-
plored in a subset of patients according to specific clini-
cal criteria (Figure 3A). We also provide two stratification
methods (mutation vs. wild type, and num. of mutant genes)
in the ‘By mutation’ function (Supplementary Figure S4B).
Figure 3E indicates that there is a significant difference be-
tween the mutation and wild type groups, and Figure 3F
shows clearly that the trend in the number of mutant genes
results in a worse survival outcome. As shown in Figure 3E
and F, we have confirmed co-mutation events between TP53
and EGFR in the early stage of lung cancer, reported in pre-
vious studies (45).

Recent advances in high-throughput technologies have
brought a paradigm shift from single omics studies to large
scale multi-omics research. DriverDBv3 seeks to improve
the study of integrative cancer omics data by identifying
driver genes’ different molecular features, and providing a
summary interpretation and informative visualization. We
hope this updated version of DriverDB will make a contri-
bution to integrative omics-based research.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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