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Somatic mutation profiling and 
HER2 status in KRAS-positive 
Chinese colorectal cancer patients
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KRAS is an independent negative predictor for anti-epidermal growth factor receptor (anti-EGFR) 
treatment in colorectal cancers (CRCs). However, 30% to 50% of CRC patients are KRAS-positive and 
do not benefit from anti-EGFR therapy. In this study, we investigated the mutational features and 
clinical significance of KRAS-positive Chinese CRC patients. A total of 139 Chinese CRC patients who 
received clinical KRAS testing (Sanger sequencing) were examined by immunohistochemistry (IHC) 
and fluorescence in situ hybridization (FISH). Fifty KRAS-positive specimens were further detected by 
next-generation sequencing (NGS). The most prevalent mutation in KRAS was G12D (46%), followed 
by G12V (20%), and G13D (18%). In addition to KRAS, 72 unique alterations in another 12 genes were 
also detected. The most common mutated genes were TP53 (62%), APC (46%), and PIK3CA (22%). The 
proportion of HER2 amplifications in KRAS-positive CRC patients was 4.4%, which was lower than that 
in KRAS -negative CRC patients (14.3%). No relationship was found between HER2 amplification and 
KRAS status (p = 0.052). However, the odds ratio is very low (0.279). In addition, these gene mutations 
were not significantly associated with age, sex, tumor size, lymph node metastasis, mismatch repair–
deficient, or tumor differentiation. However, TP53 mutations were more prevalent in colon cancer with 
KRAS mutations than in rectal cancer (75.0% vs 28.6%, respectively, p = 0.004). The negative predictive 
value of the IHC analysis for predicting HER2 amplification reached to 98.39%, while the positive 
predictive value reached only 50%. Overall, the mutation profiling of Chinese CRC patients with KRAS 
mutations is different from that of Western CRC patients. Our results will help us to understand the 
molecular features of Chinese CRC patients.

In 2018, colorectal cancer (CRC) was the third most common malignancy worldwide1. In China, CRC was the 
fourth most commonly diagnosed cancer and the fifth leading cause of cancer-related death in 20152. In addition, 
the incidence of CRC steadily increased from 2000 to 20133.

The pathogenesis of CRC is influenced by the local colonic environment and the individual’s genetic back-
ground. A large number of cancer-relevant genes with specific clinical significance have been identified, such 
as epidermal growth factor receptor (EGFR), KRAS, ERBB2, BRAF, and PIK3CA4. The EGFR pathway, which 
is activated by mutations in KRAS, NRAS, BRAF, and PIK3CA, plays a crucial role in the regulation of cell pro-
liferation, apoptosis, and angiogenesis in CRC4. Therefore, mutations in KRAS, NRAS, BRAF, and PIK3CA are 
important predictive and prognostic markers for anti-EGFR therapy5–7. Current guidelines have recommended 
that the mutation status of KRAS, NRAS, and BRAF should be tested when considering anti-EGFR treatment8–10. 
However, a rapidly growing list of genes should be examined for improving CRC management, such as human 
epidermal growth factor receptor 2 (ERBB2) and ERBB3.

ERBB2, also known as HER2, encodes a transmembrane receptor tyrosine kinase11. It is a target for patients 
with breast cancer or gastric cancer12,13. In CRC, HER2 overexpression and amplification have also been used as 
potential therapeutic targets14–16. In addition, HER2 overexpression will cause resistance to anti-EGFR therapy17. 
Although a few studies have reported the incidence rate of HER2 overexpression or amplification in CRC, it varies 
considerably, ranging from 0% to 83%18–22. Moreover, HER2 status in Chinese CRC has not yet been fully studied.
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The relationship between KRAS and HER2 status also remains to be elucidated. One report showed that 
KRAS mutations and HER2 amplification were mutually exclusive22, while another study showed no relationship 
between HER2 amplification and KRAS mutations18. Thus, anti-HER2 therapy, like trastuzumab, may be a possi-
ble treatment option for CRCs with KRAS mutations18.

HER2 overexpression is usually detected by the immunohistochemistry (IHC) analysis of HER2 protein or 
the fluorescence in situ hybridization (FISH) analysis of gene amplification. Although several IHC scoring sys-
tems of HER2 for CRC have been provided23,24, there is currently no broad consensus on the diagnostic criteria. 
Moreover, the concordance between the results of IHC and FISH has yet to be verified.

Therefore, we investigated the mutational features and clinical significance of KRAS-positive Chinese CRCs 
by next-generation sequencing (NGS), IHC, and FISH. We further explored the relationship between KRAS and 
HER2 and the concordance between the results of IHC and FISH for HER2 testing in CRCs.

Results
Mutational spectrum of Chinese CRC patients with KRAS mutations.  Based on the results of KRAS 
by Sanger sequencing, fifty KRAS-positive specimens were further detected by NGS using SGI OncoAim™DNA 
panel (Singlera Genomics, Shanghai, China), an amplification-based enrichment method that covers more than 
6000 known hotspots, yielding a median depth of 816× and a median uniformity of 95.25%. According to the 
quality control standards, all these specimens produced qualified sequencing data. All 50 samples harbored a 
mutation in exon 2 of the KRAS gene, in accordance with the results of Sanger sequencing. The most prevalent 
mutation in KRAS was G12D (46%), followed by G12V (20%) and G13D (18%) (Fig. 1a).

In addition to KRAS mutation, at least one other alteration was detected in 48 patients (96%). A total of 72 
unique alterations in 12 other genes were identified, averaging 1.44 alterations per sample (range, 0–5). Most 
patients harbored 1–3 mutations, while only one patient harbored 5 concomitant mutations. In addition to KRAS, 
the mutated genes with a frequency ≥5% were TP53 (62%), APC (46%), PIK3CA (22%), SMAD4 (14%), and 
ERBB3 (6%) (Fig. 1b). The distribution of all gene mutations in all patients is shown in Table S2. In addition, 
no mutation (SNVs or InDels) was detected in NRAS, HRAS, BRAF, or ERBB2. Some hotspot mutations were 
detected, such as R1450* and T1556fs*3 in APC, and R361C/H in SMAD4. These mutations were all observed 
in 10% (5/50) patients. The HER2 status of these 50 KRAS-positive specimens was assessed using IHC and FISH. 
However, HER2 amplification was not detected.

Finally, we compared somatic mutation profiling in Chinese CRCs with KRAS mutations to that in Western 
CRCs with KRAS mutations. For analysis of KRAS mutation subtypes, the data on Western CRC patients were 
obtained from the TCGA-COAD and TCGA- READ (https://portal.gdc.cancer.gov/exploration). There are cur-
rently 209 CRCs with KRAS mutations, which include 176 colon adenocarcinomas and 33 rectal adenocarci-
nomas. The specific types of KRAS mutations in Chinese patients were slightly different from those in Western 
patients (Fig. 1a). The proportion of G12D in Chinese CRC patients with KRAS mutations was significantly 
higher than that in Western CRC patients (Fig. 1a, Fisher’s exact test, OR = 2.208, 95% CI = 1.157–4.214, 
p = 0.025). For comparative analysis of somatic mutation spectrum, according to the TCGA PanCancer Atlas 
(http://www.cbioportal.org/study/summary?id = coadread_tcga_pan_can_atlas_2018), the molecular spectrum 
of 218 CRC patients with KRAS mutations was available. The mutation profiling of Chinese CRC patients with 
KRAS mutations was also different from that of Western CRC patients (Fig. 1b). The mutation frequencies of 

Figure 1.  Mutational landscape of 50 KRAS-positive Chinese colorectal cancer (CRC) patients and Western 
patients. (a) Proportions of KRAS mutation subtypes. The data of Western patients were obtained from 
TCGA-COAD and TCGA- READ (n = 209). G12D, OR = 2.208, 95% confidence intervals (CI) = 1.157–4.214, 
p = 0.025. (b) Distribution of somatic mutated genes other than KRAS. The data of Western patients with KRAS 
mutations were obtained from the TCGA PanCancer Atlas (n = 218). APC, OR = 0.168, 95% CI = 0.087–0.326, 
p = 0.000; PIK3CA, OR = 0.459, 95% CI = 0.223–0.945, p = 0.033; FBXM7, OR = 0.180, 95% CI = 0.042–0.77, 
p = 0.009. Statistically significant differences were analyzed by Fisher’s exact test; *P < 0.05, **P < 0.01.
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APC, PIK3CA, and FBXW7 in Chinese CRC patients with KRAS mutations were significantly lower than that in 
Western CRC patients with KRAS mutations (Fig. 1b, Fisher’s exact test).

Correlation of gene mutations with clinicopathological features.  In these samples, the prevalence 
of CRC was higher in males (n = 30) than in females (n = 20). The locations of the primary tumors included the 
left side of the colon (n = 16), the right side of the colon (n = 14), the transverse colon (n = 3), the rectosigmoid 
colon (n = 3), and the rectum (n = 14). In addition to KRAS mutation, a summary of the relationships among the 
mutated genes with a frequency ≥10% and various clinicopathological features is shown in Table 1 and Fig. 2. 
No significant relationship was observed between these four mutated genes and age, gender, tumor size, tumor 
differentiation, mismatch repair–deficient (dMMR), or lymph node metastasis. However, TP53 mutations were 
significantly more prevalent in tumors in the colon than in tumors in the rectum (27/36, 75% vs 4/14, 28.57%, 
respectively; p = 0.004, Table 1).

Clinicopathological features number TP53 p value APC p value PIK3CA p value SMAD4 p value

Gender

  Male 30 19 1.000 13 0.774 8 0.489 5 0.687

  Female 20 12 10 3 2

Age (years)

  ≥50 46 30 0.147 20 0.322 10 1.000 7 1.000

  <50 4 1 3 1 0

Tumor site

  Colon 36 27 0.004 15 0.361 8 1.000 4 0.384

  Rectum 14 4 8 3 3

Differentiation

  Well/Moderate 12 7 1.000 3 0.186 3 1.000 2 1.000

  Poor 38 23 20 8 5

Lymph node metastasis

  Positive 33 21 0.767 15 1.000 8 0.728 4 0.677

  Negative 17 10 8 3 3

Tumor size

  ≤3 cm 11 7 0.551 7 0.304 4 0.403 2 0.200

  3~5 cm 25 17 9 4 5

  >5 cm 14 7 7 3 0

KRAS mutation

  G12 41 28 0.067 19 1.000 11 0.177 7 0.325

  G13 9 3 4 0 0

dMMR/pMMR

  pMMR 44 29 0.184 19 0.395 10 1.000 7 0.576

  dMMR 6 2 4 1 0

Table 1.  Correlation between the mutated genes with frequency ≥10% and clinicopathological parameters in 
KRAS-positive CRC patients. Abbreviations: dMMR = mismatch-repair deficiency; pMMR = mismatch repair–
proficient.

Figure 2.  Tumor site distribution of TP53, APC, PIK3CA, and SMAD4.
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Relationship between HER2 and KRAS status.  To further assess the consistency of IHC and FISH for 
HER2, another 89 unselected colorectal cancer patients were enrolled and analyzed. The results are shown in 
Table S3. IHC 0/1+ was found in 62 of 139 patients (44.60%), IHC 2+ was found in 69 patients (49.64%), and 
IHC 3+ was found in 8 patients (5.76%). Representative images of IHC and FISH analyses are shown in Fig. S1. 
In comparison with the FISH results, the positive and negative predictive values of the IHC analysis for predicting 
HER2 amplification were 50.00% and 98.39%, respectively. In addition, of 69 samples with equivocal IHC results, 
only 6 (8.70%) were confirmed as harboring HER2 amplification by FISH.

To assess the relationship between HER2 and KRAS status, a Fisher’s exact test was performed on these 139 
CRCs. No significant relationship was found between HER2 amplification and KRAS status (OR = 0.279, 95% 
CI = 0.077–1.006, p = 0.052, Table 2).

Discussion
After the comprehensive molecular characterization of colorectal cancer was reported by the TCGA22, an increas-
ing amount of data have accumulated rapidly in different genetic or clinical backgrounds25–28. Molecular testing 
has become increasingly significant for the treatment of CRCs. Mutations in genes such as KRAS, NRAS, and 
BRAF have become important negative predictive markers for EGFR-targeted therapies5,6,9. However, 30% to 50% 
of CRC patients were KRAS positive22,25–27, which suggests that a considerable number of patients do not benefit 
from anti-EGFR therapy29. Therefore, it is particularly necessary to understand the genetic profiling of patients 
with KRAS mutations for their prediction and prognosis. In this study, 50 KRAS-positive Chinese CRCs and 89 
additional unselected Chinese CRCs were examined by NGS, IHC, and FISH. The correlations of these genetic 
mutations with clinicopathological features were also assessed.

All 50 KRAS-positive samples (Sanger sequencing) were also positively detected by NGS, showing that the 
NGS method used in this study is highly accurate. No mutation was detected in NRAS, HRAS, or BRAF, consist-
ent with the report that the genes in the RAS family are mutually exclusive22. In addition to KRAS, TP53 was the 
most frequently mutated gene (62%), consistent with published data22,26, followed by APC (46%), PIK3CA (22%), 
SMAD4 (14%), and ERBB3 (6%). In addition, there was a higher co-mutation rate of KRAS and TP53 in colon 
cancer than in rectal cancer.

APC, as a gatekeeper gene in CRC, is mutated in 50%-80% of unselected CRC patients in Western coun-
tries22,30,31. Based on the data from the TCGA PanCancer Atlas, the frequency of APC mutations was 83.5% in 
KRAS-positive CRC patients, which was significantly higher than that in our study. However, considering the 
influence of factors such as the small sample size and the different sequencing technology, this difference needs 
further verification. For example, APC mutations are more difficult to detect in a hotspot panel for this cohort 
compared to the entire exonic sequence for the TCGA.

During the last decade, HER2 has been investigated as a therapeutic target in metastatic colorectal can-
cer (mCRC) in several small studies15,16. Although the results of MyPathway indicated that patients with 
HER2-amplified, KRAS-mutant tumors were not sensitive to anti-HER2 therapy, this finding is more likely due 
to the lower HER2 copy numbers in these patients32. The incidence of HER2 amplification and/or protein overex-
pression ranges from 1% to 6% in the unselected population32–34, which is lower than that in patients with breast 
cancer (~25%) or gastric cancer (13–22%)35,36. In our study, HER2 amplification was observed in 4.4% of CRC 
patients with KRAS mutations (n = 90), which is in accordance with previous reports18,32. Although the incidence 
of HER2 amplification in KRAS negative CRCs reached up to 14.3%, there was no statistical significance between 
HER2 amplification and KRAS status (p = 0.052). This result is also consistent with the earlier report18. However, 
the OR is very low (0.279), and the p-value is right at the cut-off point. There is also a previous report for KRAS 
being mutually exclusive with HER2 amplification37. Therefore, we speculated that there is reduced likelihood of 
having a HER2 amplification event in CRCs with KRAS mutations.

HER2 overexpression is usually detected by the IHC analysis of the HER2 protein or the FISH analysis of 
gene amplification. The results of these two methods are usually consistent in breast and gastric cancers11,14. 
However, the consistency of these two methods in CRCs is unknown, which is partly because that the criteria 
for HER2-positivity in CRCs has not yet reached a broad consensus, although some pathologists believe that the 
criteria for HER2-positivity in CRC should differ from that in breast or gastric cancer14. In this study, as in the 
previous report32, the scoring was performed according to the guidelines of HER2 testing in gastric cancer24. In 
comparison with the FISH results, the negative predictive value of the IHC analysis for predicting HER2 ampli-
fication reached 98.39%, while the positive predictive value reached only 50%. In addition, for 69 samples with 
an IHC score of 2, only 6 (8.70%) harbored HER2 amplification confirmed by FISH. These two ratios were sig-
nificantly lower than those in breast or gastric cancer. This difference may be explained by the criteria used for 
HER2-positivity in gastric cancer, which is not particularly suitable for the assessment of HER2 scoring in CRC. 
More data are needed to correct the IHC testing guidelines for HER2 in CRC.

In the study reported by Park et al.38, only 7.4% (2/27) CRC with HER2 IHC scores of 3+ were HER2 amplifi-
cation. However, in the report described by Wang et al.39, 11.8% (12/102) of CRCs with HER2 IHC scores of 2+ 

KRAS+ KRAS− Odds Ratio (95% CI) P

HER2 FISH+ 4 7 0.279 (0.077–1.006) 0.052

HER2 FISH− 86 42

Table 2.  Comparison of HER2 and KRAS status in 139 primary CRC patients. Abbreviations: CI = confidence 
interval.
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and in 82.8% (24/29) of CRCs with HER2 IHC scores of 3+ were identified as HER2 amplification. One explana-
tion for these differences may be that antibodies used for IHC or positive criteria for FISH varied among research 
groups. In the study reported by Park et al.38, the IHC staining was performed using a polyclonal antibody of 
uncertain reliability, which may produce more HER2 IHC scores of 3+. In the study reported by Wang et al.39, the 
positive criteria for HER2 amplification was defined as a HER2/CEP17 ratio of ≥2.0. While, HER2 amplification 
was defined as a HER2/CEP17 ratio of ≥2.2 in our study.

In conclusion, we described a mutational profile of Chinese CRCs with KRAS mutations by multiple genes and 
performed an exploratory analysis to make clinical correlations. The mutation profiling of Chinese CRC patients 
with KRAS mutations is maybe different from that of Western CRC patients. We also assessed the consistency 
of IHC and FISH analyses for HER2 in CRCs. These findings will help us understand the molecular subtypes 
of Chinese CRCs and refine management decisions for individual patients. However, the reference values of 
mutation frequencies of different genes were limited due to the small number of samples and mutation-detecting 
method. More CRC samples are needed for comprehensive genetic testing.

Methods
Clinical patients and specimens.  We retrospectively investigated 139 CRC patients who received clinical 
KRAS testing (Sanger sequencing) at the Chinese PLA General Hospital (Beijing, China) between May 2015 and 
October 2017. Sections from formalin-fixed paraffin-embedded (FFPE) tissue samples were stained with hema-
toxylin–eosin and examined by experienced pathologists to ensure a tumor content ≥20%. All 139 specimens 
were detected by IHC and FISH, while 50 KRAS-positive specimens were further detected by NGS. This study 
was conducted with the approval of the Ethics Committee of the Chinese PLA General Hospital, and informed 
consent was obtained from all patients. The methods were carried out in accordance with approved guidelines.

DNA extraction.  DNA was extracted using a QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s protocol. The quantity and quality of the isolated DNA were tested using a Qubit 
3.0 fluorimeter (Life Technologies, Eugene, Oregon, USA).

Sanger sequencing.  Primers were designed to amplify exon 2 of the KRAS gene to investigate 
the mutational status of codons 12 and 13. The forward and reverse oligonucleotide primers were: 5′- 
ATTACGATACACGTCTGCAGTCAACTG-3′ and 5′-CAATTTAAACCCACCTATA ATGGT-3′, respectively. 
Purified PCR products were sequenced on an ABI 3730xL sequencer using a BigDye Terminator v3.1 Sequencing 
Kit (Applied Biosystems, Waltham, MA, USA) according to the manufacturer’s protocol.

NGS analysis.  DNA libraries and sequencing were performed using an SGI OncoAim™DNA Kit (Singlera 
Genomics, Shanghai, China) according to the manufacturer’s protocol25. The SGI OncoAim™ DNA Panel covers 
more than 6000 hotspots (single nucleotide variants (SNVs) and short insertions and deletions (InDels)) in 59 
genes (Table S1). Next, 150 bp paired-end sequencing was performed on the Illumina MiSeq (Illumina, Hayward, 
CA, USA). Bioinformatics analysis of NGS sequencing data was performed according to the pipeline of the SGI 
OncoAim™ DNA Kit. Sequencing data with a minimum median read depth of 500× and a minimum uniformity 
of 80% were considered qualified. Mutations with a mutation allele frequency (MAF) ≥5% were reported.

IHC analysis.  Sections of FFPE tissue (4 um thick) were obtained. HER2 immunostaining was performed 
using a PATHWAY anti-HER2/neu (4B5; rabbit monoclonal; predilution; Ventana Medical Systems, Tucson, AZ, 
USA) antibody and an ultraView Universal DAB Kit (Ventana Medical Systems) on an automatic immunostainer 
(BenchMark XT, Ventana Medical Systems), according to the manufacturer’s instructions. HER2 immunoreac-
tivity was evaluated by two pathologists according to the scoring system described by Josef Ru¨ schoff et al.24 as 
follows: 0, no reactivity or membrane staining in <10% of tumor cells; 1+, faint/barely perceptible membranous 
reactivity in ≥10% of tumor cells; 2+, weak-to-moderate complete, basolateral, or lateral membranous reactivity 
in ≥10% of tumor cells; and 3+, strong basolateral, or lateral membranous reactivity in ≥10% of tumor cells.

FISH analysis.  FISH analysis was performed using the PathVysion HER2 DNA Probe Kit (Abbott Molecular 
Inc, Des Plaines, IL, USA), according to the manufacturer’s protocols. FISH signal assessment was performed by 
visual counting using an epifluorescence microscope (BX53F; Olympus, Tokyo, Japan). At least 50 tumor cells 
per case with a minimum of one signal for the HER2 gene and centromere 17 were randomly selected, and the 
mean HER2 and centromere 17 count was calculated. Amplification was defined as a HER2/CEP17 ratio of ≥2.2 
in 20 tumor nuclei. The equivocal cases (ratio: 1.8 to 2.2) were recounted in at least 20 nonoverlapping nuclei of 
different tumor cells at a second target area, and a new HER2/CEP17 ratio was recalculated.

Statistical analysis.  Statistical analysis was carried out with SPSS 19.0 statistical software (SPSS, Inc., 
Chicago, IL, USA). The Fisher’s exact test was used to compare the rates among groups with different features. 
Odds ratios (OR) and their 95% confidence intervals (CI) were calculated. Statistical tests were two-sided, and 
p < 0.05 was considered significant.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.

Received: 30 January 2019; Accepted: 21 October 2019;
Published: xx xx xxxx

https://doi.org/10.1038/s41598-019-53039-y


6Scientific Reports |         (2019) 9:16894  | https://doi.org/10.1038/s41598-019-53039-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
	 1.	 Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries. Ca: A Cancer Journal for Clinicians 68, 394–424 (2018).
	 2.	 Chen, W. et al. Cancer statistics in China, 2015. Ca: A Cancer Journal for Clinicians 66, 115–132 (2016).
	 3.	 Chen, W. et al. Cancer incidence and mortality in China, 2013. Cancer Letters 401, 63–71 (2017).
	 4.	 Berg, M. & Soreide, K. EGFR and downstream genetic alterations in KRAS/BRAF and PI3K/AKT pathways in colorectal cancer: 

implications for targeted therapy. Discovery Medicine 14, 207–214 (2012).
	 5.	 Gattenlohner, S., Germer, C. & Muller-Hermelink, H. K. K-ras mutations and cetuximab in colorectal cancer. The New England 

Journal of Medicine 360, 835 (2009).
	 6.	 De Roock, W. et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in 

chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. The Lancet. Oncology 11, 753–762 
(2010).

	 7.	 Sartore-Bianchi, A. et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal 
antibodies. Cancer Research 69, 1851–1857 (2009).

	 8.	 Van Cutsem, E. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Annals of 
Oncology 27, 1386–1422 (2016).

	 9.	 Benson, A. B. et al. Colon Cancer, Version 1.2017, NCCN Clinical Practice Guidelines in Oncology. Journal of the National 
Comprehensive Cancer Network 15, 370–398 (2017).

	10.	 Benson, A. B. et al. Rectal Cancer, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. Journal of the National 
Comprehensive Cancer Network 16, 874–901 (2018).

	11.	 Pyo, J. S., Sohn, J. H. & Kim, W. H. Concordance rate between HER2 immunohistochemistry and in situ hybridization in gastric 
carcinoma: systematic review and meta-analysis. The International Journal of Biological Markers 31, e1–10 (2016).

	12.	 Paik, S. et al. Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 
protein overexpression in primary breast cancer. Journal of Clinical Oncology 8, 103–112 (1990).

	13.	 Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive 
advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 
687–697 (2010).

	14.	 Greally, M., Kelly, C. M. & Cercek, A. HER2: An emerging target in colorectal cancer. Current Problems in Cancer 42, 560–571 
(2018).

	15.	 Sartore-Bianchi, A. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-
type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. The 
Lancet Oncology 17, 738–746 (2016).

	16.	 Richman, S. D. et al. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 
patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials. The Journal of Pathology 238, 562–570 (2016).

	17.	 Yonesaka, K. et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Science 
Translational Medicine 3, 99ra86 (2011).

	18.	 Lee, W.-S. et al. Comparison of HER2 expression between primary colorectal cancer and their corresponding metastases. Cancer 
Medicine 3, 674–680 (2014).

	19.	 Schuell, B., Gruenberger, T., Scheithauer, W., Zielinski, C. & Wrba, F. HER 2/neu protein expression in colorectal cancer. BMC 
Cancer 6, 123 (2006).

	20.	 Ross, J. S. & McKenna, B. J. The HER-2/neu oncogene in tumors of the gastrointestinal tract. Cancer Investigation 19, 554–568 
(2001).

	21.	 Conradi, L. C. et al. Frequency of HER-2 positivity in rectal cancer and prognosis. The American Journal of Surgical Pathology 37, 
522–531 (2013).

	22.	 The Cancer Genome Atlas, N. et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330 
(2012).

	23.	 Valtorta, E. et al. Assessment of a HER2 scoring system for colorectal cancer: results from a validation study. Modern Pathology 28, 
1481–1491 (2015).

	24.	 Ruschoff, J. et al. HER2 testing in gastric cancer: a practical approach. Modern Pathology 25, 637–650 (2012).
	25.	 Wang, Y. et al. Performance validation of an amplicon-based targeted next-generation sequencing assay and mutation profiling of 

648 Chinese colorectal cancer patients. Virchows Archiv 9, 1–10 (2018).
	26.	 Chang, Y. S., Chang, S. J., Yeh, K. T., Lin, T. H. & Chang, J. G. RAS, BRAF, and TP53 gene mutations in Taiwanese colorectal cancer 

patients. Onkologie 36, 719–724 (2013).
	27.	 Zhang, J. et al. Molecular spectrum of KRAS, NRAS, BRAF and PIK3CA mutations in Chinese colorectal cancer patients: analysis 

of 1,110 cases. Scientific Reports 5, 18678 (2015).
	28.	 Chiu, J. W. et al. Molecular Profiling of Patients With Advanced Colorectal Cancer: Princess Margaret Cancer Centre Experience. 

Clinical Colorectal Cancer 17, 73–79 (2018).
	29.	 Linardou, H. et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a 

systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. The Lancet. 
Oncology 9, 962–972 (2008).

	30.	 Laurentpuig, P., Béroud, C. & Soussi, T. APC gene: database of germline and somatic mutations in human tumors and cell lines. 
Nucleic Acids Research 26, 269–270 (1998).

	31.	 Carethers, J. M. & Jung, B. H. Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology 149, 1177–1190.
e1173 (2015).

	32.	 Seo, A. N. et al. HER2 status in colorectal cancer: its clinical significance and the relationship between HER2 gene amplification and 
expression. PloS One 9, e98528 (2014).

	33.	 Marx, A. H. et al. Heterogenous high-level HER-2 amplification in a small subset of colorectal cancers. Human Pathology 41, 
1577–1585 (2010).

	34.	 Kavuri, S. M. et al. HER2 Activating Mutations Are Targets for Colorectal Cancer Treatment. Cancer Discovery 5, 832–841 (2015).
	35.	 Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).
	36.	 Gravalos, C. & Jimeno, A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Annals of Oncology 19, 

1523–1529 (2008).
	37.	 Ross, J. S. et al. Targeting HER2 in colorectal cancer: The landscape of amplification and short variant mutations in ERBB2 and 

ERBB3. Cancer 124, 1358–1373 (2018).
	38.	 Park, D. I. et al. HER-2/neu overexpression is an independent prognostic factor in colorectal cancer. International Journal of 

Colorectal Disease 22, 491–497 (2007).
	39.	 Wang, X. Y. et al. Significance of HER2 protein expression and HER2 gene amplification in colorectal adenocarcinomas. World 

Journal of Gastrointestinal Oncology 11, 335–347 (2019).

https://doi.org/10.1038/s41598-019-53039-y


7Scientific Reports |         (2019) 9:16894  | https://doi.org/10.1038/s41598-019-53039-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author contributions
D.Z., K.L., W.Z., Z.F. and Z.M. performed the research. D.Z., K.L. and W.Z. designed the research and the 
experiments and analyzed the data. Z.F., Z.M. and Z.P. provided samples and discussed the results. L.Y. and S.H. 
supervised the research. D.Z. and K.L. wrote the manuscript. S.H. review and edit the manuscript. All authors 
read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-53039-y.
Correspondence and requests for materials should be addressed to H.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-53039-y
https://doi.org/10.1038/s41598-019-53039-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Somatic mutation profiling and HER2 status in KRAS-positive Chinese colorectal cancer patients

	Results

	Mutational spectrum of Chinese CRC patients with KRAS mutations. 
	Correlation of gene mutations with clinicopathological features. 
	Relationship between HER2 and KRAS status. 

	Discussion

	Methods

	Clinical patients and specimens. 
	DNA extraction. 
	Sanger sequencing. 
	NGS analysis. 
	IHC analysis. 
	FISH analysis. 
	Statistical analysis. 

	Figure 1 Mutational landscape of 50 KRAS-positive Chinese colorectal cancer (CRC) patients and Western patients.
	Figure 2 Tumor site distribution of TP53, APC, PIK3CA, and SMAD4.
	Table 1 Correlation between the mutated genes with frequency ≥10% and clinicopathological parameters in KRAS-positive CRC patients.
	Table 2 Comparison of HER2 and KRAS status in 139 primary CRC patients.




