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Analysis of chromatin fibers in Hela cells with electron
tomography
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Abstract The presence and folding pattern of chromatin in eukaryotic cells remain elusive and controversial. In
this study, we prepared ultra-thin sections of Hela cells with three different fixation and sectioning
methods, i.e., chemical fixation, high pressure freezing with freeze substitution, and cryo-ultramicro-
tomy with SEM-FIB (focused ion beam), and analyzed in vivo architecture of chromatin fibers in Hela
nuclei with electron tomography technology. The results suggest that the chromatin fibers in eukaryotic
Hela cells are likely organized in an architecture with a diameter of about 30 nm.
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INTRODUCTION

The folding of chromatin in eukaryotic cells is closely
related to the genetic transcription, replication and
repair (Horn and Peterson 2002; Luger et al. 1997).
Packaging of DNA in eukaryotic cells is hierarchical. The
linear ‘‘beads-on-string’’ arrangement of nucleosomes,
which is formed by histone octamers (H2A:H2B:
H3:H4 = 2:2:2:2) (Luger et al. 1997) wrapped by DNA,
is regarded as the first level arrangement of chromatin
(Huynh et al. 2005). Although the nucleosome had been
structurally characterized by X-ray crystallography at
1.9 Å (Davey et al. 2002), how polynucleosomes are
folded into 30-nm chromatin fibers, which are typically
regarded as the secondary structure of DNA, is incon-
clusive. Based on the early studies of chromatin in dif-
ferent cells using a variety of methods (Bednar et al.
1995; Daban 2011; Gerchman and Ramakrishnan 1987;
Grigoryev and Woodcock 2012; Kruithof et al. 2009;

Robinson and Rhodes 2006; Schalch et al. 2005; Simp-
son and Stafford 1983; Widom et al. 1985; William et al.
1986; William and Langmore 1991), researchers had
proposed two major types of model for the secondary
chromatin structure, i.e., ‘‘one-start’’ solenoid model and
‘‘two-start’’ zig-zag model (Finch and Klug 1976;
Horowitz et al. 1994; Robinson et al. 2006). Recently,
using cryo-electron microscopy single particle analysis,
we reconstructed the 3D structure of in vitro reconsti-
tuted 30-nm chromatin fibers at 11 Å resolution and
found that chromatin fibers with two different nucleo-
some repeat lengths (NRLs, 12 9 177 and 12 9

187 bp) present a left-handed double helix structure
(Song et al. 2014), which represents a considerable
advance on the structure characteristics of chromatin
fibers. However, the existence of 30-nm chromatin
fibers in the nuclei of eukaryotic cells is still remained to
be elucidated in vivo (Eltsov et al. 2008).

Extensive studies have been made previously on the
organization of native chromatin fibers, including those in
starfish sperm nuclei (Giannasca et al. 1993; Horowitz
et al. 1994), chicken erythrocyte nuclei (Langmore and
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Paulson 1983; Woodcock et al. 1984), Thyone briareus
(sea cucumber) sperm,Necturusmaculosus (mud-puppy)
erythrocytes (Athey et al. 1990; William et al. 1986;
Woodcock 1994), and in other cells (Davies et al. 1974;
Derenzini et al. 2014; Eltsov et al. 2014; Everid et al. 1970;
Fakan and vanDriel 2007; Fussner et al. 2011; Konig et al.
2007; Matsuda et al. 2010). An electron tomography (ET)
study showed that continuously variable zig-zag nucleo-
somal ribbons could be observed in chicken erythrocyte
nuclei, both in the native form in situ and in the isolated
form (Horowitz et al. 1994). Nevertheless, the samples
used in that study were chemically fixed, dehydrated,
embedded in resin, and stained by heavy metal. It was
argued that the results could be attributed to the probable
structure rearrangement and surrounding background
staining artifacts (Eltsov et al. 2008). To visualize the
close-to-native chromatin in vivo, techniques with a bet-
ter preservation of the native status of the nuclei, i.e.,
high-pressure freezing, cryo-sectioning, and cryo-elec-
tron tomography, are necessary (Scheffer et al. 2011).
However, even with a vitrified sectioning of cells and the
contrast transfer function (CTF) correction on the elec-
tron microscopic images, it is difficult to visualize the
high-order structure of 30-nm chromatin fibers in situ
(Eltsov et al. 2008; McDowall et al. 1986).

In this study, we performed ET analysis to visualize
the native chromatin arrangement in vivo, by taking
three different sample preparation methods, i.e., ultra-
thin-sectioning with chemical fixation, ultrathin-sec-
tioning with high pressure freezing and freeze
substitution, and plunge-freezing with focused ion beam
(FIB) cryo-sectioning. Among them, the ultrathin-sec-
tioning with chemical fixation, embedding in resin, and
chemical staining provides good contrast for electron
microscopy imaging. Both high-pressure freezing and
plunge-freezing can preserve the frozen-hydrated sam-
ple at cryo-temperatures without dehydration and keep
the sample in a close-to-native state (Scheffer et al.
2011). The FIB method is a novel alternative to cryo-
ultramicrotomy for thinning of frozen-hydrated biolog-
ical specimens, which has brought a lot of attentions
due to its peculiar advantages (Rigort et al. 2010). ET is
a useful technology that has the ability to obtain 3D
architectures of both homogeneous and heterogeneous
samples (Scheffer et al. 2011). In particular, cryo-elec-
tron tomography has the ability to visualize the molec-
ular assemblies in the unaltered frozen-hydrated state
at reasonably high resolution. Here, we tried to explore
the architecture of chromatin fibers in Hela cells in situ
by combining all of these technologies. The results
suggest that chromatins are likely present in the nuclei
of Hela cells with an architecture of fibers with a
diameter of about 30 nm.

RESULTS AND DISCUSSION

EM analysis of 30-nm chromatin fibers in Hela S3
cells and isolated nuclei

It is well recognized that the isolated chromatins from
chicken erythrocyte nuclei present a fiberic form in
width of *30 nm (Scheffer et al. 2011). For the Hela S3
cells, the arrangement of 30-nm fibers had also been
observed in the isolated chromatins (Langmore and
Paulson 1983). Nevertheless, how the chromatin is
organized in situ still needs to be elucidated (Eltsov
et al. 2008; McDowall et al. 1986). Besides the in vitro
assembled 30-nm chromatin fibers (Song et al. 2014),
our study suggested that chromatin fibers isolated from
Hela nuclei present a similar two-start double helix
form (unpublished data). In this study, we tried to
examine the chromatin fibers in Hela cells in situ to
clarify if 30-nm chromatin fibers present in nuclei
in vivo (Giannasca et al. 1993; Horowitz et al. 1994).

Firstly, we prepared the Hela S3 cell ultrathin-sec-
tions with conventional chemical fixation and heavy
metal staining method, in order to get good contrast
with electron microscopic imaging. To preserve the cell
morphology, Hela cells were fixed in PBS buffer. Fig-
ure 1 shows the general appearance of the conventional
ultrasection in 70 nm thickness of mitotic Hela S3 cells.
The morphologies of the cells appear intact, and the
periphery between nucleus and cytoplasm can be well
defined in the low magnification microscopic image
(Fig. 1A). As highlighted by the straight line in Fig. 1B,
the double nuclear membrane is readily visible, which
suggests that the structure of nucleus was preserved
reasonably well during the chemical fixation process. In
the EM images of the ultrathin-sectioned nuclei, com-
pacted heterochromatin, and relatively incompact
euchromatin are distinguishable (Fig. 1A, B). As shown
in an enlarged view (Fig. 1C) of a region within the
nucleus (white box indicated in Fig. 1B), a large amount
of typical morphology of fibers, very likely attributed to
the chromatins fibers, can be observed (red boxes in
Fig. 1C). Overall, the chromatins in nuclei tend to form
aggregates or clusters, which could be a part of the
higher-order chromosome, although a part of chro-
matins appear loose and scattered. The chromatin fibers
in various orientations, i.e., the cross sections (indicated
by red circles in Fig. 1C) and longitudinally sections
(red boxes in Fig. 1C), can be found in the ultrathin-
sectioned nuclei. The longest chromatin fibers with
longitudinally orientation were observed to extend as
high as 300 nm. Furthermore, a number of heavily
stained scattered dots with a size of *11 nm, which are
in the similar size range as that of individual
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nucleosomes, can be observed (yellow arrows in
Fig. 1C). These observations suggest that the native
chromatins are arranged in a diversified and heteroge-
neous manner in vivo.

We then isolated Hela nuclei from the cells following
the previously reported protocols (Athey et al. 1990;
Giannasca et al. 1993; William and Langmore 1991;
Woodcock et al. 1984), and performed a similar chem-
ical fixation, ultrathin-sectioning, and electron micro-
scopic imaging analysis. The ultrathin sections of
isolated Hela nuclei displayed distinctly separated
fibers, most likely attributed to the chromatin fibers, as
shown in representative EM images (Fig. 1D). Com-
pared with those in the ultrathin-sections of the whole
Hela cell, the chromatin fibers in isolated nuclei present
similar architectures as in the cell. Different orientations
of the chromatin fibers, e.g., cross sections and longi-
tudinally sections, can also be visualized. It is worth
noting that the ultrathin sections of isolated nuclei

present a much cleaner background than that of nuclei
in the cell. The contrast and signal-to-noise ratio of EM
images of isolated nuclei are also better than that of
whole cell. The chromatin-like fibers appear more
apparent in the isolated nuclei (Fig. 1D), which was
previously noticed in the study of chromatin fibers in
starfish sperm (Horowitz et al. 1994). The 11 nm
nucleosome-like dots can be recognized in the isolated
nuclei sections. Unlike the chromatin in starfish sperm
in which the chromatin fibers appear with sharp turns
and folds (Horowitz et al. 1994), most of the fibers in
the sectioned Hela nuclei appear with the longitudinal
orientation. However, it is hard to track the fibers’ ten-
dency in the EM images of Hela S3 cells, possibly due to
the high variability and aggregation of chromatins. The
diversity, flexibility and aggregation of native chromatin
(Woodcock et al. 1984) and the hierarchical folding of
chromatin at different cell cycle stages make it difficult
to recognize the 30-nm fibers in the electron

Fig. 1 EM micrographs of conventional chemically fixed ultrathin sections of Hela cells and isolated nuclei. A, B Low magnification
images of Hela cells. The nuclear membrane (NM) of nucleus (Nu) is indicated and the nucleolus (NOR) can be observed. C Enlarged view
of the region highlighted in (B). The chromatin-like fibers with longitudinal section and cross section orientations are indicated by red
boxes and red circles, respectively. The distinguishable nucleosome-like densities are indicated by yellow arrowheads. D EM image of
isolated nuclei ultrathin section. The chromatin-like fibers and nucleosome-like densities are highlighted as in C
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microscopic images. Our results suggest that an opti-
mization on the cell cycle and sample preparations are
necessary for the chromatin fibers characterization
in vivo.

Electron tomography reconstruction of isolated
nuclei with high-pressure freezing and freeze
substitution

As shown in the electron microscopic analysis discussed
previously, the chromatin-like fibers likely present in
the nucleus of Hela S3 cells, but the limited resolution of
chemically fixed ultrathin section (Eltsov et al. 2008)
made the pattern recognition of the nucleosomes in
mitotic Hela S3 cells difficult. In order to analyze the
three-dimensional structure of native chromatin in situ
with reasonably high resolution, we tried to fix the
isolated nuclei with a high-pressure freezing and freeze
substitution process. The frozen-hydrated sample was

then embedded at room temperature after freeze sub-
stitution. This procedure can preserve the chromatin
fibers in a better way than that of the conventional
chemical fixation method described above as all the
macromolecules and supramolecules in the nucleus
were immobilized at the close-to-native state (Eltsov
et al. 2008). The embedding process prevents the
sample from ice crystal contamination and the staining
of ultrathin sections provides high contrast, which could
facilitate the visualization of native chromatin fibers
in situ. Figure 2 displays the EM images of isolated Hela
nuclei with high pressure frozen fixation. The boundary
of the nucleus appears intact (Fig. 2A), and more
structural details could be identified than that of the
chemical-fixed sample (Fig. 2B, C). The heterochromatin
regions (indicated in Fig. 2B) appear with compacted
chromatin agglomeration, which is frequently observed
in the Hela nuclei. In the region with euchromatin,
chromatin fiber filaments with both longitudinally

Fig. 2 EM micrographs of isolated Hela nuclei with high-pressure freezing and freeze substitution. A Low magnification image of
sectioned nuclei. B Enlarged view of the region highlighted in A. Presumptive euchromatin and heterochromatin are indicated. C
Chromatin-like fibers with longitudinal-section and cross-section orientations are indicated by red boxes and red circles, respectively
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sections and cross sections orientations can be observed
(Fig. 2B, C).

The power spectrum analysis of EM images was
previously used to inspect the existence of 30-nm
chromatin fibers in Hela cells (Eltsov et al. 2008) and in
isolated chicken erythrocyte nuclei (Scheffer et al.
2011). We performed a similar analysis on the EM
images of isolated Hela nuclei after high pressure
freezing and freeze substitution. Peaks at *11 and
*30 nm positions appear distinguished in the power
spectrum diagram (Fig. 3A), which implies that the
chromatin in Hela cells could be folded into regular 30-
nm high-order fibers with the 11-nm nucleosome as the
elementary unit (Langmore and Paulson 1983).

To further verify the presence of 30-nm fibers, we
made an ET analysis on the ultrathin sections of isolated
Hela nuclei with high pressure freezing and freeze
substitution. ET data were collected at the positions
with separated fibers visible. The collection of tilt series
data of the plastic ultrathin section was initially
unsuccessful, because the shrinkage and the associated
electron irradiation of plastic sections made it difficult
to track the images well at different tilt angles. At the
same time, the serious charging effect of the plastic
sections produced a large drift on the acquired images.
To resolve these issues, we coated a thin layer of carbon
film on each side of the EM grid on top of the sections.
The targeted regions were then irradiated by electron
beam for several minutes. These procedures seem to be
helpful for the conductivity improvement and drift

prevention, and the tilt series had been successfully
acquired.

In the electron tomograms, two orientations of chro-
matin fibers in width of *30 nm are readily visible
(Fig. 3B, indicated by red boxes and circles in the snap-
shots of tomographic slice). Although the flexibility and
diversity of the chromatin fibers make it impossible to
perform a sub-volume averaging, a large amount of indi-
vidual intense electron densities, likely attributed to the
nucleosomes, are distinguishable (Fig. 3B). The electron
tomograms show that the chromatin fibers present a
pattern of two rows with a twisting conformation (high-
lighted by yellow arrow in Fig. 3B). These results suggest
that a ‘‘two start’’ architecture of chromatin fibers with a
diameter of about 30 nm likely presents in Hela nuclei.

Large-scale analysis of Hela nuclei with SEM–FIB
and cryo-electron tomography

In addition to high-pressure freezing, fast freezing is
also one of the common methods to prepare the frozen
specimens. However, the diameter of Hela nuclei is as
large as 7–10 lm and the electron beam cannot pene-
trate the vitrified sample with such a thickness. Cryo-
ultramicrotomy sectioning of vitrified materials is a
conventional method to acquire the sample for electron
microscopic study, but this method inevitably suffers
from distortions and deformations caused by the
mechanical cutting process, and forms unavoidable
sample compressions in the cutting direction, which

Fig. 3 Characterization of chromatin fibers in the isolated Hela nuclei with high-pressure fixation. A The power spectrum diagram of the
ultrathin-sectioned nuclei image shows peaks at *11 and *30 nm, respectively. B A tomogram slice of the ultrathin-sections after
electron tomographic reconstruction. The chromatin-like fibers with longitudinal-section and cross-section orientations are indicated by
red boxes and red circles, respectively. The fiber with two rows and twisting position is highlighted by yellow arrow. (Scale bar 100 nm)

Chromatin fibers in Hela cells RESEARCH ARTICLE

� The Author(s) 2015. This article is published with open access at Springerlink.com 55 | August 2015 | Volume 1 | Issue 1



introduce significant artifacts to the later ET analysis. In
contrast to mechanical sectioning, cryo-FIB milling can
be applied to the frozen-hydrated material to thin the

native samples and make them transparent enough (50–
200 nm) for TEM imaging (Rogort et al. 2012), without
introducing heat-induced devitrification effect.

Fig. 4 Cryo-ultramicrotomy analysis of Hela cells and isolated nuclei. A SEM micrograph of frozen-hydrated Hela cells embedded in ice
and attached to Mo-grid with a thin layer of holey carbon supporting film. The lamellas yielded by FIB milling are indicated by red arrows.
B Low magnification EM micrograph of the lamella of isolated nuclei. The tilt axis of cryo-electron tomography (cryo-ET) data collection is
marked with a dashed line. C TEM image of cryo-FIB milled Hela cells lamella, which shows distinguishable mitochondria (Mt), double
nuclear membrane and cytoplasm. The inset image displays the presumptive ribosomes attached to nuclear membrane. D A tomographic
slice of cryo-lamella of Hela cells after reconstruction. E Enlarged view of the region highlighted in B with a low dose exposure. F A
tomographic slice of the nuclei cryo-lamella after reconstruction. Chromatin-like fibers with longitudinal-section and cross-section
orientations are indicated by boxes and circles, respectively, in both E and F
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To reveal the characteristics and architecture of
chromatin in situ, we applied state-of-the-art cryo-FIB
thin sectioning and cryo-electron tomography tech-
nologies on the three-D reconstruction of Hela cells. The
EM grids made of molybdenum were chosen due to
their good characteristics of hardness, compared with
copper and gold grids. The Hela cells in optimized
concentration were fast frozen in a cryo-plunger, and
transferred to a dual beam SEM to be thinned with FIB
milling. The cryo-FIB thinned samples on EM grids were
then subjected to ET analysis.

The cells with protruding morphology appearance in
SEM are versatile enough to be selected as the milling
targets (Rigort et al. 2010). Samples at four or five
positions located at the center of the EM grid (indicated
by red arrows in Fig. 4A) were selected and thinned.
The positions of cryo-FIB thinning were marked in SEM
with the coordinates on the EM grid and were looked up
at a low magnification after the grid was transferred to
TEM for cryo-electron tomography analysis. Figure 4B
displays a representative area of the cryo-sections with
a length of *12 lm and a width of *7 lm. Little ice
crystal contamination was observed in this area
(Fig. 4B), suggesting a reasonably well-done cryo-sec-
tioning and grid transferring process. In the TEM image
(Fig. 4C), the cytoplasm, mitochondria, and double
nuclear membrane are distinguishable. We then per-
formed cryo-ET analysis on the nuclei regions to char-
acterize the architectures of chromatin fibers in the
close-to-native status in situ. Tilt series were collected
along a single tilt axis (Fig. 4B) with attentions paid to
avoid the electron irradiation damage. After recon-
struction, no regular high-order structure is clearly
visible, except for the filamentous materials (Fig. 4D).

In order to enhance the probability of milled nuclei
region, we then used isolated nuclei to do cryo-FIB
sectioning and cryoET reconstruction. Recognizable
fiber densities, most likely of the chromatin fibers, with
the width of *30 nm are readily visible with good
contrast (Fig. 4E, red boxes and circles) in the TEM
image. The reconstructed tomograms also display fiber
densities with width in the range of 30 nm, suggesting
the presence of 30-nm chromatin fibers in Hela nuclei
(Fig. 4F). The chromatin fibers in the cryo-tomograms
of Hela nuclei in situ appear similar to those observed in
the chemically fixed and high-pressure frozen Hela
nuclei, and in accordance with the conventional
mechanical cryo-sections of isolated chicken erythro-
cyte nuclei (Scheffer et al. 2011). These results provide
further evidence to the presence of 30-nm high-order
chromatin fibers in vivo and shed lights on the three-
dimensional structure of chromatin fibers in situ.
Although the resolution of the cryo-tomograms is not

high enough for us to track the path of DNA and to
identify individual nucleosomes, our study suggests that
it is technically feasible for a large-scale observation of
isolated Hela nuclei with SEM–FIB and cryo-electron
tomography.

Conclusion

We have examined in situ architecture of chromatin
fibers in eukaryotic Hela cells with ET analysis based on
three different sample preparing technologies, i.e., con-
ventional chemical fixation, high-pressure freezing and
freeze substitution, and fast frozen and cryo-FIB sec-
tioning. Although the sample preparation methods
preserved the native structures to variant extents,
chromatin fibers with width of *30 nm have been
observed in all of the ultrathin-sections prepared by
these different methods. ET analysis on both high-
pressure frozen-substituted sections and cryo-FIB sec-
tions of Hela nuclei, which preserve the chromatin
fibers at the most close-to-native state in vivo, suggests
that the chromatin fibers may present in Hela cells with
a diameter of about 30 nm. Further studies and more
efforts to improve the ET resolution, which is high
enough to track the path of DNA and recognize indi-
vidual nucleosomes, are critical to resolve the folding
pattern of native chromatin fibers in vivo.

MATERIALS AND METHODS

Culture of Hela cells and isolation of Hela nuclei

The Hela cells were cultured in medium of DMEM with
10% FBS and 1% (1009) penicillin–streptomycin
solution, and were passaged by 0.25% trypsin-EDTA for
2 min. A cell scraper was used to collect the cells, which
were used for ultrathin-sectioning later. For the nuclei
isolation, the suspension solution was centrifugated at
30009g for 5 min and the supernatant was discarded.
The cells were then suspended and centrifuged in PBS
(with 0.5 g/L Mg2?) for three times. After that, the cells
were resuspended in Buffer A (0.25 mol/L sucrose,
60 mmol/L KCl, 15 mmol/L NaCl, 10 mmol/L MES,
5 mmol/L MgCl2, 1 mmol/L CaCl2, 0.5% Triton X-100,
0.1 mmol/L PMSF, 0.5 mmol/L DTT, 0.5 mmol/L
sodium metabisulfite, 0.5 mmol/L benzamidine-HCl, pH
6.5) for 5 min, and grounded until the suspension pre-
sented a milk-white color. The sediment was retained
after centrifugation for 10 min at 50009g. The nuclei
were finally collected after grinding and centrifugation
for two times.
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Ultrathin-sectioning of Hela cells and nuclei with
chemical fixation

The cells collected by the scraper and the isolated Hela
nuclei were pre-fixed by adding 100 lL 2.5% glu-
taraldehyde for 2.5 h at 4 �C and post-fixed by adding
100 lL 2% osmium trioxide for 1 h at 4 �C. The dehy-
dration was proceeded step-by-step via adding 30, 50,
70, 90, 95, and 100% ethanol, respectively. Propylene
oxide (PO) and resin were added to complete replace-
ment and osmosis step-by-step with different ratios.
The samples were embedded and polymerized in resin
for 12 h at 35 �C, 12 h at 45 �C and 24 h at 60 �C
successively. The embedded block was cut into ultrathin
sections with about 70 nm thickness and transferred to
a formvar film covered copper grid, and stained with
4% uranyl acetate and lead citrate.

Ultrathin-sections of Hela nuclei by high-
pressure freezing and freeze substitution

The isolated Hela nuclei with the cryo-protectant of
hexadecane were frozen by a high pressure freezer
(Leica EM PACT2). Freeze substitution was performed
in a substitution unit (Leica EM AFS2) in dry acetone
with 2% osmium tetroxide at -90 �C for 24 h, and
then gradually warmed up to -20 �C for 8 h and 0 �C
for 2 h. After being washed with dry acetone at 0 �C for
30 min, the samples were warmed up to room tem-
perature and infiltrated with acetone and resin for
several hours. The samples were then embedded into
resin in embedding molds and put in a 60 �C oven for
24 h, and finally sectioned with microtome (Leica EM
UC6) with approximate 70 nm thickness. The ultrathin
sections were then stained by 4% uranyl acetate and
lead citrate.

Fast freezing of Hela nuclei and cryo-ultrasection
with SEM–FIB

To acquire the cryo-samples embedded in the unaltered
frozen-hydrated state, we used FEI Vitrobot to freeze
the Hela nuclei. PBS was added into the isolated nuclei
and about 3.5 lL sample was absorbed onto a molyb-
denum grid and dropped into liquid ethane for rapid
freezing. The fast frozen nucleuses on Mo-grid were
transferred into a dual beam-SEM (FEI Helios Nanolab
600i) with a specially designed clamping and transfer-
ring apparatus and thinned with FIB in the SEM. The
vitrified samples were imaged in SEM at 10–30 kV
acceleration voltages to inspect the thickness of the
vitrified ice. The nuclei in regions with relatively thin
ice, typically 4–5 areas within the center of the mesh,

were selected for FIB milling. The accelerate voltage of
FIB was set to 30 kV, and the beam current was set to
0.79 nA for rough milling, which was then changed to
0.80 pA for the fine milling. The FIB was adjusted in an
angle of 10�–15� with specimen. The work distance of
FIB was kept at 4 mm and the stage temperature was
kept under -180 �C. The thin-sectioned nuclei samples
on the Mo-grids were stored in a liquid nitrogen con-
tainer for future ET analysis.

Imaging of TEM, data collection and processing
of electron tomography

The imaging of the conventional chemically fixed ultra-
sectioned samples was done in the FEI Tecnai Spirit
TEM (120 kV). The imaging and ET data collection of
ultrathin-sectioned nuclei after high-pressure freezing,
freeze substitution, and fixation were also done in the
FEI Tecnai Spirit. To reduce the electron charging
effects, both sides of the EM grids were coated with a
thin layer of carbon film (2–5 nm in thickness). Single-
axis tilt series were collected at a 1.5� increment
between -60� and ?60� in the FEI Tecnai Spirit
equipped with an FEI Eagle CCD camera at 2 k 9 2 k
pixels, using FEI Xplore 3D software package. The
acceleration voltage was 100 kV and the magnification
was 23,0009 with the pixel size of 1.02 nm/pixel. The
dose for each tilted image was about 1 e/Å2, and the
defocus was set to 3 lm. In total, 25 sets of tomographic
data were collected. They were then aligned and
reconstructed with PROTOMO software package. Med-
ian filtering was applied to the reconstructed tomo-
grams to enhance the signal-to-noise ratio. MATLAB was
used for the power spectrum analysis.

The imaging and cryo-electron tomography data
collection of cryo-ultrasectioned samples with SEM–FIB
were done in a 200 kV TEM with FEG (FEI Talos
F200C). The automatic software package of FEI
Tomography was used for the tilt series data collection
using an FEI Ceta camera at 2 k 9 2 k pixels. The
magnification was 36,0009 with a pixel size of
0.58 nm/pixel. The defocus was set to 6 lm and the
dose of each tilted frame was about 1 e/Å2. Single-axis
tilt series were collected at 1.5� increment. Seven sets of
tomographic data were acquired, and then aligned and
reconstructed in PROTOMO software package. Median
filtering and non-linear anisotropic diffusion filtering
distributed in IMOD software package were applied to
the tomograms to enhance the contrast and signal-to-
noise ratio.
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