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Abstract: A new design of a system for preliminary detection of defective hearts is proposed 

which is composed of two subsystems, in which one is based on the relationship between the 

electrocardiogram (ECG) and phonocardiogram (PCG) signals. The relationship between both 

signals is determined as an impulse response (h(n)) of a system, where the decision is made 

based on the linear predictive coding coefficients of a heart’s impulse response. The other 

subsystem uses a phase space approach, in which the mean squared error between the distance 

vectors of the phase space of the normal heart and abnormal heart is judged by the likelihood 

ratio test (Λ) value, on which the decision is made. The advantage of the proposed system is that 

a heart’s diagnosis system based on the ECG and EPCG signals can lead to high performance 

heart diagnostics.

Keywords: signal transduction therapy, heart defect detection, electrocardiogram, envelop of 

phonocardiogram, phase space

Introduction
Heart disease includes any disorder that affects the heart’s ability to function normally. 

There are various forms of heart disease, for example, arrhythmias, prolapsed mitral 

valve, coronary artery disease, congenital heart disease, and so on. The most common 

cause of heart disease is a narrowing of the coronary arteries that supply blood to the 

heart muscle but some heart diseases are present at birth. In general, heart disease 

has been investigated by various methods,1–6 one of which is the noninvasive method, 

which has been widely used and recognized as the best method of investigation. In 

this work, we recommend using an electrocardiogram (ECG) signal for heart disease 

investigation,7–16 because it is a simple and noninvasive diagnostic tool. The signal can 

be easily obtained by placing the electrodes on the chest wall and limbs and hooking 

them to an ECG machine. Besides an ECG signal, a phonocardiogram (PCG) signal 

is also employed for heart disease diagnosis.17–21 In such a case, a PCG signal is the 

recorded heart sound using a microphone placed on the chest. Both ECG and PCG 

signals play important roles in heart abnormality detection; however, diagnosis based 

on ECG signal or PCG signal alone cannot detect all cases of heart symptoms. For 

example, an ECG signal can reveal various physiological and abnormal behaviors of 

the heart. But some symptoms such as heart murmurs often caused by defective heart 

valves cannot be detected from an ECG signal. Hence, some research has focused on 

diagnosing heart defects based on the relationship between ECG and PCG signals13–26 

which can lead to high performance heart diagnostics.
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Both ECG and PCG signals can thus be used together for 

early stage detection of heart disease. Early detection of heart 

disease is important because it can ease the treatment and 

also save people’s lives. In this work, an automated system for 

preliminary heart defect detection is proposed. The proposed 

system is composed of two decision-making subsystems. The 

first subsystem is based on the system’s impulse response 

and the other is based on phase space. The concept of the 

impulse response-based subsystem uses the relationship 

between an ECG signal and an envelope of a PCG signal 

(EPCG) of a heart. Since the PCG signal is easily corrupted 

by noises made by other organs,19–22 the envelope of a PCG 

signal is used instead of the PCG signal itself so as to avoid 

the effect of such interference noises. In this technique, a 

human heart is defined as a system that has an ECG signal 

and an EPCG signal as an input and an output, respectively. 

By considering a heart as a system, the impulse response h(n) 

of the system can be employed to indicate whether the heart 

is functioning normally. Hence, the ratio between discrete 

Fourier transform (DFT) of the ECG signal and DFT of the 

EPCG signal is determined where the inverse discrete Fourier 

transform (IDFT) of the result is the impulse response of the 

heart. In order to realize an automated system, a neural net-

work is chosen for the learning/justifying scheme. However, 

rather than feeding the impulse response to a neural network, 

linear predictive coding (LPC) coefficients of h(n) are used 

instead. The trained neural network based on LPC coefficients 

representing a heart system can be employed for preliminary 

diagnosis of whether the heart is defective.

For the second subsystem, the chaos method is used as an 

additional decision-making technique. Basically, the chaos 

method is used to characterize the behavior of a physiologi-

cal dynamic signal from a single experimental time series 

and has recently been applied to describe the behavior of 

ECG signals in27 and PCG signals in.28 In this paper, a phase 

portrait or a phase space of an ECG signal and of an EPCG 

signal is used to represent the behavior of an ECG signal 

and an EPCG signal. Mean squared error (MSE) between 

the distance vector of the objective ECG or EPCG signal and 

the distance vector of the reference signal is determined. It 

is noted that the distance vector is a vector whose element is 

the distance from an origin point to each point on the phase 

space. The statistical MSE data set of each case, normal or 

abnormal heart function, is applied to generate the probability 

density functions. The obtained MSE probability density 

functions are employed to determine a likelihood ratio test 

value (Λ). This value is a threshold for making a decision 

that the heart is either normal or abnormal.

Theoretical background
Generally, the ECG and PCG signals are concurrent phe-

nomena, in which the former is the electrical signal while 

the latter is the mechanical signal. However, the phenomenon 

of ECG and PCG signals is related, because the PCG signal 

is obtained by the mechanical heart operation, which relies 

on the electrical heart operation. In order to activate the 

mechanical heart operation that generates the PCG signal, 

the ECG and PCG correlated signals are used. Based on the 

previous concept,26 the ECG and EPCG impulse response 

signals have shown a linear relationship and time-invariance. 

Thus, the human heart will be considered as a linear system 

in order to find the heart impulse response. The concept of 

the automated preliminary heart defects detection system can 

be illustrated as a block diagram (see Figure 1). There are 

two subsystems, the impulse response and the phase space 

subsystems. The details of each subsystem will be described 

later in this paper. However, it is worth noting that the ECG 

and EPCG signals employed in this research are normalized 

to be the signals at a standard heart rate, which for an adult 

whose heart is healthy (normal) in relaxing state is around 

80 beats per minute. This pre-processing is needed because 

the recorded ECG/PCG signals of each person are derived 

from different heart rates. Even the signals recorded from 

the same person but at different times can be derived from 

different heart rates. Therefore, one period of different signals 

may have different numbers of signal samples. Thus, the sig-

nals processed in this work are pre-processed by frequency 

normalization. With this pre-processing, the signals will be 

the same during each period of data collection. Then the 

details of the impulse response and phase space subsystems 

are discussed.

Heart rate normalization
Let x(n) be a period, whose length is M samples, of an ECG/

PCG signal of interest at an arbitrary heart rate. The discrete 

Fourier components of x(n) can be expressed as29

 X k x n j kn
M

n

M

( ) ( ) exp= −( )
=

−

∑ 2

0

1 π  (1)

where k is the frequency index corresponding to digital 

frequency for 0 # k # M − 1.

This frequency index corresponds to kf Ms /  in Hertz (Hz) 

where f
s
 is a sampling frequency. At a normal heart rate (80 

beats per minute), a period is considered to be 0.75 seconds. 

If the sampling frequency f
s
 is 8000 Hz, one period of 80 

beats per minute heart rate ECG/PCG signal must contain 
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6000 samples (N). Since heart rate of the ECG/PCG signal 

at the recording time may not be at such rate, one period of 

the obtained signal (M) may be longer or shorter than 6000 

samples. At this point, α is defined as the ratio of the standard 

length N and the obtained length M which are one period of 

ECG/PCG signal, at 80 beats per minute and arbitrary heart 

rates, respectively.

Now let us consider the parameter α. α . 1 implies that 

the heart rate of the interested ECG signal is higher than the 

standard rate. Contrarily, α , 1 implies it is lower than the 

standard rate. To normalize the length of the obtained signal 

to N samples in one period or to make α = 1, the obtained 

signal must be sampled by using a frequency lower or higher 

than 8000 Hz for α . 1 or α , 1, respectively. Since the 

signal has readily been obtained at f
s
 = 8000 Hz, the alterna-

tive method can be achieved by synthesizing the normalized 

heart rate signal with the following relationship

 x n X k
kn

N
X kn

n

K

( ) = ( ) + ∠



=

∑ cos ( )
2

0

π
α

 (2)

where 0 # n # N − 1 and |X(k)|, ∠X(k) are magnitude and 

phase component of DFT coefficients X(k), respectively. In 

addition, k represents  the frequency index corresponding to 

the highest digital frequency which occupies the spectrum 

of ECG and PCG bandwidth.

In this paper, the normalized heart rate technique 

for pre-processing is proposed. The parameter alpha is 

employed to adjust the time period scale, where we can 

choose any alpha value to obtain the normalized heart rate, 

which does not affect heart defect detection. Because of 

the normalized heart rate technique is employed to adjust 

time period scale (α) of the ECG and PCG signals but it 

is not used to adjust the waveform characteristics of the 

ECG and PCG signals. Therefore, the normalized heart rate 

technique does not affect heart defect detection, which is 

analyzed by using the waveform characteristics of the ECG 

and PCG signals. However, the signal scale is adjusted to 

be the same in each period of data length. Therefore, the 

parameter alpha value must be the same for each normal-

ized heart rate.

Envelope detection of PCG signal
In this section, a technique for finding the envelope of a PCG 

signal is described. The concept is similar to the envelope 

detection used in amplitude demodulation.30 Envelope of a 

PCG signal is considered as information which is carried by 

the PCG carrier signal. To determine the envelop of a PCG 

signal the positive level of the PCG signal is first obtained, 

and then the signal is passed through a low pass filter to 

obtain the envelope.

Impulse response-based subsystem
The preliminary automated heart defect detection that is 

based on impulse response of a system can be depicted by 

a block diagram (Figure 1). In this work, a human heart 

will be considered as a linear system where an ECG signal 

(x
ECG

(n)) and an EPCG signal (y
EPCG

(n)) are an input and an 

output of the system, respectively. With the linear property 

of a system, it can be shown that the output of the heart is 

determined by the convolution between the ECG input and 

the impulse response of the system (h(n)) as
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Figure 1 Block diagram of new automated preliminary heart defect detection.
Abbreviations: DFT, discrete Fourier transform; iDFT, indiscrete discrete Fourier transform; LPc, linear predictive coding; Ecg, electrocardiogram; EPcg, envelope of 
a Pcg signal; Pcg, phonocardiogram.
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 y n x k h n kEPCG ECG
k

( ) = ( ) −( )
=−∞

∞

∑  (3)

By taking z-transform on both sides of equation (3), it 

thus yields

 Y z X z H zEPCG ECG( ) = ( ) ( ) (4)

Hence, the transfer function of a system (H(z)) can be 

determined by

 H z
Y z

X z
EPCG

ECG

( ) =
( )
( )

 (5)

From equation (5), the DFT (H(k)) of the system is 

obtained by the following relationship

 

H k H z k N

Y z

X z

y

z e

EPCG

ECG z e

EP

j k
N

j k
N

( ) = ( ) = −

=
( )
( )

=

=

=

2

2

0 1 1π

π

, , , ...

CCG

j nk
N

n

ECG

j nk
N

n

EPCG

ECG

e

x e

Y k

X k

−

=−∞

∞

−

=−∞

∞

∑

∑
=

( )
( )

2

2

π

π

 

(6)

where Y
EPCG

(k) and X
ECG

(k) is the DFT of y
EPCG

(n) and x
ECG

(n), 

respectively.

To obtain the impulse response (h(n)) of a system, the 

IDFT is applied on both sides of equation (6), which is
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−
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0

1
 (7)

As shown in equation (7), the impulse response of a 

system can be determined by using the IDFT of the ratio 

between the DFT of an EPCG signal and the DFT of an 

ECG signal.

Linear predictive coding
The LPC technique is employed to extract the features of 

the impulse response in the form of LPC coefficients. The 

basic idea underlying LPC is that each signal sample x(n) is 

approximated as a linear combination of previous p samples 

as described in the following equation:

 ′ = ( ) −( )
=

∑x n a k x n kp
k

p

( )
1

 (8) 

where x(n) is a signal sample, x′(n) is a predicted signal, p is 

the order of LPC and, a
p
(k) s are LPC coefficients.

By considering x(n) employed in equation (8) to be the 

impulse response (h(n)) of a heart system, an error between 

an original signal and an estimated signal is given by

 e n h n h n h n a k h n kp
k

p

( ) = ( ) − ′( ) = ( ) − ( ) −( )
=

∑
1  (9)

The LPC coefficients (a
k
) are defined by minimizing the 

MSE. The procedure for minimizing the MSE is obtained 

by setting the partial differential MSE with respect to all of 

the parameters a
k
to be zero. The LPC coefficients are found 

to be

 a R r mp hh hh= ( )−1  (10)

where R
hh

 is a p × p autocorrelation matrix, r
hh

(m) is the 

autocorrelation of the sequence h(n), and a p  is a p × 1 vector 

of model parameters.

The LPC coefficients a
p
(k) are employed to represent the 

feature of an impulse response of a system. In this research, 

two sets of the prototype LPC coefficients, one set for a nor-

mal heart system and another for an abnormal heart system, 

are fed to the input of an artificial neural network for learning 

and making decisions.

Decision making using a neural 
network
It has been shown that an artificial neural network (ANN) has 

often been employed in biomedical engineering research to 

classify the data.31,32 The ANN is inspired by the biological 

nervous systems and it is configured for a specific applica-

tion, such as pattern recognition or data classification. In this 

research, an ANN is employed as a tool for distinguishing 

between a normal and an abnormal heart. In this study, the 

ANN used for heart pattern recognition is a feed-forward 

back propagation (BP) neural network. The BP algorithm is 

a supervised learning algorithm using feed-forward networks. 

It is basically a gradient descent method and its objective is to 

minimize the MSE between the target values and the actual 

output of the network.

The ANN employed in this work is demonstrated in 

Figure 2. The ANN structure is composed of three layers, (i) 

the input layer, (ii) the hidden layer of neurons with a tangent 

sigmoid transfer function, and (iii) the output layer of neuron 

with linear transfer function. The signal fed to be the input for 

the input layer is the set of LPC coefficients that are impulse 
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response signals of the heart system. The ANN output target 

values are 0 for an abnormal heart and 1 for a normal heart.

The output obtained from the neural network can be one 

of four cases: TP, the value of true positive; FP, the value 

of false positive; TN, the value of true negative; and FN, 

the value of false negative. The decision on whether a heart 

is normal or abnormal is determined by positive predictive 

value (PPV) and negative predictive value (NPV), respec-

tively. These values are evaluated, respectively, by

 PPV
TP

FP TP
%( ) =

+






× 100  (11)

 NPV
TN

FN TN
%( ) =

+






× 100 (12)

Phase space-based subsystem
Based on the concept of phase space, a data sequence mea-

sured in a time domain can be transformed into a geometric 

figure in space, which is called the phase space. Doing this 

can reveal some features that cannot be observed in a time 

domain. The phase space can be constructed by a procedure 

that starts from raw data and builds vector by iteration of 

time delay. In a discrete time signal, a scalar time s(n), 

n = 1,2,…, N can be extended in a multidimensional phase 

space using time delay coordinates. The delay coordinate 

construction approach, based on the Taken theorem, is 

applied to a series of data such as

 S n s n s n s n m( ) = ( ) +( ) + −( )( ), ,...,τ τ1  (13)

Here, τ is a delay time, n is the number of sample used for 

phase space construction, m is the embedding dimension.

A reconstructed phase space matrix Y of dimension m 

and lag τ, called a trajectory matrix, is defined by

 Y
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where row vectors S(n), with n = 1, 2,…, M represent indi-

vidual points in the reconstructed phase space. The number of 

points is M = N – (m − 1)τ. The attributes of the constructed 

phase space plot depend on the choice of value for τ. The 

value of τ is typically chosen as the first minimum (τ = 1) in 

the graph. For a two-dimensional (m = 2) phase space, the 

trajectory matrix thus is

 Y
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S M
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s s
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Figure 2 Structure of the artificial neural network employed in this work.
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However, difficulty could be encountered in  discriminating 

between normal and abnormal cases from the obtained phase 

spaces due to the similarity of spread characteristics of the 

curves. To improve the performance of classification, the 

phase space in this work is the plotting coordinates (s(n), 

s(n + 1)−s(n)), where s(n + 1)−s(n) is the tangent vector. The 

reconstructed phase space matrix employed in this research 

thus is given by

 Y

S

S

S M

s s s

s s

=

( )
( )
⋅
⋅
⋅

( )



























=

( ) +( ) − ( )
( )

1

2

1 1 1

2

τ

22 2+( )− ( )
⋅ ⋅
⋅ ⋅
⋅ ⋅

( ) +( ) − ( )



























τ

τ

s

s M s M s M

 (16)

The block diagram of the subsystem for preliminary 

automated heart defect detection that is based on phase space 

of ECG and EPCG signals is shown in Figure 1.

Distance vector
The distance of the vector from the origin point (O) to the 

P point is equal to that of the displacement vector (r ) which 

is determined by

 d r x y= = −( ) + −( )

0 0
2 2  (17)

By using the definition of the distance of the vector, the dis-

tance from the origin point to each point on the phase space 

is calculated in a form of vector. When the distance vector 

of the objective signal is determined the error between this 

vector and that of the reference normal heart is obtained. 

MSE of the error vector is then given by

 MSE
N

d i d iref obj
i

N

= ( ) − ( )( )
=
∑1 2

1

 (18)

Here, N is a number of samples, d ref  is a reference  distance 

vector, either of ECG signal or EPCG signal, for a normal 

heart and d obj   is a distance vector of the objective signal, 

either ECG signal or EPCG signal.

It should be mentioned that the reference distance vec-

tor is derived from the reference phase space of a normal 

heart. To obtain the reference phase space, many ECG/

PCG data sequences from31,32 are employed to find their 

phase spaces. These results are averaged for a reference 

phase space of a normal heart for ECG signal and EPCG 

signal.

Likelihood ratio test
The MSE value as previously discussed can be used to make 

a decision about whether the objective signal is normal or 

abnormal. To achieve a definite decision, a threshold value 

of MSE must be defined. In this research, this threshold is 

obtained by using a likelihood ratio test (Λ).33 The likelihood 

ratio test is a statistical test of the goodness-of-fit between 

two models. It provides one objective criterion for selecting 

among possible models.

In general, the likelihood ratio test can be thought of as a 

reversed version of conditional probability. The conditional 

probability of x is P(ω|x) for a given parameter ω that is 

formalized in Bayes theorem.33 The likelihood ratio test is 

calculated to find the threshold value between probability 

density functions of MSE values derived by equation (18) 

for a normal case and an abnormal case through ECG signals 

or EPCG signals. The decision rule therefore is

 Decision
if P x P x

elsewhere
= ( ) > ( )






ω ω ω
ω

1 1 2

2

,

,  (19)

Where P[ω
1
|x] is conditional probability of MSE values of 

a normal case and P[ω
2
|x] is conditional probability of MSE 

values of an abnormal case.

By applying Bayes theorem in equation (19), it is

 
P x P

P x

P x P

P x

ω ω
ω

ω

ω ω1 1

1

2

2 2( ) ( )
( )

>
<

( ) ( )
( )

 (20)

From equation (20), P(x) does not affect the decision 

rule so it can be neglected. Hence, the likelihood ratio test 

Λ(x) is redefined as

 Λ

Λ

x
P x

P x

P

likelihood ratio test x

( ) =
( )
( )

>
<

( )

( )( )

ω

ω

ω

ω

ω1

2

1

2

2

 

P

P

ω1( )
 (21)

where P[x|ω
1
] is a conditional probability density function 

(likelihood) of MSE values of a normal case, and P[x|ω
2
] 

is a conditional probability density function (likelihood) of 

MSE values of an abnormal case.

It is noted that P[x|ω
1
] and P[x|ω

2
] is defined by using a 

Gaussian distribution function as given by

 P x e ii

x

ω
πσ

µ
σ( ) = =

−
−






1

2
1 2

2

1

2

2

, ,  (22)
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where µ is the mean value of distribution and σ 2 is the 

 variance of distribution. In addition, the ratio P(ω
2
)/P(ω

1
), 

which is the maximum likelihood ratio test, is initially set 

to 1. The obtained likelihood ratio test is employed to make 

judgment on the given MSE value of the distance vector of 

the objective signal. As previously described, the proposed 

system is performed in a computer with the results of each 

subsystem discussed in the following sections.

Impulse response-based subsystem
Before the results are demonstrated, it should be noted that for 

the impulse response-based algorithm, it is important that the 

ECG signal and the PCG signal employed to determine the 

impulse response h(n) of a heart system must be recorded or 

measured at the same time. This restriction results in limited 

numbers of signal samples in the experiment. In this research, 

80 sets of ECG signals and PCG signals measured at the 

same time from the voluntary patients are employed. Among 

these sets of signals, 40 sets were measured in normal cases 

and 40 sets in abnormal cases. In each case, 20 sets of data 

samples are used in the neural training process and 20 sets 

of data samples are used in the testing process.

First, all signals (ECG and PCG signals) employed in this 

research are normalized to 80 beats per minute heart rate. 

In addition, the magnitude of these signals is normalized so 

that it is confined in the range −1 and 1. An example of the 

normalized ECG signal and the normalized PCG signal is 

demonstrated in Figure 3.

For PCG signals, the envelope of the signals is employed 

for the decision-making procedure. Examples of the envelope 

of the normalized PCG signals for normal cases and abnormal 

cases are illustrated in Figures 4 and 5, respectively. As can 

be seen, the first and second sounds clearly appeared in the 

normal cardiac sound (Figure 4, upper). But for abnormal 

mitral valve regurgitation case (Figure 5, upper), these sounds 

cannot be distinguished from each other.

Once the ECG and PCG signals are normalized and the 

EPCG signals are obtained, the impulse response of a heart 

system is then determined. Examples of the impulse response 

of a normal heart system and of an abnormal heart system are 

illustrated in Figures 6 and 7, respectively. From 80 sets of 

ECG signals and PCG signals, 80 impulse response signals are 

obtained; 40 signals are of normal cases and 40 signals are of 

abnormal cases. Twenty signals of each case are fed to the input 

of the back propagation neural network for training process. 

After the learning process is completed, the other 20 signals of 

each case are tested by the trained neural system. The decision 
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Figure 3 Example of normalized Ecg and Pcg signals.
Abbreviations: Ecg, electrocardiogram; Pcg, phonocardiogram.
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Figure 4 The envelope of a normal Pcg signal.
Abbreviation: Pcg, phonocardiogram.
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Figure 5 The envelope of an abnormal Pcg signal.
Abbreviation: Pcg, phonocardiogram.
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making by the neural network about whether a heart system 

is normal or abnormal depends on the output value (y) of the 

neural network. The decision will be normal if 0.9 , y , 1 

and abnormal if y is ,0.9. The results of neural training and 

testing processes are illustrated in Table 1. The results for 

PPV and NPV are approximately 85% and 90%, respectively. 

These numbers could be improved if the collected data 

samples are large. Because volunteer numbers were limited 

and because of the restriction that an ECG signal and a PCG 

signal must be measured at the same time and from the same 

person, the number of data samples used in this technique is 

not as high as desired.

Phase space-based subsystem
For the phase space approach, the limitation on number of data 

samples (ECG and PCG signals) is not a problem, because 

the ECG and PCG signals employed in this method do not 

need to be measured at the same time and from the same 

patient. Hence, large samples can be obtained from online 

databases.31,32

Examples of the two-dimensional phase space of the ECG 

and EPCG signals are demonstrated in Figures 8 and 9, respec-

tively. By using phase space, the QRS complex as well as the P 

and T waves in a normal ECG signal can be observed clearly. 

Different patterns of the phase spaces of normal and abnormal 

cases can be seen in both ECG and EPCG signals.

The obtained phase spaces of ECG and EPCG signals 

are then employed to determine their distance vectors. Each 

derived distance vector will be compared with a reference 

distance vector which is of the normal case to find the MSE 

value. It is noted that the reference ECG distance vector of the 

normal case and the reference EPCG distance vector of the 

normal case are obtained from averaging the phase space pat-

terns of all normal ECG signals and normal PCG signals.

After the MSE values of normal heart and abnormal heart 

from the phase space of ECG signals and EPCG  signals 

are obtained, mean and variance values are determined and 

applied to the Gaussian distribution function. For ECG sig-

nals, the probability density function of normal heart and 

abnormal heart are
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Then, the likelihood ratio test (Λ(x)) for ECG can be 

calculated by
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Figure 7 The impulse response of an abnormal heart system.

Table 1 Artificial neural network diagnosis results

Cases Diagnosis results  
(impulse response based)

Normal Abnormal Accuracy (%)

PPV NPV
Training
normal 20 20 0 100 –
Abnormal 20 0 20 – 100
Testing
normal 20 18 2 90 –
Abnormal 20 3 17 – 85

Abbreviations: PPV, positive predictive value; nPV, negative predictive value.
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Figure 6 The impulse response of a normal heart system.
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and found to be at x = −52.5. Figure 10 presents MSE values 

obtained from phase spaces of ECG signals (upper) and plots 

of probability density function of phase space MSE values 

of ECG signals (lower).

Similarly, mean and variance are determined from the 

MSE values of normal heart and abnormal heart of EPCG 

signals and applied to the Gaussian distribution function as 

following
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The likelihood ratio test (Λ(x)) for EPCG is then 

defined by
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and found to be at x = −59.34. MSE values obtained from 

phase spaces of EPCG signals are shown in Figure 11 

(upper) and probability density function of phase space 

MSE values of EPCG signals are given in Figure 11 (lower).
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Figure 8 The phase space of Ecg signals (A) normal case, (B) abnormal case.
Abbreviation: Ecg, electrocardiogram.
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The system of preliminary heart defect detection used 

indicates that the heart defect is caused by the abnormal 

ECG and/or abnormal PCG signals. To confirm the obtained 

likelihood ratio test, the 80 ECG and 80 EPCG signals used 

in the impulse response based technique were also tested 

by using the phase space approach (Tables 2 and 3, respec-

tively). The results obtained show that the phase space-based 

approach provides 100% accuracy compared with the impulse 

response-based approach.

Conclusion
In this paper, a non-invasive system for detecting heart 

malfunction is presented. The proposed system consists of 

two subsystems. One is based on the impulse response of 

a heart system derived from the relationship between an 

ECG signal and the envelope of a PCG signal (EPCG). The 

decision is made by the back propagation neural network 

from the impulse response signal. The percentage accuracy 

obtained was 90% and 85% for NPVs and PPVs, respectively. 

Increasing the size of the collected data samples can improve 

the accuracy. Because the restriction that there must be an 

ECG signal and a PCG signal measured at the same time 

and from the same person limited the number of volunteers, 

number of data samples used in this technique was not as 

high as desired. The other subsystem is based on phase space 

of the signal (ECG or EPCG). The MSE value obtained by 

comparing the distance vector of the testing signal with the 

reference distance vector is judged by the likelihood ratio 

test result. This technique provides 100% accuracy for deci-

sion making. The results from both techniques show that 

the impulse response-based method can be used primarily 

to detect a heart abnormality, whereas the phase space-based 

approach can be used to indicate whether the heart defect 

is caused from the abnormal ECG signal and/or abnormal 

PCG signal. This proposed preliminary automated heart 

defect detection technique can provide the opportunity to 

help patients in rural areas.
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