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Abstract: Biomolecule grafting on polyether ether ketone (PEEK) was used to improve cell affinity
caused by surface inertness. This study demonstrated the sequence-polished (P) and sulfonated (SA)
PEEK modification to make a 3D structure, active biomolecule graftings through PEEK silylation
(SA/SI) and then processed with phosphatidylcholine (with silylation of SA/SI/PC; without SA/PC)
and type I collagen (COL I, with silylation of SA/SI/C; without SA/C). Different modified PEEKs
were implanted for 4, 8, and 12 weeks for histology. Sulfonated PEEK of SA showed the surface
roughness was significantly increased; after the silylation of SA/SI, the hydrophilic nature was
remarkably improved. The biomolecules were effectively grafted through silylation, and the cells
showed improved attachment after 1 h. Furthermore, the SA/SI/PC group showed good in vitro
mineralization. The new bone tissues were integrated into the 3D porous structures of SA/SI/PC
and SA/SI/C in vivo making PEEK a potential alternative to metals in orthopedic implants.

Keywords: polyether ether ketone; surface modification; osteogenic; type I collagen; phosphatidyl-
choline; in vivo

1. Introduction

Polyether ether ketone (PEEK) is suitable for bone implant materials because of its
good mechanical, chemical stability and thermal properties [1]. At present, PEEK has many
clinical applications, such as spinal cages [2–4], phantom samples for skull prosthesis [5,6],
and dental implants [6,7]. It can also be applied in upper jaw prostheses [8]. The biological
inertness of PEEK prevents adverse reactions with tissues [9], but this may limit the
applications of the implant because of its poor tissue affinity [10]. PEEK is still categorized
as bio-inert; therefore, many studies have used different surface modification techniques to
change its inherent inertness and address this shortcoming [11].
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Many commonly used surface modification strategies to enhance bio-bonding forces
are known, including sandblasting [12], plasma spraying [13], oxygen plasma [14], neu-
tral atom beam [15], nitrogen plasma [16], and acid etching [17]. In addition to these
physiochemical modifications, biological grafts can be used. The use of grafted active
biomolecules generally aims to increase the bone–implant integration of PEEK, which
is widely applied in orthopedic implants. Active biomolecules, such as type-I collagen
(COL I) [18], peptides [19], and RGD [20], have been used in the medical field for surface
modifications. In recent years, many approaches have been used to modify PEEK [21–23],
such as the use polydopamine-coated PEEK substrates in grafting TiO2 onto the surfaces
to increase its bioperformance and facilitate the integration of implants and tissues [22].
Another strategy used is depositing calcium phosphates into PEEK and further coating
with antibiotics that have antibacterial and osteogenic activities [23].

In addition, studies on preparing PEEK with a 3D porous structure by sulfonation
treatment are found. However, sulfonation treatment produces abundant sulfur-containing
SO3H functional groups on the PEEK surface, which can release and display a negative
influence on cell proliferation. Therefore, desulfonation by heating treatments or grafting
biomolecules on PEEK are popularly used to improve the cell affinity. The results through
hydrothermal treatment to get rid of the residual sulfur compounds indicate that 3D
porous PEEK can induce the differentiation of M2 (alternatively activated macrophages)
and promote tissue repair [24]. Torstrick et al. compared the osseointegration effects among
porous PEEK, PEEK surface coating deposited with plasma-sprayed titanium, and PEEK
with a smooth surface after being implanted into the tibia of rats [25]. Their results showed
that all porous PEEK samples showed good osteogenic differentiation and osseointegration
effects in vitro or performances after in vivo implantation. This study combines physical,
chemical, and biomolecular grafting modifications by using sulfonation and silylation
(silanization) to modify the surface structure and physiochemical properties of PEEK, and
COL I and phosphatidylcholine are grafted to evaluate the surface modification effects
of PEEK on the potential osseointegrated abilities to correlate in vitro conditions with the
in vivo reality.

2. Materials and Methods
2.1. PEEK Control/Polishing Group Preparation

Medical-grade PEEK, which was purchased from Grand Ware Trading Co., Ltd.
(Taipei, Taiwan), was processed based on our published research [26]. In standardiz-
ing the surface conditions of the PEEK sample, the samples were prepared at a flat disk
with dimensions of 8 mm in diameter and 1 mm in thickness through a precision cutting
machine (CL40, Top Tech Machines Co., Ltd., Taichung, Taiwan). Sliced PEEK surfaces
were gradually polished with sandpaper to 2000 grit; further finished by 1, 0.3, and 0.05 µm
alumina polishing powder slurry; and sequentially cleaned using water and 99.8% alcohol
with ultrasonication for 15 min to remove any residues on the surface (the control P group).

2.2. Functionalized Porous Structure of Surface-Modified PEEK

The P group was immersed in a magnetically stirred concentrated sulfuric acid (98%,
PanReac AppliChem, Chicago, IL, USA) and allowed to react for 30 min at room tempera-
ture (SA group). Afterward, the sulfonated SA samples were sequentially and ultrasonically
cleaned with deionized water and acetone. After sulfonation, the samples were silanized
with acetone containing 10% 3-mercaptopropyltrimethoxysilane (MPTMS; Sigma-Aldrich,
St. Louis, MO, USA) for 30 min, further immersed in 1% glutaraldehyde with phosphate-
buffered saline for another 30 min at 25 ◦C, rinsed in pure buffer saline, and then dried in a
vacuum oven (the SA/SI group).

2.3. Bioactive Molecule Grafting

Solutions containing 5 wt% L-α-phosphatidylcholine (Sigma-Aldrich) or 0.025 mg/mL
COL I (Type I collagen, Sigma-Aldrich) were prepared. Then, 60 µL of these solutions were
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dropped onto the surfaces of 8 mm ϕ test pieces. The PEEK samples were kept at 4 ◦C for
16 h for bioactive molecule grafting and dried. The groups with phosphatidylcholine and
COL I were referred to as SA/SI/PC and SA/SI/C, respectively.

2.4. Surface Characterizations

The substrate was observed using an optical microscope (OM; Primotech, ZEISS,
Jena, Germany), and the thickness of the sulfonated layer was measured using Matscope
software (ZEISS). The measured substrate was randomly sampled into 250 pieces. The
topographies of different groups were analyzed through scanning electron microscopy
(SEM; S-3400, Hitachi, Tokyo, Japan).

The roughness test used a surface roughness tester (SJ-301, Mitutoyo Ltd., Kawasaki,
Japan) to measure the centerline average roughness (Ra) of the samples after a series of
PEEK modifications. Equation (1) for the measurements is as follows:

Ra =
1
L

L∫
0

f(x)dx (1)

The hydrophilic and hydrophobic properties were measured by a contact angle mea-
suring instrument (CAMF100, Xuyang Nanotechnology Co., Ltd.; Creating Nano Technolo-
gies, Inc., Tainan, Taiwan) equipped with a charge-coupled device to observe the droplet
shape for analysis.

The content of active biomolecules on the surface was tested using the Bicinchoninic
Acid Kit (BAC, Sigma-Aldrich) as the test reagent, and the enzyme-linked immunosorbent
assay ELISA macroplate reader (EZ Read 400, Biochrom, Cambridge, UK) was used to
measure the absorbance at a wavelength of 570 nm. Furthermore, a standard curve was
used to regress the content of active biomolecules. Put the sample into 48 wells and added
10 µL of each original standard solution (undiluted), then mixed with 200 µL of BCA
reagent on the surface of the test sample and reacted in the oven at 60 ◦C for 15 min. Took
100 µL reaction solution and added it to 96 wells for absorbance to test the content of
the biomolecules. Chemical analysis of the surface was performed by attenuated total
reflection-Fourier transform infrared spectroscopy (ATR-FTIR; NICOLET 6700, Thermo,
Agawam, MA, USA) to analyze the PEEK surface modifications.

2.5. Biocompatibility and Cell Morphologies

In accordance with ISO 10993-5:2009, the test cell used for cell viability was mouse
fibroblast L929, and the culture medium used was minimum essential medium alpha
(α-MEM; Gibco, Foster, CA, USA) containing 10% horse serum of fetal bovine serum (FBS;
Gibco) and 1% antibiotics of penicillin/streptomycin (Gibco), which was placed in an
incubator containing 5% CO2 at 37 ◦C.

Three control groups were identified in this testing, including the positive control
(15% dimethyl sulfoxide, DMSO, Sigma-Aldrich), negative control (the extract obtained by
immersing high-density polyethylene (HDPE) in the culture medium and placing it in an
incubator for 24 h), and control (blank; culture medium only).

All samples were sterilized using an irradiation dose of 25 kGy gamma-ray and then
tested. The extract of different PEEK specimens was prepared on the basis of the standard
weight of the sterilized test specimen (1 g) immersed in the culture medium of 5 mL
and placed in an incubator for 24 h. The cell viability quantitative test was performed
to culture L929 cells in a 96-well plate at a density of 1 × 104 cell/well overnight. Then,
100 µL/well of the extracts was added and cultured for another 24 h. The extract was
aspirated, and afterward tetrazolium salt (XTT cell proliferation kit; Biological Industries,
Beit Haemek, Israel) was added to 50 µL/well and 100 µL/well culture medium. The assay
is based on the ability of metabolic active cells to reduce the tetrazolium salt XTT to orange
colored compounds of formazan. The intensity of the dye is proportional to the number
of metabolic active cells. After the plate was placed in an incubator for 4 h with XTT, an
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ELISA reader was used to test the absorbance at a wavelength of 492 nm. The absorbance
was proportional to cell viability.

2.6. Relative Short-Term Cell Attachment

The bone marrow D1 cells from mesenchymal stem cells were cloned from BALB/c
mice (American-type Culture Collection, Manassas, VA, USA). The cells were supple-
mented with 10% FBS/0.5% penicillin/streptomycin (Gibco). The cells were used before
the eighth passage to prevent individual cell variation. The substrate disks of different
PEEK surface condition groups were placed into 48-well plates at a contact cell density of
5 × 103 cells/specimen and then shook for 1 h to allow D1 cell attachment. The cells were
incubated for 1 h, 1 day, and 2 days. At different periods, the substrates were washed, fixed
with 2.5% glutaraldehyde and paraformaldehyde, gold plated, and observed using SEM to
determine the interval of attachment and proliferation for cell morphologies.

2.7. Relative Long-Term Cell Proliferation

D1 cells were cultured, and the alamarBlue® reduction assay kit (BIO-RAD, Hercules,
CA, USA) was used to analyze the proliferation rate of D1 cells. All samples were sterilized
using 25 kGy gamma-ray and then cultured. The cells were cultured on different surface
conditions of the PEEK sample at a concentration of 1 × 105 cells/well. After 1 h, the cells
were attached to the test piece, and 1 mL of medium was added. The culture time was 1, 4,
7, 10, and 14 days at different periods. After culturing, the PEEK substrates were washed
twice with PBS, then mixed with cell culture medium with an AlamarBlue® proliferation
assay, and incubated at 37 ◦C for 4 h. One hundred microliters of culture medium was
placed on a 96-well plate and measured with an ELISA reader. The cell numbers were
determined from a plot of absorbance (OD values) versus the respective D1 cells and
spectrophotometrically measured at 570 and 600 nm. Each experiment was performed five
times (n = 5).

2.8. Alkaline Phosphatase (ALP) Semi-Quantification and Staining

The cell mineralization of ALP production on the surfaces of different PEEK surface
groups was determined using the p-nitrophenyl phosphate (p-NPP) kit (Sigma-Aldrich,
Darmstadt, Germany) with Tris-buffered saline, and ALP staining was performed using the
SIGMAFAST™ BCIP®/NBT kit (Sigma-Aldrich, Darmstadt, German) in accordance with
the manufacturer’s instructions. Testing was performed simultaneously with the same
intervals as in the cell proliferation tests. ALP activity was determined through absorbance
measurements using an ELISA reader at 405 nm.

2.9. In Vivo Studies

The animal study was reviewed and approved by the Institutional Animal Care and
Use Committee (IACUC) of Kaohsiung Medical University (IACUC 104091, 1 June 2016).
The experimental groups were P, SA, SA/SI/PC, and SA/SI/C, and the implantation time
was 4, 8, and 12 weeks. The surgical procedure was the same as that of the previous
study [27,28]. The surface-modified PEEK cylinder with a diameter of 4 mm and height of
5 mm was implanted into the created bone defect using a drill with a diameter of 4 mm,
and depth stops of 5 mm were made in the distal medial malleolus (condyle) of the rabbit
femur. The experimental rabbits were sacrificed at 4, 8, and 12 weeks after implantation.
After the femurs with implants were fixed and dehydrated, these non-decalcified tissues
were then cold embedded in epoxy resin. The embedded non-decalcified test specimen was
cut into thin slices by a slow cutting machine. The thickness of the test piece was gradually
reduced to 500 µm by grinding, and then, the test specimen was pasted to the carrier. The
glass slide was polished two times until the thickness of the test specimen was 200 µm
and finally polished with alumina slurry of different particle sizes to complete the non-
decalcified tissue specimen. The completed test specimen was stained with hematoxylin
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and eosin (H&E), and histological observation was performed with an OM and image
analysis software.

2.10. Statistical Analysis

Statistical analysis was performed through IBM SPSS Statistics 20 (IBM Corporation,
Armonk, NY, USA), and one-way analysis of variance (ANOVA) was used to determine
statistically significant differences with p < 0.05. Comparison procedure using Tukey’s
Honestly Significant Difference test was performed to analyze significant differences among
the groups [29].

3. Results and Discussion
3.1. Surface-Modified Characterizations
3.1.1. Grafting Concepts, Substrate Structures, and Surface Roughness

The schematic diagram of the proposed reactions by surface chemical modification is
shown in Figure 1. The polished PEEK with controlled surface topography (6.8 ± 0.4 nm
with mean ± standard deviation) was first sulfonated so that the surface of the PEEK
would obtain sulfonate groups and a microporous structure. Then, the sulfonated PEEK
was silanized so that the surface of the specimen would obtain aldehyde groups to facilitate
the grafting of biomolecules. Next, the sulfonated surface-treated PEEK with and without
silylation was further grafted with COL I and phosphatidylcholine (Figure 1). The proposed
progressive bonding procedure was hydrolysis of silane in an alcohol-containing aqueous
solution to produce molecular groups with hydroxyl (R–CH2–OH). This molecular group
was combined with the sulfonic acid (–SO3H) produced by sulfonation to obtain the thiol
derivative bonding of R–SH on the PEEK surface. This molecule was aldehyde fixed to
form an aldehyde group (–CHO) [30], allowing the amine or carboxylic acid ester groups of
active biomolecules to bond with the aldehyde and grafting the imine or carbonyl bonding
between the active biomolecules and PEEK substrate surface (Figure 1).
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Figure 1. Schematic diagram of biopolymer grafting with PEEK surface modification.

The sample dimension used in this experiment after PEEK sulfonation would expand,
which increased in size and varied slightly with an outer diameter of approximately
8.28 ± 0.03 mm from 7.99 ± 0.02 mm (Figure 2a). Under OM observation, a sulfonated
layer appeared around the test specimen (SA), and the thickness of the sulfonated layer
was 269.35 ± 42.34 µm (n = 250; Figure 2b). The PEEK surface had evenly distributed and
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inter-connective micropores after sulfonation under SEM observation (Figure 3a), and the
surface roughness was also significantly increased (Figure 3b). After silanization of the
sulfonated PEEK (SA/SI), the surface pore structure and surface roughness had no evident
changes. After further grafting of active biomolecules (SA/SI/PC, SA/SI/C), no evident
difference was observed in pore types (p > 0.05), although the roughness decreased slightly.
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3.1.2. Surface Wettability and Bioactive Molecule Grafting

The water droplet contact angle of surface-modified PEEK (Figure 4) showed that the
contact angle of p was 71.9◦. After sulfonation (SA), the porous structure and roughening of
the surface resulted in an increase in the contact angle showing a hydrophobic surface. After
silylation (SA/SI), the contact angle was decreased to 50◦ because of hydroformylation,
which caused the formation of aldehydes on the surface; thus, the substrates changed to
hydrophilic. In the molecular structure of phosphatidylcholine, one end was a hydrophobic
fatty acid chain, and the other was a hydrophilic choline end. Given the hydrophilic choline
end, water wettability increased, and among the groups, SA/SI/PC provided bonding to
graft with more phosphatidylcholine compared with SA/PC without silylation. Therefore,
the SA/SI/PC group was more hydrophilic than SA/PC. COL I was grafted with silylation
(SA/SI/C), which had the same trend as SA/C, and COL I could effectively improve the
hydrophilic nature of the substance because its structure contained many amino acids, such
as RGD sequence [31].
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In the graft weights for phosphatidylcholine and COL I (Figure 5), the SA/SI surface
could be efficiently grafted with active biomolecules, and the weight content of the grafted
phosphatidylcholine was higher than that of grafted COL I. Considering that functional
aldehydes were produced after silylation, which could form amide bonding sides with
active mbioolecules, more active biomolecules were grafted than groups without silylation.
The groups after sulfonation/silylation obtained grafts three times higher than the groups
that only underwent sulfonation, indicating that silylation-functionalized PEEK could
effectively graft the active biomolecules.

The surface-modified PEEK was analyzed by ATR-FTIR (Figure 6), and the spectrum
showed CH stretching vibrations at 765 and 840 cm−1, C=C stretching at 1595 cm−1,
CH bending vibrations at 1158 and 1188 cm−1, and C–C vibration at 1490 cm−1. Such
findings were all aromatic characteristic absorptions of the ring vibration [32,33]. The
stretching of 1220 cm−1 C–O–C was the vibration peak of ether connected between two
aromatic rings; the C=O vibration peak of 926 cm−1 and the stretching of 1650 cm−1
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were the ketone groups. The above-mentioned absorption peaks were typical vibration
peaks of PEEK [34]. In the group after sulfonation, the vibration peak at 864 cm−1 was
the absorption of sulfonate (SO3H) in O=S=O symmetric stretching [35]; absorptions at
1250 and 1382 cm−1 were the SO asymmetric stretching in sulfonate vibrations [35,36].
This result also showed that PEEK reacted with sulfuric acid after sulfonation to form
sulfonic acids. After silylation, the characteristic C=O peak appeared at 1650 cm−1, and
the stretching vibrations of amide I should appear at 1647 cm−1 for bioactive molecule
grafts. However, these two absorptions were the same as the vibrations of the ketone in
PEEK, which caused them to overlap, and verifying became difficult. The –CH stretching
vibration of 2850–3000 cm−1 was primarily absorbed by the propyl group in MPTMS [37].
The OH functional groups at 3200–3500 cm−1 were observed, indicating that the aldehyde
was generated during hydroformylation in the silylation [35]. The characteristic band of
the grafted bioactive molecule PEEK-O was observed at 2700–2900 cm−1.
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3.2. Biocompatibility and Measurements In Vitro
3.2.1. Cell Viability of Fibroblast L929 Cells

The specification standard in the ISO-10993-5, which regulated the cytotoxicity testing,
indicated that the cell viability was higher than 70%, which implied that the material
was not cytotoxic. The results among the three control and seven experimental groups
(Figure 7a) showed only the cytotoxic positive control group DMSO, whose cell survival
rate was only 15%.

This result also showed that PEEK was not toxic to cells even after different surface
modifications and grafting of active biomolecules. The cells in the 15% DMSO positive
control group aggregated and showed a spherical shape, indicating cell death (Figure 7b).
In the negative control group of HDPE the cells were healthy and spindle shaped similar to
the control group, indicating that sterilization was effective. Optical microscopy analysis
mainly depends on whether the cell phenotype is affected (Figure 7b). Semi-quantitative
cell number analysis is more accurate for cell proliferation (Figure 7a). The experimental
groups showed that apart from the cell survival rate, which have met the standard, the cells
had no adverse effects such as degeneration compared with those of the control group.
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of cell morphological observation.

3.2.2. Cell Attachment of Bone Progenitor D1 Cells

Unmodified PEEK had some D1 cells attached on the substrate surface within 1 h,
yet more cells showed incompletely attached spherical morphology (Figure 8). By con-
trast, the sulfonated (SA) group had a more hydrophobic surface, causing the unattached
spherical shape of the cells. The cell morphologies of the groups (SA/PC and SA/C)
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grafted with active biomolecules after sulfonation without silylation were in the form of
preliminary attachment. In the groups modified by sulfonation with further silylation
(SA/SI, SA/SI/PC, and SA/SI/C), the cells displayed flat membrane topography, and
some cells formed pseudopodia because these groups had both hydrophilic and rough
surface properties [38–40] so that the cells could complete attachment in a short time.
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day, and 2 days.

After 1 day of culture, the cells of all groups were attached to the surface of the
PEEK, but the cells of the silylated groups (SA/SI, SA/SI/PC, and SA/SI/C) were flat,
and the area of cell attachments was wider than that of other PEEKs. After 2 days of cell
culture, the cells on the surface of unmodified PEEK still showed a longitudinal thin shape,
whereas the cells of other groups were proper spindle flat with good attachment. This
result showed that after sulfonation, PEEK could promote cell attachment because of its
surface roughness and PEEK after sulfonation modified with silylation. It could not only
promote cell attachment but also attract cell attachment in the early stage.

3.2.3. Cell Proliferation of Bone Progenitor D1 Cells

With the increase of cell culture time, the proliferation rate of cells had an upward trend
and reached a peak on the seventh day (Figure 9). As shown in Figure 10, the proliferation
rate no longer increased on the 10th day, and the secretion of ALP of cells was presumed to
be increased, indicating that cell mineralization had begun; thus, such cells did not continue
to proliferate. After 1 and 4 days of culture, the cell proliferation rate of the SA/SI/PC
and SA/SI/C groups was higher than that of the other groups. The grafting of COL I
could increase the cell proliferation rate primarily because of collagen hydrolysis, and the
amino acids in COL I such as proline could promote cell proliferation [41,42]. Considering
that the grafted phosphatidylcholine increased the hydrophilicity of the PEEK surface and
hydrolysis into different fatty acids, the cells could easily attach to the surfaces [43]. After
7 days of culture, the proliferation rate of D1 cells on the SA group was the lowest because
of the hydrophobic surface of SA. Accordingly, phosphatidylcholine had a better effect on
promoting the proliferation of D1 cells than COL I.
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Figure 9. Cell metabolic proliferation assay analysis (AlamarBlue® kit) of the D1 cell proliferation test on surface-modified
PEEK for 1, 4, 7, 10, and 14 days (n = 6). Character symbols * indicate that each testing group after one-way ANOVA is
significantly different (p < 0.05).
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group after one-way ANOVA is significantly different (p < 0.05).

3.2.4. ALP Activity and Staining for the Mineralization of D1 Cells

ALP is a phospholipase secreted by osteoblasts, which can catalyze the hydrolysis of
phosphomonoester R-O-PO3 to release phosphate and participate in the mineralization
of bone matrix, while osteoblasts begin to differentiate, ALP will increase significantly.
Therefore, determining whether osteoblasts are differentiated is possible by testing the
content of ALP [44]. The ALP activity of D1 cells cultured on different surfaces of modified
PEEK is shown in Figure 10. Use the reagent as the blank group as the reference (0%) for
the determination. The higher the cell content, the higher the relative percentage. When the
culture space is limited, the effect of cell proliferation will be inhibited. After the D1 cells
were cultured for 14 days, although the surface of the PEEK sample had a 3D structure,
there was a limitation of cell culture space. Since the osteoblast progenitor D1 cells were
cultured in the study, D1 cells began to differentiate in large numbers and express ALP
after the 7th day, and the cell proliferation process will not occur at this time. Therefore,
the cell proliferation rate will not increase significantly. Although ALP was detected in 1
and 4 days of cell cultures, the activity of ALP did not increase significantly. After 7 days
of culture, apart from the unmodified P group, the production of ALP in other modified
groups had increased significantly [45,46]. The surface modification with grafting of active
biomolecules remarkably promoted ALP secretion by D1 cells [47–49]. The amount of ALP
produced after 10 days of cell culture reached a peak, indicating that the cells of all groups
were undergoing early differentiation. Only the sulfonated group of SA had the lowest
ALP secretion primarily because of the hydrophobicity of the sulfonated PEEK. By the 14th
day of cell cultures, the cells had completed their differentiation; thus, the ALP content
began to decrease.

In addition to semi-quantitative testing, ALP could also be stained for qualitative anal-
ysis. The darker the color of the test piece, the more ALP was secreted by the cells. The ALP
staining colors were shown in the concentrated area after 1 day of cultivation (Figure 11).
This result indicated hydrophilicity, where cells cultured on the hydrophobic surface of SA
had only a small distribution area, but PEEK grafted active biomolecules (SA/PC, SA/C,
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SA/SI/PC, and SA/SIi/C), and silylation (SA/SI) revealed widely distributed staining
area. After 7 days of cell culture, except for SA, the cells of the other groups were almost
covered with PEEK surfaces, and after 10 days of culture, the color was dark blue–purple,
indicating that ALP activity reached the highest level on the 10th day (Figure 9).
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Figure 11. ALP staining results of osteo-progenitor D1 cells, which have been stained after culturing on surface-modified
PEEK for 1, 4, 7, 10, and 14 days.

3.3. Observations in In Vivo Testing

In the non-decalcified H&E-stained sections, after 4 weeks of implantation (Figure 12a),
many osteoblasts and new blood vessels were found around the PEEK implant. For im-
plants of unmodified bio-inert PEEK (P), gaps could still be observed between the tissues
and edges of PEEK surroundings. However, for implants that had undergone surface
modification of the SA, SA/SI/PC, and SA/SI/C groups, no gaps could be found between
the tissues and implant groups. New bone could be seen integrating and growing into the
modified surface of the implant. This in vivo result also showed that sulfonation caused
the PEEK and surrounding tissue to exhibit better bond than the control P group. In the
quantitative comparison by histology, the area of the new bone on the surface of SA/SI/PC
implants was approximately 1.25 times higher than that of SA/SI/C, which was consistent
with in vitro cell proliferation and ALP activity.

After 8 weeks of implantation (Figure 12b), the new bone around the implant had
gradually matured into trabecular bone, and no gaps were observed even between P and
bone tissues. The modified SA/SI/PC and SA/SI/C groups showed that the area of the new
bone formed from sulfonated micropores increased with the increase of implantation time,
but no significant difference was found between the two groups at 8 weeks of implantation.
After 12 weeks of implantation (Figure 12c), the trabecular bone had been calcified, and all
groups showed good osseointegration.
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4. Conclusions

This study demonstrated the use of sulfonation, silylation, and grafting of different
active biomolecules to improve the surface and biological performances of PEEK. After
sulfonation, the surface of PEEK fabricated a certain thickness with an inter-connective
microporous structure. After silylation of the sulfonated PEEK, the amount of surface graft-
ing active biomolecules increased, indicating that COL I and phosphatidylcholine could
be effectively grafted, and the accumulated weight of phosphatidylcholine was relatively
large. In vitro, the cell viability showed that PEEK after different surface modifications
were all not toxic to L929 cells. The PEEK surfaces of active biomolecules grafted after
silylation promoted the adhesion and proliferation of D1 cells and secretion of ALP be-
cause of the enhancement of roughness and hydrophilicity. In vivo, PEEK after sulfonation
improved bone formation, showing a 3D inter-connective porous structure. Comparing
the two active biomolecules grafted (COL I and phosphatidylcholine), the results of cell
proliferation in vitro and tissue sectioning in vivo indicated that phosphatidylcholine had
a better effect on promoting cell proliferation and differentiation, thereby allowing better
osseointegration with the host bone tissues.
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