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ABSTRACT

Objective: Hypoxaemia is a strong predictor of
mortality in children. Early detection of deteriorating
condition is vital to timely intervention. We hypothesise
that measures of pulse oximetry dynamics may identify
children requiring hospitalisation. Qur aim was to
develop a predictive tool using only objective data
derived from pulse oximetry and observed respiratory
rate to identify children at increased risk of hospital
admission.

Setting: Tertiary-level hospital emergency department
in Bangladesh.

Participants: Children under 5 years (n=3374)
presenting at the facility (October 2012—April 2013)
without documented chronic diseases were recruited.
1-minute segments of pulse oximetry
(photoplethysmogram (PPG), blood oxygen saturation
(Sp0y) and heart rate (HR)) and respiratory rate were
collected with a mobile app.

Primary outcome: The need for hospitalisation based
on expert physician review and follow-up.

Methods: Pulse rate variability (PRV) using pulse
peak intervals of the PPG signal and features extracted
from the Sp0, signal, all derived from pulse oximetry
recordings, were studied. A univariate age-adjusted
logistic regression was applied to evaluate differences
between admitted and non-admitted children. A
multivariate logistic regression model was developed
using a stepwise selection of predictors and was
internally validated using bootstrapping.

Results: Children admitted to hospital showed
significantly (p<0.01) decreased PRV and higher SpQ,
variability compared to non-admitted children. The
strongest predictors of hospitalisation were reduced
PRV-power in the low frequency band (OR associated
with a 0.01 unit increase, 0.93; 95% CI 0.89 to 0.98),
greater time spent below an Sp0O, of 98% and 94%
(OR associated with 10 s increase, 1.4; 95% Cl 1.3 to
1.4 and 1.5; 95% CI 1.4 to 1.6, respectively),

high respiratory rate, high HR, low SpO,, young age
and male sex. These variables provided a

Strengths and limitations of this study

= Features characterising pulse rate variability and
blood oxygen saturation dynamics automatically
derived from pulse oximetry were significantly
different in children admitted to the hospital
compared to those who were not admitted.

= The proposed predictive model uses objective
information to provide a risk score, which will
allow community healthcare workers with
minimal training to identify a child who may
require hospital admission.

= Adding pulse oximetry derived objective informa-
tion to the proposed predictive model improved
the identification of children at higher risk and
provided improved calibration.

= The proposed model has been internally vali-
dated using a bootstrap method but will require
external validation.

= Several pulse oximetry recordings (39%) were
excluded from the study for low signal quality;
thus, the app’s user interface will be modified to
coerce the user to improve the quality of the
data.

bootstrap-corrected AUC of the receiver operating
characteristic of 0.76.

Conclusions: Objective measurements, easily
obtained using a mobile device in low-resource
settings, can predict the need for hospitalisation.
External validation will be required before clinical
adoption.

INTRODUCTION

‘Sepsis’, a syndrome of physiological, patho-
logical and biochemical abnormalities in-
duced by infection, is a major public health
concern and is the leading cause of death in
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children worldwide.! In 2015 ~5.9 million children
under 5years died from sepsis caused by conditions
such as malaria, pneumonia, diarrhoea and measles.
Sepsis is associated with several factors such as poverty,
malnutrition, poor hygiene, low immunisation rates,
poor access to care and under-resourced health systems,”
and hence its burden of mortality and morbidity is sub-
stantially higher in low and middle income countries
than in the developed world.”

This disproportionate burden of mortality and mor-
bidity from critical illnesses in children in the develop-
ing world can be prevented if early accurate diagnosis is
followed by prompt treatment.” * Targeted interventions
are needed if the sustainable development goal of 25 or
fewer under-b deaths per 1000 live births by 2030—down
from 43,1000 mortality rate in 2015—is to be achieved.”

A key method to achieve this goal is to improve com-
munity case management of critical illnesses.’ In low-
resource settings, this can be implemented by enabling
community healthcare workers to rapidly identify critic-
ally ill children in their community allowing earlier treat-
ment, timely referral and, ultimately, greater survival.
Timely and appropriate referral will optimise use of the
limited resources and can be greatly facilitated by an
objective test, which identifies these children but
requires a minimal amount of training or expertise.

A common feature of most treatable childhood ill-
nesses (CI) is hypoxaemia, which correlates with disease
severity and is a recognised risk factor for death.”
Including a routine and systematic approach of case
finding and treating hypoxaemia is associated with
improved quality of care and reduced mortality.7 8 Pulse
oximetry, a simple and non-invasive method of measur-
ing blood oxygen saturation (SpOs) and blood volume
changes in tissue using the photoplethysmographic
signal (PPG), is critical for the accurate detection of
hypoxaemia. Thus, the use of pulse oximetry is recom-
mended in the updated integrated management of CI
(IMCI) guidelines for low and middle income coun-
tries.” 1 In addition, a reduction in heart rate variability
(HRV) has been suggested as a possible early indicator
of critical illness.'! HRYV, traditionally calculated from
the ECG signal, can be estimated using the PPG signal
through a surrogate measure known as pulse rate vari-
ability (PRV)."*™ HRV and PRV have been documented
to be altered in the presence of sepsis and correlated
with its serf:rity.15

Smartphones have been adopted widely, even in low-
resource settings, offering an ideal platform for vital
signs assessment and automatic diagnosis.16 The phone
oximeter (a pulse oximeter that interfaces a finger
sensor with a smartphone), for example, provides a
useful tool to record pulse oximetry in low-resource
settings. In a previous study, we developed a hospital
admission prediction model for children aged under
5 years using clinical predictors of infectious disease and
including the SpOy recorded by the phone oximeter.'”
In low-resource settings, the lack of clinical expertise for

accurate identification of the signs and symptoms of
infection in children is a significant roadblock to redu-
cing mortality.4 Therefore, in this study, we aim to
extend our previous work, using the same data set, by
developing a tool to predict hospital admission that
exclusively uses objective information, including features
derived from the analysis of pulse oximetry recordings.
We consider the need for hospital admission as an early
indicator of critical illness, and thus this model is
intended to support community healthcare workers,
with limited formal training, to recognise critical illness
in children earlier in the course of their disease.

MATERIALS AND METHODS

In order to investigate the viability of developing a hos-
pital admission prediction test, we designed a mobile
app to collect data. We then conducted a prospective
observational study at the Kumudini Women’s Medical
College Hospital (KWMCH), a notfor-profit private
tertiary-level hospital, located in the Mirzapur subdistrict
of Tangail district in Bangladesh. This hospital provides
primary level care to a catchment population of
~500 000 people.

Mobile app design

We designed a customised mobile data collection app,
called PhoneOxR2 (figure 1), that uses the phone oxim-
eter for the measurement of SpOs and HR values
(figure 1A) at 1 Hz and PPG signal at 75 Hz.'"® ' It also
includes a respiratory rate counter interface that regis-
ters screen taps (for each inhalation) and calculates the
respiratory rate after five taps.”” The hardware of the
phone oximeter used in the study was an Xpod OEM
pulse oximeter (Nonin Medical, Plymouth, Minnesota,
USA; model 3012LP) connected to a fourth-generation
iPod touch (Apple, Cupertino, California, USA). The
interface of the PhoneOxR2 app displayed the PPG
signal with a colour-coded (eight shades of green to
red) background, which represents the real-time quality
of the signal being recorded. This live quality assessment
is based on the amplitude and regularity of the wave-
form and pulse oximeter module generated alerts.

Data collection
All individuals were recruited according to a protocol
approved by the research review committee and ethical
review committee of the international centre for diar-
rhoeal disease research, Bangladesh and the University
of British Columbia/children’s and women’s health
centre research ethics board. A research staff member
explained the study and obtained written informed
consent from the caretaker accompanying the child.
Children with chronic diseases or with previously
documented low SpOg levels due to other conditions,
such as cardiac disease, were excluded.'” All children
were assessed and managed by a team of physicians not
involved in the study. Pulse oximetry information was

2

Garde A, et al. BMJ Open 2016;6:6011094. doi:10.1136/bmjopen-2016-011094



8 Open Access

Nov 15,2012 10:43AM
Exit | Measure SpO?2
Patient GX1

679 982,

I Joi.o0

Finished measuring at 10:43AM

Figure 1

Nov 15, 2012

10:45AM

Measure SpO?2
Patient GX2

Exit

Currently measuring...

(A) The pulse oximetry page of PhoneOxR2 showing a completed 1 min good quality (mostly green) recording with

the median blood oxygen saturation and HR values from the recording, (B) an in progress recording in the blinded version of the

app, used in the study.

blinded (not displayed) within the app (figure 1B) and
not provided to the physicians, as this was not routinely
available in the facility. Thus, the SpOs recording did
not influence clinical decisions, including the need for
admission, which was decided at the physicians’ discre-
tion uninfluenced by the study. The children were con-
sidered admitted under the following circumstances: (1)
admitted and stayed for more than 24 hours in the hos-
pital, (2) sent home initially but admitted at a subse-
quent visit within 1 week, (3) were advised for admission
but the advice was not followed and (4) were transferred
or referred to another facility providing a higher level of
care. The most common diagnoses included acute lower
or upper respiratory infection, and eye or ear infection
in admitted children; and acute upper respiratory infec-
tion, eye or ear infection, diarrhoea, fever of unknown
cause and gastrointestinal symptoms in non-admitted
children; see ref. 17 for more details of the distribution
of diagnoses and outcomes. From the children sent
home, we were able to follow-up 1855/2514 (73.8%)
and 14 were admitted on a subsequent visit.

The data acquisition was performed, using the
PhoneOxR2, between October 2012 and April 2013
(winter is from November to February). We collected
1 min recordings of the SpOy and PPG signals along with
respiratory rate from a total of 3374 children under
5 years presenting at the outpatient or emergency depart-
ment. The respiratory rate was estimated from the PPG
signal through a previously proposed algorithm®' in 39
cases when the respiratory tapping interface was not used.

Pulse oximetry processing

The quality of each recorded PPG signal was evaluated
offline, using an algorithm that assigns a signal quality
index (SQI) between 0 and 100 (100 being the best
quality). The method is based on pulse segmentation
and cross-correlation of consecutive pulse segments.*?
PPG segments with an SQI higher than 50 were auto-
matically identified for further analysis. The analysis was
limited to children for whom there was at least 30s of
good quality (SQI>50%) PPG signal. PRV and SpOg
derived features were computed for each data recording.

PRV characterisation
We applied a peak detection algorithm based on
zero-crossing to locate the pulse peaks in the PPG signal
and to obtain pulse-to-pulse interval time series (PPIs).>
Five time-domain parameters were computed from the
PPIs: (1) the mean of the PPIs: representing the RR
interval or the time interval between two consecutive R
waves in the ECG, (2) the SD of PPIs: representing
SDNN or the SD of the so-called normal-to-normal
(NN) intervals, (3) the root mean square of the succes-
sive differences (RMSSD) between adjacent PPIs: repre-
senting RMSSD or the RMSSD between adjacent NN
intervals and (4 and 5) two standard descriptors to
evaluate non-linear short-term and long-term variability
(SD1 and SD2) based on the Poincaré plot of PPIs.**
For the frequency analysis, each segment of PPIs was
resampled into an equivalent, uniformly spaced time
series (sampling rate of 4 Hz), and the power spectral
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density was computed. The power in each frequency
band was computed by integrating the area under the
power spectral density curve bound by the band of inter-
est: very low frequency (0.01-0.04 Hz), low frequency
(LF; 0.04-0.15Hz) and high frequency (HF; 0.15-
0.4 Hz). LF and HF powers were normalised (LFn and
HFn) by the total spectral power between 0.04 and
0.4 Hz. The ratio of the low-to-HF power (LF/HF ratio)
was also computed.

Sp0, characterisation

Several oximetry indices proposed in previous studies to
assess SpOsy dynamics were computed.”” These included
the number of SpOy desaturations >1%, 2% and 3%
below baseline (nbl, nb2 and nb3, respectively), cumu-
lative time spent below an SpOs of 98%, 96% and 94%
(th98, th96 and th94, respectively) and the Delta index
(SpOQdelta).26 The Delta index quantifies SpOy variabil-
ity and was computed as the average of absolute differ-
ences of the mean oxygen saturation between successive
12s intervals. The median (SpOsmedian) and SD
(SpOgstd) of the SpOgy within each segment were also
calculated.

Data analysis

All data analysis was conducted using R v3.2.0 (R
Foundation for statistical computing, Vienna, Austria).
To facilitate interpretation, raw heart rate and respira-
tory rate were standardised with respect to age using
population median and SD values.?”

Univariate analysis

The relationship between each feature and the need for
facility admission was assessed by comparing the median
and IQR between the admitted and the non-admitted
participants and through univariate logistic regression
using the OR (95% CI). The logistic regression analysis
for all PRV features was adjusted for age, a known con-
founding factor.?® For these features, we added age into
the univariate models to compute the adjusted ORs.

Multivariate model development

A stepwise selection method was applied to select the
most relevant features and to develop the final multivari-
ate logistic regression model, which we refer to as the
‘mobile model’. The stepwise selection method added/
dropped one feature at a time and stopped when
further inclusion/exclusion no longer improved the
model, as determined by the Akaike information criter-
ion.* All features were included as candidate predictors
and a minimum value of 40 events per variable was
maintained to avoid overfitting.” The stepwise selection
method was also compared with the least absolute
shrinkage and selection operator (LASSO) method
(computed via the glmnet R package®'). The calibration
of the model was evaluated by the Hosmer-Lemeshow
goodness-of-fit test. To assess the impact of including
objective information derived from pulse oximeter

recordings, the performance of the ‘mobile model’ was
compared to the ‘baseline-model’, a logistic regression
model including only respiratory rate and the median
SpOy value.

Model validation

The model was validated using the bootstrap method,
recommended as the optimal technique for estimation
of internal validity of a predictive logistic regression
model.”” Using the original data set, 100 bootstrap
samples were generated using sampling with replace-
ment. The stepwise selection procedure was applied to
each bootstrap sample to develop a multivariate model.
This model was applied to predict the outcome in the
bootstrap sample and in the original data set. The differ-
ence in the prediction performance, quantified by the
area under the receiver operating characteristic curve
(AUC), was computed to estimate the optimism of the
‘mobile model’.

Risk threshold determination

The risk threshold for the estimated probability of
facility admission was chosen to maximise a weighted
classification score defined as (the number of correct
identifications of true positives)+(the number of correct
identifications of true negatives). The weighted
classification score was computed for various previously
established ratios of false negative cases to false positive
cases (1:3, 1:5 and 1:10);17 however, the ratio should be
predetermined in each specific clinical context.

Model classification performance

Once the risk threshold was set, the performance of the
‘mobile model’ was evaluated in terms of accuracy, sensi-
tivity, positive predictive value (PPV) and negative pre-
dictive value (NPV) and compared to the ‘baseline
model’. The reclassification technique, offering incre-
mental information over the AUC, was employed to
compare both models using the net reclassification
improvement (NRI) and integrated discrimination
improvement (IDI).** The NRI quantified the perform-
ance of the ‘mobile model’ reclassifying children as
compared to the ‘baseline model’. The IDI measured
the improvement of the ‘mobile model’ relative to the
‘baseline model’ and was quantified as the amount of
increased difference in the average predicted risk
between admitted or non-admitted children.*

RESULTS

Excluded cases

In total, 2051 (61%) of the 3374 recruited children had
at least 30 s of good quality PPG signal recorded, which
permitted the adequate characterisation of SpOs and
PRV. The remaining 1323 children were excluded from
analysis. The percentage of excluded cases was similar in
the admitted (40%) and non-admitted (38%) groups.
The SpOs values of the excluded cases were not
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significantly different from those included, evaluated
through univariate logistic regression. Thus, there was
no clear association between the patient’s risk and the

PPG signal quality.

Univariate analysis

Pulse oximetry derived features were significantly differ-
ent in children who required admission compared to
those who did not require admission (table 1). Admitted
children presented a significantly higher respiratory
rate, higher HR and lower PRV (reflected through
reduced SDNN, RMSSD, SD1 and SD2 values) than non-
admitted children. Admitted children also showed
reduced PRV in the spectral domain suggested by lower
power in low (LFn) and high (HFn) frequency bands,
relative to non-admitted children (table 1).

The SpOy (median) was lower and showed more vari-
ability reflected via several features (SpOsstd, delta, tb98,
tb96, tb94, nbl, nb2, nb3) in admitted compared to
non-admitted  children.  Children who required

admission were also significantly younger and more
likely to be male (table 1).

Final model validation

The majority of features selected by the stepwise method
were also selected by the LASSO selection method. For
simplicity, we decided to use the feature selection result
from the stepwise method to construct the ‘mobile
model’, which includes only information derived from
mobile device recordings. All the selected features had
p<0.05 and the ‘mobile model’ equation was: logit
(probability (admission required))=3.806-0.049x(SpOs
median)+0.012x(time spent below an SpOg of 98%)
+0.018x(time  spent below an SpOs of 94%)
+0.152x(respiratory rate age z-score)—0.033x(age in
month)+0.200x (heart rate age z-score)+0.280x(male=1,
female=0)—0.656 (normalised power in the low fre-
quency (LF) band). This model presented an AUC of
0.77 (figure 2A) and was well calibrated (Hosmer-
Lemeshow goodness of fit test p=0.84).

Table 1 Objective feature distribution for admitted and non-admitted children

Admission not

Admission required

required N=1435

Feature N=616 (30.0%) (70.0%) p Value OR (95% CI)

Pulse rate variability analysis*
Heart rate (bpm) 140 (126-154) 125 (112-138) <0.001 1.03 (1.02 to 1.03)
RR (s) 0.43 (0.39-0.47) 0.48 (0.43-0.53) <0.001 0.49 (0.42 to 0.57)t
SDNN (s) 0.016 (0.011-0.025) 0.022 (0.014-0.037) <0.001 0.83 (0.78 to 0.89)%
RMSSD (s) 0.016 (0.013-0.025) 0.021 (0.015-0.039) <0.001 0.91 (0.87 to 0.95)%
SD1 (s) 0.012 (0.093-0.018) 0.015 (0.011-0.027) <0.001 0.99 (0.98 to 0.99)%
SD2 (s) 0.018 (0.011-0.029) 0.026 (0.016-0.043) <0.001 0.98 (0.98 to 0.99)%
LFn (nu) 0.37 (0.2-0.57) 0.38 (0.23-0.55) 0.003 0.93 (0.89 to 0.98)%
HFn (nu) 0.14 (0.09-0.24) 0.18 (0.12-0.27) <0.001 0.86 (0.79 to 0.94)
LF/HF (ratio) 2.3 (1.1-4.7) 2 (0.95-3.9) 0.2 1.00 (0.99 to 1.00)

SpO, analysis
SpO.median (%) 96 (91-98) 98 (97-99) <0.001 0.79 (0.76 to 0.81)
SpO,std (%) 0.73 (0.51-1.2) 0.54 (0.4-0.83) <0.001 0.54 (0.4 to 0.83)
SpOodelta (%) 0.31 (0.19-0.48) 0.22 (0.13-0.34) <0.001 3.5 (2.51t04.8)
tb98 (s) 39 (11-56) 3.3 (0-34) <0.001 1.4 (1.31t0 1.4)§
tb96 (s) 26 (0-53) 0 (0-3.2) <0.001 1.4 (1.3t0 1.5)§
tb94 (s) 2 (0-41) 0 (0-0.33) <0.001 1.5 (1.4 to 1.6)§
nb1 (# times) 4 (1-8) 1 (0-4.5) <0.001 1.1 (1.08 to 1.12)
nb2 (# times) 0 (0-3) 0 (0-1) <0.001 1.1 (1.1t01.2)
nb3 (# times) 0 (0-1) 0 (0-0) <0.001 1.1 (1.1t01.2)

Non-pulse oximetry data
Heart rate age z-score 0.66 (-0.19t0 1.7) 0.23 (-0.58 to 1.1) <0.001 1.3 (1.210 1.4)
Respiratory rate age 0.47 (-0.48 to 1.9) —0.046 (0.8 10 1.1) <0.001 1.2 (1.110 1.3)

z-score
Age (days) 230 (70.5-542) 477 (202-1038) <0.001 0.989 (0.987 to 0.991)§
Gender (% of male) 67% 59% <0.001 1.43 (1.17 to 1.74)

(male vs female)

Values include feature medians (quartiles), p value and OR (95% Cl).
*Adjusted for age.

tAssociated with an increase of 0.1 times the feature unit.
FAssociated with an increase of 0.01 times the feature unit.
§Associated with an increase of 10 times the feature unit.

HFn, high frequency normalised; LFn, low frequency normalised; RMSSD, root mean square of the successive differences; RR, respiratory

rate; SpO,, blood oxygen saturation.
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Figure 2 The area under the A Mobile Model B Baseline Model
curve of the receiver operating
characteristic of (A) the ‘mobile
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For comparison purposes, the implemented ‘baseline It would be reasonable to allow an unnecessary admis-
model’ equation was: logit(probability (admission  sion of three healthy children (ie, three false positives)

required))=21 461+0.090x (respiratory rate age z-score) in order to avoid missing any seriously sick child (ie, one
—0.233x(SpOy median). This model presented an AUC false negative). As illustrated in figure 3, the optimal risk
of 0.729 (figure 2B). threshold in this context (3:1) was 0.265 for the ‘mobile

With regard to the internal validation, each of the  model’ and 0.26 for the ‘baseline model’. The classifica-
eight final selected predictors was also selected in at  tion results were obtained with an adjusted risk thresh-
least 70% of the bootstrap samples indicating a stable  old of 0.25 for easier interpretation (table 2). The

predictive capability. The ‘mobile model’ had optimism ‘mobile model’ achieved better classification results in
in AUC 0.012 (95% CI —0.01 to 0.03) and the bootstrap-  terms of NPV and sensitivity. However, both methods
corrected AUC was 0.754 (95% CI 0.731 to 0.778). provided a low PPV (table 2).

Reclassification results for both models showed that
Model classification the addition of objective information derived from pulse
The maximum points indicated in figure 3 illustrate the = oximetry recordings (SpOg dynamics and PRV analysis)
risk thresholds that maximised the weighted classifica-  exhibited a 28% net improvement in the classification of
tion score based on the studied false negative to false the admitted (figure 4) and 4% net improvement in the
positive ratios. classification of the non-admitted patients (figure 4), at

Consider a context in which the cost of sending a risk threshold of 0.25. The IDI was 0.0466 (95% CI
healthy children to hospital is not overwhelmingly high, ~ 0.0368 to 0.0563, p=0) and the categorical NRI was
for example, in a community close to a major hospital. 0.0389 (95% CI 0.0042 to 0.0736, p=0.02799).

A Mobile model B Baseline model
8 . 'Xu .~ —— False negative to false positive: 1to 3 8 — " X .~ —— False negative to false positive: 1to 3
o '~.‘ = = False negative to false positive: 1 to 5 o s = = False negative to false positive: 1to 5
° © 0.05 . - False negative to false positive: 1 to 10 oy © 0.1 25*_ === False negative to false positive: 1 to 10
— = M
Q Q
o o
8 o _] & o _
s B s B
2 S
= =
8 g 8 o
6 ¥ a <
Kol K
° o ° o
B o B o
L o L o —
< (] < (]
2 2
o (0}
o o
= 8 = 8 _|
o o
N 3\
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Risk threshold Risk threshold

Figure 3 Weighted classification score calculated using the (A) ‘mobile model’ and (B) ‘baseline model’, for the full range of
thresholds using three different trade-offs between false negative and false positive cases (1:3, 1:5 and 1:10).
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Table 2 Classification performance (positive and negative predictive values, sensitivity and specificity) obtained with the

models using the optimal risk thresholds

Model Risk threshold PPV (95% Cl) NPV (95% Cl) Sensitivity (95% Cl)  Specificity (95% Cl)
‘Mobile’ 0.25 0.51(0.48t0 0.55)  0.85 (0.8310 0.87)  0.72 (0.68 to 0.75) 0.71 (0.69 to 0.73)
‘Baseline’  0.25 0.51(0.48t0 0.55)  0.82 (0.80t0 0.84)  0.63 (0.59 to 0.67) 0.74 (0.72 to 0.77)

NPV, negative predictive value; PPV, positive predictive value.

Figure 4 Admitted and
non-admitted children

ier . . Admitted children
classification results using

Results for classifications and re-classifications

Non-admitted children

‘baseline’ and reclassification

| ; ; ;l correct classifications by the baseline model

results using the ‘mobile’ model.

The height is proportional to the

E incorrect classifications by the baseline model

percentage of each classification

18%

or reclassification (correct
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green and incorrect
reclassification in red).

32%

NN

7 7

correct re-classifications by the mobile model

L]
]

incorrect re-classifications by the mobile model
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N\

(222

DISCUSSION

We have developed and internally validated a prediction
model that uses objective information to identify
under-5 children who would require hospitalisation. The
objective information includes age, gender, respiratory
rate and features derived from the analysis of 1 min
pulse oximetry recordings. In this study, we have shown
that HRV estimated using the PPG signal (PRV), SpO,
dynamics and respiratory rate are significantly different
in children admitted to the hospital. A high respiratory
rate and HR, suppressed PRV-power in the LF band, low
median SpO; value and high SpO, variability, together
with age and gender information, were the strongest
predictors of the need for hospitalisation. When a
recording with adequate signal quality (>50%) was
applied, the model using these features provided a
bootstrap-corrected AUC of 0.754. This enhanced-model
provided a small but significant improvement in classifi-
cation performance relative to a model using respiratory
rate and median SpOs value alone. This improvement is
most noticeable as an enhanced ability to identify chil-
dren at risk with only a small increase in the number of
false positive results.

In low-resource settings, there is a lack of healthcare
workers who are adequately trained for early detection
of critical illness in children. One of the advantages of
the proposed predictive model is that it exclusively uses
objective information extracted primarily from pulse
oximetry recordings (PRV and SpO,; dynamics) to

generate a risk score. This information can be automat-
ically calculated by a mobile application without requir-
ing any additional effort as long as a good quality pulse
oximetry signal is obtained. Thus, community healthcare
workers can easily use it without requiring specific add-
itional training for recognising signs or symptoms asso-
ciated with critical illness. Providing community
healthcare workers with this mobile-health approach
will facilitate a rapid detection of children that would
require admission to a facility and has the potential to
modify behaviour towards strengthening emergency
response systems and improving decision support infor-
mation availability at a community level. When imple-
mented within the phone oximeter, this could offer a
convenient and easy-to-use platform for improving hos-
pital referral practices in low-resource settings. The
current version of the phone oximeter uses a much
lower cost finger sensor directly connected to a smart-
phone or tablet through the audio jack.”

The selection of the risk threshold for predicted prob-
ability is a trade-off between acceptable risk and undue
burden to the family, patient and health system and
should be predetermined according to the clinical
context. At a risk threshold of 0.25, the model provided
a high-NPV (85%), demonstrating that the model is able
to accurately identify children who do not require refer-
ral to a facility, without neglecting to refer many patients
who should receive further attention. However, it pro-
vided a low PPV, suggesting that only 51% of children
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referred to the hospital would require admission.
Increasing sensitivity or negative predictive performance
will be at the expense of increasing unnecessary referral
for hospital admission. The range of risk could also be
used to individualise the frequency of follow-up or to
follow the progression of risk overtime.

In a previous study, we developed a clinical prediction
model based on continuous oxygen saturation, respira-
tory rate, temperature and age, combined with add-
itional subjective predictors such as lethargy, irritability,
symptoms of cough, diarrhoea and fast or difficult
breathing, to predict the need for hospitalisation in chil-
dren.'” Although this model provided improved per-
formance (AUC=0.89), the ability to accurately identify
some of the signs and symptoms may be difficult in set-
tings where frontline healthcare workers are inad-
equately trained in the early detection of these disease
signs and symptoms—a common scenario in low-
resource settings. Therefore, in this study, we aimed to
provide a predictive model based only on objective mea-
sures that can be obtained with minimal specific
training.

Our findings from PPG analysis suggest that children
with suppressed PRV, both in the time and frequency
domains, and increased heart rate were more likely to
be admitted. Children at a higher risk of critical illness
have been previously demonstrated to have a higher
heart rate and lower variability between ECG-based
heart beats as measured in the time domain."
Time-domain features based on heart rate characteristics
have also been used in the early diagnosis of neonatal
sepsis providing an AUC of 0.73.%* % Spectral HRV and
PRV analysis has also been used to identify patients with
severe sepsis in the emergency department'® ** and
sepsis shock in intensive care.”® These studies high-
lighted the value of spectral analysis for monitoring the
progression of sepsis. The power within the LF band,
which reflects sympathetic modulation of heart rate, was
demonstrated to be negatively correlated with sepsis
severity and the risk of sepsis shock.'® *® * This feature
was also selected in the current study as the strongest
PRV-based risk predictor, confirming the presence of
abnormal autonomic control in admitted children. The
analysis of the SpOg signal, recorded once per second,
allowed us to assess not only the SpOs levels but also the
short-term SpOs dynamics, not previously included as
sepsis predictors.

The addition of these significant features, extracted
from the analysis of PRV and SpOs dynamics to the pre-
diction model using only the SpOs median and respira-
tory rate, improved the classification by 28% in admitted
children and by 4% in non-admitted children. Thus, the
information derived from pulse oximetry has the poten-
tial to provide relevant objective information that
improves the identification of children at higher risk.
The updated IMCI guidelines recommend the use of
pulse oximetry to identify hypoxaemia and improve the
diagnosis of critical illness. Using the phone oximeter,

pulse oximetry can provide even more objective infor-
mation, the derived PRV and SpOs dynamics, without
increasing the required effort. The app will automatic-
ally calculate this information, unbiased by the commu-
nity healthcare worker. The result of the app can then
be considered together with treatment guidelines for a
more informed decision on the level of care necessary
for the child.

Limitations and future research

The most significant limitation of this study is that 39%
of the cases had to be excluded from the study because
they did not meet the signal quality criteria for further
analysis. The interface in the PhoneOxR2 software was
designed to assist the user in optimising data collection.
The colour of the background reflected the current
quality of the signal, estimated using amplitude and
regularity of the PPG signal and pulse oximeter module
generated alerts. Feedback on the overall quality was
provided at the conclusion of the recording and users
were also trained to optimise the signal quality during
the 1min recording. However, the signal-processing
methods applied in this study require a high-quality PPG
signal and thus demand a more conservative SQI, such
as the one applied offline in this study.”® We have subse-
quently implemented this more restrictive SQI method
in the new app and made significant improvements in
the design of new sensors. Any future decision support
app that includes the predictive model will include this
updated SQI version.”® Additionally, the app will require
at least 30s of good quality data (SQI>50%) to be
accepted as a successful recording, a restriction that was
not enforced during data collection.

The primary outcome, the need for hospitalisation,
was a subjective decision made by the facility physicians,
who may have been overly conservative in their decision-
making, knowing that their clinical outcomes were being
studied. To reduce this possible bias, the cases that were
discharged within 24 hours were excluded and all pulse
oximetry data were not provided to the facility physi-
cians. Nevertheless, this study showed that there are sig-
nificant differences in pulse oximetry derived features
between admitted and non-admitted children and that
this measurable objective information can correlate with
a subjective decision, such as hospital admission.

The final model was internally validated through boot-
strapping. However, external validation of the proposed
predictive model should be performed in the setting of
intended use. Owing to the practicality of collecting a
large enough sample size and the need for good
outcome data, our acquisition was carried out at a
tertiary-level facility rather than in the community. The
model should be validated in a community setting, with
data from a cohort of children assessed by community
healthcare providers. The model and thresholds for
referral will need to be optimised for the local context.

Another limitation is the modest values of PPV and
specificity. While this performance is significantly better
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than the currently used criteria (such as respiratory rate
and SpOs alone), there are a number of options for
improving the model performance. We are investigating
the specific characteristics of those participants in the
current cohort who were misclassified. We are also
looking to identify additional objective information that
could be included to improve performance. One option
is to add the morphology of the PPG waveform, which
also provides information about the cardiovascular
system and has been previously used as a measure of
fluid responsiveness.37 8

CONCLUSION

Following further validation and improved quality of
signal capture, this prediction tool could be used to
improve the health outcomes of children under 5 years
in low and middle income countries. The benefit of
this predictive model is that it only uses objective infor-
mation easily recorded from a mobile device, to
provide a risk score for the probability of the need for
the child to be admitted to a facility. This could allow
frontline health workers with a mobile device to
rapidly detect the need for referral with limited train-
ing overhead.
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