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Abstract

Drosophila provides an inexpensive and quantitative platform for measuring whole animal

drug response. A complementary approach is virtual screening, where chemical libraries can

be efficiently screened against protein target(s). Here, we present a unique discovery platform

integrating structure-based modeling with Drosophila biology and organic synthesis. We dem-

onstrate this platform by developing chemicals targeting a Drosophila model of Medullary Thy-

roid Cancer (MTC) characterized by a transformation network activated by oncogenic

dRetM955T. Structural models for kinases relevant to MTC were generated for virtual screening

to identify unique preliminary hits that suppressed dRetM955T-induced transformation. We

then combined features from our hits with those of known inhibitors to create a ‘hybrid’ mole-

cule with improved suppression of dRetM955T transformation. Our platform provides a frame-

work to efficiently explore novel kinase inhibitors outside of explored inhibitor chemical space

that are effective in inhibiting cancer networks while minimizing whole body toxicity.

Author summary

Effective and safe treatment of multigenic diseases often involves drugs that address multi-

ple points along disease networks, i.e., polypharmacology. Polypharmacology is increas-

ingly appreciated as a potentially desirable property of kinase drugs. However, most

known drugs that interact with multiple targets have been identified as such by chance

and most polypharmacological compounds are not chemically unique, resembling struc-

tures of known kinase inhibitors. The fruit fly Drosophila provides an inexpensive, rapid,

quantitative, whole animal screening platform that has the potential to complement
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computational approaches. We present a chemical genetics approach that efficiently com-

bines Drosophila with structural prediction and virtual screening, creating a unique dis-

covery platform. We demonstrate the utility of our approach by developing useful small

molecules targeting a kinase network in a Drosophilamodel of Medullary Thyroid Cancer

(MTC) driven by oncogenic dRetM955T.

Introduction

Protein kinases play a key role in cell signaling and disease networks and represent major ther-

apeutic targets. The limited capacity to test large numbers of compounds to explore diverse

chemical scaffolds, coupled with the difficulty in translating in vitro kinase inhibition into

whole animal efficacy, has limited the chemical space of the known kinase inhibitors (KIs). As

a result, obtaining optimal KIs with clinically relevant therapeutic activity has proven challeng-

ing despite extensive academic and industry effort.

To expand the number of kinase inhibitors, a variety of platforms have recently emerged as

useful tools for compound screening. The fruit fly Drosophila melanogaster provides an inex-

pensive and efficient whole animal platform for cancer drug screening, capturing clinically rel-

evant compounds [1–3]. For example, Drosophila was used to help validate vandetanib as a

useful treatment for medullary thyroid cancer [4] (MTC). As a screening platform, Drosophila
offers several advantages: First, flies and humans share similar kinome and kinase-driven sig-

naling pathways [5], facilitating the use of flies to predict drug response in humans [1, 6]. Sec-

ond, the ease of breeding and the short (~10 day) life cycle of Drosophilamakes it possible to

carry out efficient moderate-throughput chemical screening in a whole animal system. Third,

the screening readout provides a quantitative, animal-based measurement of structure-activity

relationships (SAR) as well as information on the therapeutic potential or toxicity of the tested

compounds: measurable parameters include survival and multiple phenotypic indicators that

depend on kinase activity.

A key limitation of a Drosophila-based moderate-throughput screening platform is its

inability to explore very large chemical libraries [7] such as the ZINC library, which has over

750 million purchasable compounds [8]. In contrast, structure-based virtual screening is a fast

and inexpensive computational method that can screen large compound libraries, useful for

identifying unique chemical probes [9]. If the structure of the protein is unknown, virtual

screening can be performed against the homology models of the target based on experimen-

tally determined structures. However, the automated construction of homology models—with

sufficient accuracy for simultaneous virtual screening of multiple targets and the application of

molecular docking to signaling networks—remains challenging in particular for highly

dynamic targets such as kinases [10, 11] and would benefit from a readily accessible whole ani-

mal platform. In this paper, we demonstrate how combining Drosophila and computational

approaches provides a synergistic platform for lead compound discovery, combining the

strengths of computational methods—which enable rational and rapid drug candidate selec-

tion—and a Drosophila animal model that enables fast and relevant biological readouts of

tested compounds. We demonstrate the practicality of this approach using MTC as a test case.

RET is a receptor tyrosine kinase associated with multiple roles in development and disease.

The gain-of-function M918T mutation of RET (analogous to DrosophilaM955T) activates

multiple proliferation pathways and is directly associated with MTC pathogenesis [12, 13].

Transgenic Drosophila expressing the analogous dRetM955T isoform show key aspects of trans-

formation, including proliferation and aspects of metastasis [6, 14]. Genetic modifier screens
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with dRetM955T flies led to the identification of multiple RET pathway genetic ‘suppressors’

and ‘enhancers’, loci that when reduced in activity improve or worsen the dRetM955T pheno-

type, respectively. These functional mediators of RET-dependent transformation include

members of the Ras/ERK and PI3K pathways as well as regulators of metastasis such as SRC

[6, 15].

Oral administration of the FDA-approved multi-kinase inhibitor analogs sorafenib and

regorafenib—along with additional structural analogs—partially rescued dRetM955T-induced

transformation in Drosophila [1, 15]. Sorafenib-class inhibitors are classified as ‘type-II’ KIs

that bind the kinase domain in their inactive state [16], a conformational state regulated by the

aspartate-phenylalanine-glycine (DFG)-motif (Fig 1A) [17, 18]. In the inactive, ‘DFG-out’ con-

formational state the directions of DFG-Asp and DFG-Phe ‘flip’, vacating the DFG-Phe pocket

(‘DFG-pocket’) that modulates binding to type-II inhibitors. A key challenge of targeting

kinases in the DFG-out conformation with structure-based virtual screening is that few kinase

structures have been reported with the DFG-out conformation [19, 20]. We recently developed

DFGmodel [10], a computational method for modeling kinases in DFG-out conformations.

This method informed the mechanism of clinically relevant multi-kinase inhibitors that target

the MTC network [15].

In this study, we report the development of an integrated platform (Fig 2) that combines (i)

computational modeling of kinases in their inactive state plus massive multi-target virtual

screening with (ii) whole animal Drosophila assays to identify previously unappreciated chemi-

cals that perturb RET-dependent transformation. This integrative platform combines the

strengths of computational methods—including facilitating rational and rapid compound pri-

oritization for experimental testing—and Drosophilamodels that provide a whole animal read-

out of compound efficacy. We leverage this integrated fly/computational modeling platform to

Fig 1. Kinase binding to type-II kinase inhibitors. (A) The conformational state of protein kinases (e.g., KDR) including DFG-in (red) and DFG-out (blue) is

determined by the DFG-motif. The DFG-pocket (cyan mesh) is unique to the DFG-out conformation. Sorafenib is shown in pink. Broken yellow lines indicate hydrogen

bonds. (B) A scheme depicting the positive and negative effects of drug acting on genetic modifiers of medullary thyroid cancer in a Drosophila model. ptc-driven

dRetM955T induces lethality during development. ‘Suppressors’ or ‘enhancers’ suppress or enhance, respectively, dRetM955T-induced disease phenotypes as revealed in

genetic screening. A drug can suppress lethality by inhibiting the suppressors. It can also induce toxicity and/or worsen transformed phenotypes by inhibiting the

enhancers, which results in enhanced lethality.

https://doi.org/10.1371/journal.pcbi.1006878.g001
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create a novel ‘hybrid’ molecule with unique chemical structure and biological efficacy. Finally,

we discuss the relevance of this approach to expedite the discovery of novel chemical scaffolds

targeting disease networks.

Results

Target selection from fly genetic screen and structural analysis

In transgenic patched-GAL4;UAS-dRetM955T (ptc>dRetM955T) flies, the ptc promoter drives

expression of an oncogenic isoform of Drosophila Ret in multiple tissues; the result is lethality

prior to adult eclosion [1, 15]. We previously used this and similar fly MTC models in genetic

screens to identify ~40 kinases that mediate dRetM955T–mediated transformation [6, 15] (Figs

1B and 2A; S1 Fig).

To narrow this list, we prioritized candidate kinases based on two considerations: (i) phar-

macological relevance as known mediators of RET signaling [6, 21]; (ii) structural coverage,

specifically kinases with known DFG-out structures or those that can be modeled with suffi-

cient accuracy [10]. Atypical kinases (e.g., mTOR and eEF2K) and members of the RGC family

were excluded as they have diverse sequence and structure features that limit our ability to gen-

erate accurate homology models. Applying these criteria to our genetic modifier list, we

focused on targeting four key kinase targets: RET (receptor tyrosine kinase), SRC (cytoplasmic

tyrosine kinase), BRAF (tyrosine kinase-like), and p70-S6K (AGC family).

Modeling kinases in DFG-out conformation

Description of the various conformations adopted by the kinases during activation and inhibi-

tion is needed for rationally designing novel, conformation-specific inhibitors. Therefore, our

Fig 2. Fly genetics and computational chemistry discovery platform. Key steps include (A) determining suppressors and enhancers in a dominant modifier

genetic screening and their in silico modelability, (B) generating DFG-out kinase models using DFGmodel, (C) virtual screenings of compound libraries against

the modeled suppressors and enhancers, combining top-ranking screening results into consensus result, (D) testing top-ranking compounds for rescue of

lethality (left panel) and migration of transformed cells in developing wing discs of ptc>dRetM955T flies (right panel), and (E) refining hits by combining

structural elements of computationally derived hits and that of drugs and evaluating new targets.

https://doi.org/10.1371/journal.pcbi.1006878.g002

Integrated computational and Drosophila cancer model platform for targeting kinase network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006878 April 26, 2019 4 / 19

https://doi.org/10.1371/journal.pcbi.1006878.g002
https://doi.org/10.1371/journal.pcbi.1006878


approach was to perform massive structure-based virtual screens of purchasable compound

libraries against multiple models with DFG-out conformation; our goal was to identify generic

kinase inhibitors that may target one or more prioritized kinases but, importantly, demon-

strate an effect on the disease pathway in the animal model.

The structure of two of the kinases identified in our dRetM955T genetic screens—BRAF and

SRC—have been solved in the DFG-out conformation; the DFG-out structures of RET and

p70-S6K have not been reported. We therefore generated DFG-out models using DFGmodel,

a computational tool that generates homology models of kinase in DFG-out conformation

through multiple-template modeling that samples a range of relevant conformations [10]. In

our previous study, we tested and confirmed subsets of DFG-out models that enrich for

known type-II inhibitors among a diverse set of non-type-II KIs found in the Protein Data

Bank (PDB) with accuracy similar to or better than that obtained for experimentally deter-

mined structures [10]. For example, in a recent application of DFGmodel, models generated

by this method were used in parallel with medicinal chemistry to optimize clinically relevant

compounds that are based on the established kinase inhibitor sorafenib [15]. Conversely, in

this study models generated by DFGmodel were used to develop compounds outside of the

current kinase inhibitor chemical space.

To guide the identification of a ‘generic’ kinase inhibitor that can affect a disease pathway

we first compared the DFG-out models of each kinase, identifying key similarities and differ-

ences in physicochemical properties among their inhibitor-binding sites. First, we noted that

the prioritized targets RET, BRAF, p70-S6K, and SRC present negative electrostatic potential

on the DFG-pocket surface, while many non-targets such as ERK have positive electrostatic

potential (Fig 3A, S2 Fig). This difference may partially explain the partial selectivity of type-II

inhibitors (e.g., sorafenib) toward our prioritized targets while avoiding electrostatic positive

kinases such as ERK. Second, RET and SRC have large DFG-pocket volumes (163 Å3, 196 Å3,

respectively) and p70-S6K and BRAF have moderately large pockets (158 Å3, 136 Å3). In con-

trast, ERK has a small DFG-pocket (113 Å3; Fig 3B). We used this size difference to computa-

tionally select for kinases with larger DFG-pockets (e.g., RET, SRC) while excluding kinases

with smaller DFG-pockets (e.g., ERK).

Virtual screening against MTC pathway

We performed virtual screening against multiple DFG-out models of MTC targets to identify

putative small molecules that modulate the disease network (Fig 2C). We docked a purchasable

lead-like library from the ZINC database (2.2 millions compounds; [22]) against 10 DFG-out

models for each kinase target, yielding over 88 million total docking poses. To combine the

screening results, a two-step consensus approach was used. In the first step, the top scoring

pose of compounds that ranked in the top 10% in 5 or more of the 10 models of each kinase

were selected, resulting in approximately 2,000 compounds per kinase. In the second step,

compounds that ranked in the top 25% in at least 3 of 4 targets were selected, resulting in 247

compounds. For comparison, sorafenib, an inhibitor that rescues ptc>dRetM955T flies, would

rank eighth in this consensus docking result. From these consensus compounds, eight com-

mercially available compounds were purchased to test their ability to rescue ptc>dRetM955T

flies (S1 Table). These compounds were selected based on their interactions with key elements

of the “ensemble” of targets’ binding sites, with the emphasis on the conserved glutamate in

αC-helix, the amide backbone of DFG-aspartate, and if present, the amide backbone of the

hinge region (S3 Fig). Although the compounds are not predicted to bind optimally to each

one of our targets, we hypothesized that these compounds may have an additive effect on the

disease pathway, which could be improved with medicinal chemistry.

Integrated computational and Drosophila cancer model platform for targeting kinase network
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Fig 3. Visualization of DFG-pockets. (A) Electrostatic potential (red, negative potential; blue, positive potential) on

the surface of the DFG-pocket in various kinases, including the suppressors RET and SRC, the enhancer TTK, and

ERK. (B) Accessible volume of the DFG-pocket (colored volume) for potential type-II kinase inhibitor. Hit molecule 1

is depicted in pink sticks. Broken yellow lines indicate hydrogen bonds.

https://doi.org/10.1371/journal.pcbi.1006878.g003
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Testing candidates in ptc>dRetM955T fly viability assay

Transgenic ptc>dRetM955T flies express the oncogenic Drosophila dRetM955T isoform in several

tissues in the developing fly, leading to aspects of transformation of dRetM955T tissues [6, 14]. As

a result, ptc>dRetM955T flies exhibited 0% adult viability when cultured at 25˚C, providing a

quantitative ‘rescue-from-lethality’ assay to test drug efficacy [1, 15]. Compounds were fed at

the highest accessible concentrations (see Experimental Procedures). We used sorafenib as a

positive control, as it previously demonstrated the highest level of rescue among FDA-approved

KIs in ptc>dRetM955T flies [15]. Similar to our previous results, feeding ptc>dRetM955T larvae

sorafenib (200 μM) improved overall viability to 3–4% adult survival (P< 0.05).

We used this rescue-from-lethality assay to test the efficacy of the eight compounds identi-

fied through virtual screening (Figs 4B and 5B). When fed orally, two unique compounds, 1
and 2 (S2 Table), rescued a small fraction of ptc>dRetM955T flies to adulthood (Figs 4A and

5A). 1 and 2 did not affect the body size of ptc>dRetM955T larvae or pupae compared to wild

type controls, a metric for comparing food intake. At the maximum final concentration in fly

food (100 μM), 1 rescued 1% (P< 0.05) ptc>dRetM955T flies to adulthood as compared to

3–4% rescue by sorafenib at 200 μM (Fig 4A). 1 is characterized by a 3-phenyl-(1H)-1,2,4-tra-

zole moiety (Fig 4B). 2, characterized by a 1H-indole-2-carboxamide moiety, improved

ptc>dRetM955T fly viability to an average of 1% (P< 0.05) when tested at 25–400 μM (Fig 5A

and 5B).

Fig 4. Compound 1 and its analogs. (A) Rescue of ptc>dRetM955T fly lethality by 1 and 1–1. Both showed improved efficacy (synergy) when co-administrated

with 200 μM sorafenib (soraf). (-), vehicle DMSO control. Error bars represent standard error in triplicate experiments. �P< 0.05 in one-sided Student’s t-test as

compared with vehicle control. (B) Docking pose of 1 and its analogs 1–1 and 1–2 (salmon sticks) with a DFG-out model of RET (broken yellow lines indicate

hydrogen bonds), and their inhibition of migration of the dRetM955T-expressing cells. Right, suppression of cell migration by 1 and 1–1. Controls are shown in

(C). (C) In vivo cell migration assay in ptc>dRetM955T flies. Left, a developing whole wing disc containing GFP-labeled, dRetM955T-expressing cells constituting a

stripe in the midline. The disc margin is visualized with DAPI (red pseudocolor). There are wild-type cells in black areas. Center, overgrowth of dRetM955T-

expressing cells resulting in the thickening of the stripe in the apical view (top). Virtual z-series view of confocal images derived from the plane indicated by

yellow dotted lines (bottom) shows dRetM955T-expressing cells migrating away from the original domain (arrows). Right, sorafenib suppressed the migration.

White scale bars, 50 μm.

https://doi.org/10.1371/journal.pcbi.1006878.g004
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Confirmation of novel chemical scaffolds

To validate the chemical scaffolds identified in our initial Drosophila-based chemical genetic

screening, we conducted a ligand-based chemical similarity search in the updated ZINC [8] to

identify analogs of 1 and 2. For compound 1, we retrieved five compounds that share the

3-phenyl-(1H)-1,2,4-triazole feature and have docking poses similar to 1. Our Drosophila
ptc>dRetM955T viability assay confirmed two compounds as active, 1–1 and 1–2 (S2 Table; Fig

4A and 4B). 1–1 slightly outperformed 1 in ptc>dRetM955T viability assays at similar concentra-

tions (4%; P< 0.05). Conversely, 1–2 was tested at higher concentrations (50 and 200 μM) but

did not result in improved efficacy (P< 0.05).

The docking poses of 1–1 and 1–2 resemble the proposed docking pose of 1 (Fig 4B), which

has a typical DFG-out-specific, type-II KI binding pose and is predicted to occupy the DFG-

pocket with its terminal phenyl moiety. The 1,2,4-triazole moiety, resembles the urea moiety

found in sorafenib (Fig 1A), forms favorable hydrogen bonds with the side chain of the con-

served αC-helix glutamate residue and the backbone amide of the DFG-Aspartate. In addition,

this series of compounds is smaller and shorter (MW< 360) than the fully developed type-II

KIs (MW > 450) such as sorafenib, as they lack an optimized moiety that interacts with the

hinge region of the ligand-binding site (Fig 4C).

Fig 5. Rescue of ptc>dRetM955T flies by 2 and its analogs. (A) ptc>dRetM955T viability assay. 2 showed increased efficacy when co-administrated with 200 μM

sorafenib. (-), vehicle control. Error bars represent standard error in triplicate experiments. �P< 0.05 in one-sided Student’s t-test as compared with no-drug

control. (B) Chemical structure of 2 and its analogs. (C) Docking pose of 2 and its analogs in a RET DFG-out model. These compounds are proposed to be

putative type-II kinase inhibitors that bind in the DFG-pocket through their 1H-indole moiety and interact with the conserved αC-helix glutamate side chain

and DFG-Aspartate backbone (broken yellow lines).

https://doi.org/10.1371/journal.pcbi.1006878.g005
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Compound 1–2 is structurally different from 1 and 1–1 and was less effective in rescuing

ptc>dRetM955T flies, even though it was tested at higher concentrations (Fig 4A). While 1 and

1–1 have an (1H)-1,2,4-triazole moiety, 1–2 has an 1,2,4-oxadiazol-5-amine moiety where the

(1H)-nitrogen is replaced by an oxygen. This modification distinguishes 1–2 from 1 and 1–1 in

their interaction preference: 1–2 loses a hydrogen bond donor due to the nitrogen-to-oxygen

substitution, while the electronegative oxygen introduces an unfavorable electrostatic repulsion

to the carboxylate sidechain of the conserved αC-helix glutamate (Fig 4C, 1–2 insert).

Co-administering sorafenib with 1 and 1–1 led to synergistic improvement of

ptc>dRetM955T fly viability (Fig 4A). Individually, 200 μM of sorafenib and 100 μM of 1 res-

cued 3% and 1% of ptc>dRetM955T flies to adulthood, respectively. Co-administering the two

compounds rescued 6% of ptc>dRetM955T flies to adulthood (P< 0.05). Similarly, co-adminis-

tering sorafenib and 100 μM of 1–1 rescued 8% of ptc>dRetM955T flies (P< 0.05). In contrast,

co-administering 200 μM of sorafenib and 200 μM of 1–2 did not improve fly viability. As 1–2
only weakly rescued ptc>dRetM955T flies and showed no synergy with sorafenib, we did not

pursue this hit any further.

We examined the kinase inhibition profile (DiscoverX) of 1 against a subset of the human

protein kinome (Table 1). At 50 μM, 1 did not appreciably inhibit SRC, BRAF, or S6K1, while

it demonstrated weak activity against wild-type RET and moderate activity against the onco-

genic isoform RETM918T. Of note, 1 inhibited other cancer-related targets such as FLT3

(Table 1), which activates the Ras/ERK signaling pathway [23].

1 also showed activity against aspects of transformation and metastasis in the fly. In the

mature larva, the ptc promoter is active in epithelial cells in a stripe pattern in the midline of

the developing wing epithelium (Fig 4C; wing disc). ptc-driven dRet activates multiple signal-

ing pathways, promoting proliferation, epithelial-to-mesenchymal transition (EMT), and inva-

sion of dRetM955T-expressing cells beyond the ptc domain [14] (Fig 4C). Similar to sorafenib,

oral administration of 1 blocked the invasion of dRetM955T-expressing cells into the surround-

ing wing epithelium (Fig 4B).

At lower dosage (25 μM), compound 2 weakly rescued ptc>dRetM955T flies (1%; P< 0.05)

(Fig 5A). Unlike 1, 2 did not act synergistically with sorafenib. This difference was confirmed

by the kinase inhibition profile of 2 (Table 2), in which it has stronger inhibition of RET and

RETM918T, but loses the inhibition of FLT3, two key differences between the kinase inhibition

profiles of 1 and 2.

Through a chemical similarity search of the ZINC database, we identified five compounds

that share the 1H-indole-2-carboxamide moiety with docking poses similar to that of 2 (Fig 5B

and 5C; S2 Table), and confirmed all five analogs increased viability of ptc>dRetM955T flies (Fig

Table 1. Kinase inhibition profile of compound 1 at 50 μM.

Kinase % Inhib. Kinase % Inhib.

ABL1 0 mTOR 4

AURKA 22 PDGFRB 21

AURKB 7 RET 15

AURKC 2 RET (M918T) 28

BRAF 9 RET (V804L) 35

CSF1R 3 S6K1 0

FGFR 0 SRC 5

FLT3 52 TTK 17

Bold, inhibited by more than 40%.

https://doi.org/10.1371/journal.pcbi.1006878.t001
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5A) albeit with weak efficacy (some with a P-value above 0.05). At low dose (10 μM), 2–1
showed improved efficacy in rescuing ptc>dRetM955T flies relative to 2 and displayed similar

efficacy as sorafenib at 200 μM. However, 2–1 showed poor solubility, limiting its usefulness as

a lead compound. 2–3 was also more efficacious than 2 and displayed better solubility in both

DMSO and water than 2–1; it also has the N-phenylacetamide moiety as a linker group, a com-

mon linker feature found in type-II KIs such as imatinib. Compound 2–3 displayed a different

inhibition profile than 1 and 2 (Table 2): it strongly inhibits FLT3 and PDGFRB, weakly inhib-

its RET and RETM918T, and does not inhibit SRC.

Improving efficacy through compound hybridization

Interestingly, the chemical scaffolds of our newly identified active compounds are not associated

with inhibition of protein kinases based on an analysis with SEA search [24], which relates

ligand chemical similarity of ligands to protein pharmacology. Nevertheless, they provided res-

cue of ptc>dRetM955T flies at a level similar to sorafenib and regorafenib [15]. The docking poses

of these compounds suggest a less-than-optimal interaction with the hinge region of protein

kinases, a common feature of most KIs. Furthermore, the relatively low molecular weight (~350

g/mol) of these lead-like compounds provides a window for conducting lead optimization with

medicinal chemistry. Hence, we sought to improve the efficacy of our computationally derived

leads by installing a hinge-binding moiety found in known type-II KIs such as sorafenib.

To select the optimal position on our initial hit to conduct fragment exchange with known

type-II kinase inhibitors (sorafenib and AD80 [1]), we took into consideration (i) the docking

poses and phenotypic results of these compounds and (ii) the synthetic accessibility and the

novelty of the putative hybrid compounds, even if they do not dock optimally to our intended

kinase targets. We focused on 2/2-3 due to: 1) their 1H-indole moiety docks uniquely into the

DFG-pocket and with the potential to interact with the αC-helix glutamate (Fig 5C); 2) their

1H-indole-2-carboxamide moiety resembles the urea linker that is commonly found in type-II

KIs such as sorafenib (Fig 6A; blue box); 3) the N-phenylcarboxamide moiety of 2–3 is a com-

mon linker between the hinge-binding and the DFG-pocket moieties of type-II KIs, e.g. imati-

nib (Fig 6A; grey box), while the N-(piperidin-4-yl)carboxamide moiety of 2 is not a common

linker; 4) the docking pose of 2/3’s 1H-indole moiety overlaps with the trifluoromethylphenyl

moiety of sorafenib/AD80. Based on these four criteria, we chose to perform a fragment

exchange at the carboxamide position to combine the 1H-indole-2-carboxamide moiety of

2/2-3 with the hinge-binding moiety of sorafenib and of AD80, a multi-kinase inhibitor that

has shown promise in MTC treatment [1], to create 3 and 4, respectively (Fig 6B).

Table 2. Kinase inhibition profile of compounds 2 and 2–3 at 50 μM.

Compound 2 Compound 2–3
Kinase % Inhib. Kinase % Inhib. Kinase % Inhib. Kinase % Inhib.

ABL1 0 mTOR 5 ABL1 2 mTOR 8

AURKA 10 PDGFRB 20 AURKA 13 PDGFRB 91

AURKB 2 RET 34 AURKB 22 RET 24

AURKC 22 RET (M918T) 44 AURKC 2 RET (M918T) 23

BRAF 0 RET (V804L) 44 BRAF 0 RET (V804L) 43

CSF1R 12 S6K1 0 CSF1R 20 S6K1 0

FGFR 0 SRC 6 FGFR 4 SRC 0

FLT3 25 TTK 31 FLT3 78 TTK 26

Bold, inhibited by more than 40%.

https://doi.org/10.1371/journal.pcbi.1006878.t002
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Oral administration of 3 and 4 to ptc>dRetM955T flies demonstrated that the efficacy of 4
was low with only 3% rescue, while 3 demonstrated strongly improved efficacy with 15% res-

cue (Fig 6C; P< 0.05); this level of rescue was significantly higher than the parent compound

2/2-3 or sorafenib. Additionally, 3 suppressed the invasion/migration of dRetM955T-expressing

cells in the wing epithelium (Fig 6D), further confirming its efficacy against dRetM955T-medi-

ated phenotypes. The kinase inhibition profile of 3 (Table 3) resembles that of the parent com-

pound 2–3 (Table 2) with at least two notable exceptions: 3 inhibits CSF1R, PDGFRB, and

FLT3, receptor tyrosine kinases and orthologs of Drosophila Pvr that activate the Ras/ERK sig-

naling pathway [25] and play key roles in SRC activation and tumor progression; 3 inhibits

Aurora kinases AURKB and AURKC (Drosophila ortholog aurA or aurB). Of note, although 4
did not improve the viability of ptc>dRetM955T flies, it shares chemical similarity to several

known type-I½ kinase inhibitors that have the common adenine moiety and a related indole

moiety. This group of inhibitors was shown to inhibit other related kinases, increasing our

confidence in the relevance of this chemical space for kinase pathway modulation [26].

Discussion

Integrated discovery pipeline

This study demonstrates the utility of an integrated platform that combines Drosophila genet-

ics, computational structural biology, and synthetic chemistry to enrich for the discovery of

Fig 6. Hybrid compounds with improved efficacy. (A) The kinase inhibitors imatinib, sorafenib, and 2–3 share the common

N-phenylcarboxamide moiety (grey box), while the 1H-indole-2-carboxamide of 2–3 resembles the urea linker of sorafenib

(blue box). (B) Hybridization of 2 and sorafenib and AD-80 yielded 3 and 4, respectively. Top, chemical structures of

compounds. Bottom, docking poses of compounds in a RET DFG-out model. (C) 3 rescued ptc>dRetM955T flies more

effectively than by either 2 or sorafenib alone. (-), vehicle control. Error bars represent standard error in triplicate experiments.
�P< 0.05 in one-sided Student’s t-test as compared with no-drug control. (D) 3 suppresses migration of dRetM955T-expressing

wing disc cells from the original domain (green) similarly to the positive control, sorafenib. Top and bottom, apical and z-

series views at the yellow dotted lines in apical view, respectively. Arrows, migrating cells. White scale bars, 50 μm.

https://doi.org/10.1371/journal.pcbi.1006878.g006
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useful chemical tools in an established DrosophilaMTC model (Fig 2). We have previously

shown that Drosophila can provide a unique entry point for drug development by capturing

subtle structural changes in lead compounds that are often missed by cellular or biochemical

assays [15]. Here we refine this approach by iteratively combining experimental testing with

computational modeling. A key strength of the integrated approach is its ability to rapidly

derive candidates from a large, purchasable chemical library via virtual screening to test chem-

ically unique compounds with our fly models in a cost-effective manner. This platform allowed

us to quickly confirm the in situ relevance of active chemotypes through iterations of computa-

tional modeling, synthetic chemistry, and phenotypic testing in the fly. We expect this inte-

grated pipeline is generally applicable to kinase networks associated with other diseases [7].

DFG-out modeling approach

DFGmodel is a recently developed computational tool that generates models of kinases in

their inactive, DFG-out conformation for rational design of type-II KIs [10]. In a recent study,

models generated by DFGmodel were used to guide the optimization of the drug sorafenib to

better target a new disease space [15]. Here, we demonstrate a successful application of

DFGmodel to explore compounds that are not appreciated as kinase inhibitors. For each

kinase target, DFGmodel uses multiple experimentally determined structures as modeling

templates and generates multiple homology models. Thus, this method samples a large fraction

of the DFG-out conformational space during the model construction, which enables us to

account for the flexibility of the binding site during virtual screening [27]. Notably, DFG-out

models capture key features that are important for protein-ligand interactions in multiple

kinases simultaneously, providing a framework for rationalizing activity of known inhibitors

and developing unique KIs that target a signaling pathway. For example, our results suggest

that the electrostatic potential within the DFG-pocket is a key feature for inhibitor selectivity:

ERK has an inverse electrostatic potential in the DFG-pocket than that of our target kinases

RET and BRAF (Fig 3), which may explain the insensitivity of ERK toward inhibitors such as

sorafenib.

Identification of biologically active compounds

Although used in the clinics for MTC, sorafenib (and its close analog regorafenib) show lim-

ited efficacy in MTC patients; this poor activity is mirrored in the ptc>dRetM955T fly model,

which was rescued 3–4% at 200 μM [15]. Despite considerable academic and industry effort,

the known chemical space of kinase inhibitors is limited [7]. For example, sorafenib and

Table 3. Kinase inhibition profile of compound 3 at 50 μM.

Kinase % Inhib. Kinase % Inhib.

ABL1 0 mTOR 4

AURKA 15 PDGFRB 98

AURKB 88 RET 29

AURKC 91 RET (M918T) 26

BRAF 4 RET (V804L) 46

CSF1R 95 S6K1 0

FGFR 0 SRC 4

FLT3 80 TTK 27

Bold, inhibited by more than 40%.

https://doi.org/10.1371/journal.pcbi.1006878.t003

Integrated computational and Drosophila cancer model platform for targeting kinase network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006878 April 26, 2019 12 / 19

https://doi.org/10.1371/journal.pcbi.1006878.t003
https://doi.org/10.1371/journal.pcbi.1006878


regorafenib differ in only one non-hydrogen atom. Through structure-based virtual screening

against multiple kinase targets in the MTC pathway, we discovered chemically unique com-

pounds (S2 Table) with an ability to rescue ptc>dRetM955T viability that is similar to sorafenib,

an FDA-approved KI (Figs 4 and 5).

Importantly, our data indicates that these compounds act through key cancer networks. For

example, compounds 1, 2, 2–3 and 3 all have shown the ability to suppress invasion of

ptc>dRetM955T cells in the wing epithelium. Previous work demonstrated that dRetM955T-medi-

ated wing cell invasion is controlled by SRC [15, 28], which acts by controlling E-cadherin and

Matrix Metalloproteases (MMPs). Of note, 1, 2, 2–3 and 3 each demonstrated significant activ-

ity against orthologs of Drosophila Pvr, a key regulator of Src: all show significant activity

against human FLT3, while 3 shows additional activity against Pvr orthologs CSF1R and

PDGFRB. In addition to being orthologs of Pvr, FLT3, CSF1R, and PDGFRB similarly can

activate SRC [29]. We propose that this activity against regulators of SRC account for the abil-

ity of 1, 2, 2–3 and 3 to suppress invasion, a key first step in tumor metastasis. Other activities,

for example, 3’s inhibition of Aurora kinases—required for proliferation during tumor pro-

gression [30]—likely also contributes. Indeed, AURK inhibitors are known to be active against

MTC [31, 32] and synergy between AURKs and FLT3 is currently being explored clinically

through a number of dual-AURKB/FLT3 inhibitors [33, 34].

Recombination of building blocks for future inhibitors

Although the new tool compounds 1 and 2 are not themselves sufficiently potent to serve as

therapeutic leads, they reveal diverse fragment-like pharmacophores that serve as starting

points for an exploration of new chemical space. These pharmacophores can be further opti-

mized by combining with well-developed chemotypes that are known to interact with kinase

binding sites (e.g., the hinge binding region) to form more efficacious chemical probes [35];

this provides a key second step towards building effective compounds. For example, 2 and 2–3
include an 1H-indole moiety capable of occupying the DFG-pocket of protein kinases from

different families and a carboxamide group commonly found in type-II KIs (Fig 6A). Guided

by the docking poses of these compounds, the 1H-indole-2-carboxamide group was combined

with an optimized hinge-binding moiety from sorafenib, to form a significantly more effica-

cious compound (i.e., 3). As indicated in the kinase inhibition profile of 3 (Table 3), it shares

part of the target set of its constituents 2 and 2–3.

Despite its promise, our approach has several limitations. The computational modeling

does not take into account conformational changes modulated by inter- or intra-molecular

interactions between the kinase domain and binding partners (e.g., SH2/SH3 domains, scaf-

folding proteins), as well as the differential propensity among kinase domains to adopt DFG-

out states [36]. This weakness is partly mitigated through careful template selection for model

building as well as docking of the small molecules to multiple models representing different

conformers. Second, although kinases are closely conserved between humans and Drosophila,

fly models have some differences with human disease networks including lacking an adaptive

immune system. They lack some relevant target organs (e.g., thyroid, breast, prostate, pan-

creas); in these cases we focused on developing eye and wing epithelia, which provide ‘generic’

polarized epithelia that can give biological and pharmacological results in Drosophila that have

proven translatable to mammals as we previously reported [1, 15, 37–39]. Despite these limita-

tions, flies offer a useful genetic and pharmacological toolkit which can facilitate drug develop-

ment for cancer as we show in this study. Future studies will include testing the compounds

discovered in this study on mammalian models including human MTC cell lines and mouse

xenografts [15].
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In summary, we demonstrate the potential of combining chemical modeling with Drosoph-
ila genetics to rapidly and efficiently explore novel chemical space. This provides an accessible

and cost-effective platform that can be applied to a broad palette of diseases that can be mod-

eled in Drosophila. Combining the strengths of these two high-throughput approaches opens

the opportunity to develop novel tool and lead compounds that are effective in the context of

the whole animal.

Materials and methods

DFG-out models

Models of kinase targets (human RET, SRC, BRAF, S6K1) in the DFG-out conformation were

generated using DFGmodel [10]. Briefly, the method takes a DFG-in structure or the sequence

of the protein kinase as input. DFG-model relies on a manually curated alignment between the

target kinase and multiple structures representing unique DFG-out conformations. It calls on

the structure-based sequence alignment function of T_COFFEE/Expresso [40] v11.00.8 to per-

form sequence alignment of the kinase catalytic domain to the templates, followed by the

multi-template function of MODELLER [41] v9.14 to generate 50 homology models covering

a range of conformations. For each kinase 10 DFG-out models with largest binding site vol-

ume, as calculated by POVME [42] v2.0, were used for further study. These ensembles of

DFG-out models of our targets BRAF, p70-S6K, RET, and SRC have been evaluated and con-

firmed to enrich known type-II inhibitors over non-ligands derived from kinase-inhibitor

complexes found in PDB in our previous study [10]. The area-under-curve (AUC) of virtual

screening performance of our targets BRAF, RET, and SRC DFG-out models are 87.7, 82.8,

and 76.8, respectively, which correspond to at least 4- to 5-fold increase in the enrichment

accuracy over randomly selected ligands in a known sample set [43–45]. This ensemble of

models provides an approximation of the binding site flexibility, as well as optimizes the bind-

ing site for protein-ligand complementarity and structure-based virtual screening [11, 27, 43].

Virtual screening

Initial virtual screening utilized the ZINC12 [22] “available now” lead-like chemical library

(downloaded in 2013, 2.2 million compounds). A maximum of 300 conformers for each com-

pound were generated with OMEGA. Each conformer was docked with FRED using the

default settings [40][41]. The top scoring pose was used for further analysis. For each of the

four targeted kinases (RET, BRAF, SRC, p70-S6K), the ensemble of 10 DFG-out models was

used for screening. Each compound was docked against 10 models of each kinase target, result-

ing in 10 docking poses per each kinase-compound pair. The results were filtered by selecting

compounds that rank in the top 10% in at least five models per kinase-compound pair, repre-

sented by the best scoring pose. This filtering process was done for all four targets. Next, com-

pounds that scored in the top 25% in at least 3 of 4 the kinase ensemble models were collated

into a final set of 247 compounds. These consensus best-scoring ligands, representing 0.0112%

of the library, were visually inspected to remove molecules with energetically unfavorable or

strained conformations, or with reactive functional groups that may interfere with assays [46],

which are commonly observed in large virtual screenings. Eight compounds, all top-100 rank-

ing among 247 candidates (S1 Table), were selected based on their interactions with the mod-

els (DFG-pocket occupancy, hydrogen-bond to conserved amino acids, etc) and chemical

novelty and were purchased for Drosophila viability screening. Analogs 1–1, 1–2, 2–1 to 2–5,

and others (S2 Table) were identified based on the structure of compounds 1 and 2 through

the chemical similarity search function available in ZINC15 [8] and SciFinder using the default
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setting and Tanimoto coefficient above 70% similarity. These compounds are commercially

available through vendors such as ChemBridge and Enamine.

Chemical methods

For synthetic procedures and characterization data related to compounds 1, 3, and 4, please

see supplementary materials.

Kinase profiling of compounds

Kinase inhibition profile of the compounds was assessed at 50 μM through commercially avail-

able kinase profiling services (DiscoverX).

Drosophila stocks

Human orthologs of Drosophila genes were predicted by DIOPT (http://www.flyrnai.org/cgi-

bin/DRSC_orthologs.pl). The multiple endocrine neoplasia (MEN) type 2B mutant form of

Drosophila Ret carries the M955T mutation (dRetM955T), which corresponds to the M918T

mutation found in human MTC patients. The ptc-gal4, UAS-GFP; UAS-dRetM955T/SM5(tub-
gal80)-TM6B transgenic flies were prepared according to standard protocols [15]. In these

flies, the tubulin promoter drives GAL80, a suppressor of GAL4, to repress dRetM955T expres-

sion. We crossed them with w- flies to obtain ptc>dRetM955T flies that lost GAL80 allele, which

derepressed dRetM955T expression (S1A Fig). Transgenic ptc>RetM955T flies were calibrated to

have 0% survival when raised at 25˚C, which allowed for drug screening (S1B Fig).

Chemical genetic screening in flies

We employed dominant modifier screening [15] using the ptc-gal4, UAS-GFP; UAS-
dRetM955T/SM5(tub-gal80)-TM6B to screen for fly kinase genes that affected the dRetM955T-

induced lethality in flies when heterozygous (ptc>RetM955T;kinase-/+). Genes that improved or

reduced survival of ptc>dRetM955T flies when heterozygous were designated as genetic ‘sup-

pressors’ or ‘enhancers’, respectively (Fig 1B). Suppressors are candidate therapeutic targets

that when inhibited may reduce tumor progression.

Stock solutions of the test compounds were created by dissolving the compound in DMSO

at the maximum concentration. The stock solutions were diluted by 1,000-fold or more and

mixed with semi-defined fly medium (Bloomington Drosophila Stock Center) to make drug-

infused food (0.1% final DMSO concentration; maximum tolerable dose in flies). Approxi-

mately 100 ptc>dRetM955T embryos alongside with wild-type (+;+/SM5tubgal80-TM6B) flies

were raised until adulthood on drug-infused food for 13 days at 25˚C. The numbers of empty

pupal cases (P in S1B Fig) and that of surviving adults (A) were used to determine percentage

of viability, while their body size, which is affected by food intake, temperature, and humidity,

were compared to vehicle-treated groups to standardize the experimental conditions. For tox-

icity test, the viability of the wild-type flies raised alongside with the ptc>dRetM955T flies in the

same vials was examined. None of the tested compounds show detrimental effect in the control

flies, showing > 90% viability at any doses tested for the compounds equivalent to vehicle.

Wing discs cell migration/invasion assays

Third-instar ptc>dRetM955T larvae were dissected, and developing wing discs were collected,

fixed with 4% paraformaldehyde in PBS, and whole-mounted. At least 10 wing discs were ana-

lyzed for each treatment. Invasive GFP-labeled dRetM955T-expressing cells were visualized by

their green pseudocolor under a confocal microscope. The apical and the virtual z-series views
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of the wing disc were examined to identify abnormal tissue growth and dRetM955T-expressing

cells migrating beyond the ptc domain boundary.

Supporting information

S1 Fig. (A) Preparation of transgenic ptc>dRetM955T flies for chemical genetic screening [3].

(B) Determination of compound efficacy in a fly-based chemical genetic screening. The num-

bers of empty pupal cases (P) and surviving adult (A) are used to determine viability.

(TIF)

S2 Fig. DFG-pocket of various protein kinases. The left panels show the DFG-pocket (col-

ored volume) with the docking pose of 1. The right panels show the electrostatic potential on

the surface of DFG-pocket (blue, positive; red, negative).

(TIF)

S3 Fig. Common interactions in type-II inhibitor binding site. Type-II kinase inhibitors are

modular. They are composed of a hinge-binding moiety and a spacer group, followed by a

linker that forms hydrogen bonds with the conserved glutamate residue on the αC-helix, as

well as a hydrophobic “cap” group that docks into the DFG-pocket. Key elements in type-II

inhibitor/kinase interactions include (A) Hydrogen bonds with “hinge” amide backbone. (B)

π-π stacking with DFG-Phe. (C) Hydrogen bonds with αC-helix glutamate. (D) Hydrogen

bond with DFG-Asp amide backbone. (E) van der Waals interactions in DFG-pocket.

(TIF)

S1 Table. Compounds identified from the ZINC12 lead-like dataset and their ranking in

the 247-compound consensus virtual screening result of the four kinase models.

(DOCX)

S2 Table. Initial hits, their active purchasable analogs, and synthesized analogs.

(DOCX)

S1 Text. Compound synthesis and characterization.

(DOCX)
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