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Aged dogs spontaneously develop many features of human aging and Alzheimer’s disease
(AD) including cognitive decline and neuropathology. In this review, we discuss age-
dependent learning tasks, memory tasks, and functional measures that can be used
in aged dogs for sensitive treatment outcome measures. Neuropathology that is linked
to cognitive decline is described along with examples of treatment studies that show
reduced neuropathology in aging dogs (dietary manipulations, behavioral enrichment,
immunotherapy, and statins). Studies in canine show that multi-targeted approaches may
be more beneficial than single pathway manipulations (e.g., antioxidants combined with
behavioral enrichment). Aging canine studies show good predictive validity for human
clinical trials outcomes (e.g., immunotherapy) and several interventions tested in dogs
strongly support a prevention approach (e.g., immunotherapy and statins). Further, dogs are
ideally suited for prevention studies as they the age because onset of cognitive decline and
neuropathology strongly support longitudinal interventions that can be completed within a
3–5 year period. Disadvantages to using the canine model are that they lengthy, use labor-
intensive comprehensive cognitive testing, and involve costly housing (almost as high as
that of non-human primates). However, overall, using the dog as a preclinical model for
testing preventive approaches for AD may complement work in rodents and non-human
primates.

Keywords: antioxidant diet, atorvastatin, behavioral enrichment, beta-amyloid, combination treatment, dog,
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INTRODUCTION
Alzheimer’s disease (AD) is a progressive dementia associated with
the accumulation of beta-amyloid (Aβ) plaques and neurofibril-
lary tangles (NFT; McKhann et al., 1984; Mirra, 1997). Currently
five drugs are approved for use by the FDA to manage the symp-
toms of AD, although none target disease pathways and all may
provide only symptomatic relief. These drugs include donepezil,
rivastigmine, tacrine, galantamine, and memantine (Aisen et al.,
2012). However, these five approved drugs target only two path-
ways, one involving acetylcholinesterase inhibition and the second
is an NMDA receptor antagonist. Thus, preclinical studies are
critical for developing and testing new disease-modifying inter-
ventions that can be taken to clinical trials in patients with AD.
Typically, studies in rodents are the earliest steps in this process
to screen drugs that target AD pathways with most preclinical
studies of AD interventions using transgenic mouse models of
AD. Subsequently, safety studies in humans are followed by a
clinical trial in AD patients. Many of the AD clinical trials cur-
rently underway target different pathogenic pathways active in the
disease1.

Several clinical trials are targeting the reduction of Aβ. The
rationale stems from predictions based on the amyloid hypothe-
sis, originally proposed by Hardy and Higgins (1992) and updated

1http://clinicaltrials.gov/ct2/results%3Fterm=alzheimer%27s%26pg=6

by Hardy (2006) suggesting that Aβ is a critical causative fac-
tor in the disease. Thus, the focus of several clinical trials has
been to either reduce production (secretase inhibition) or increase
clearance (immunotherapy) of Aβ. Unfortunately, most of these
promising new approaches have failed in clinical trials (for review,
see Mullane and Williams, 2013). Possible reasons for failure
include but are not limited to: (1) the targets are not criti-
cal for AD pathogenesis and dementia, (2) the single pathway
reductionist approach may be insufficient, (3) the treatment is
too late (suggesting prevention studies) or, (4) the preclinical
animal model was not a predictor of human clinical trials out-
comes. In this review we first discuss the canine model of human
aging and AD, how dogs are well suited for prevention studies
based on established sensitive cognitive tasks and brain pathol-
ogy measures, and then outcomes of preclinical studies with both
single and multiple targets that may predict human clinical trial
outcomes.

THE CANINE MODEL OF HUMAN AGING AND ALZHEIMER’S
DISEASE
Some of the most commonly studied animal models of human
brain aging are rodents and non-human primates (Gallagher and
Rapp, 1997). Other animals, including wolves, bears, cats, and
dogs, naturally develop human-like neuropathology (Head et al.,
2001). Of these animals, cats and dogs tend to have similar
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living environments to humans (Head et al., 2001). Canines,
however, show cognitive decline with age and develop most
aspects of neuropathology seen in aged human brain including
AD patients (Cummings et al., 1996b; Cotman and Head, 2008).
Such neuropathology includes Aβ pathology, reduced brain vol-
ume, neuronal loss, and impaired neurogenesis (Head, 2001;
Cotman and Head, 2008). In addition to the similar cogni-
tive decline and accumulation of neuropathological hallmarks to
humans with AD, drugs exhibit similar pharmacokinetics when
administered to dogs or humans [for example statins – (Ger-
son et al., 1989; Alberts, 1990)], making them an appropriate
model for translational studies on therapeutic drugs. Not only
are dogs easy to handle due to their long history of domestica-
tion, but pet dogs also share similar living conditions and diets
to humans (Cummings et al., 1996b; Parker et al., 2004; Axels-
son et al., 2013). Canines are highly motivated by food reward
when conducting cognitive tests, which makes them cooper-
ative research subjects by reducing or eliminating deprivation
protocols for motivation. Thus, this cooperativeness eliminates
many physiological stressors that can affect cognitive testing
results present in other animal models such as rodents that
require food deprivation or cold water for motivation (Blizard
et al., 2003). The similar cognitive decline and accumulation of
neuropathology to humans makes the canine model of aging
useful for translational research on neurodegenerative diseases,
especially AD.

COGNITIVE OUTCOME MEASURES FOR PREVENTION
STUDIES IN AGING DOGS
We describe several measures of cognition that are age-sensitive
and treatment-sensitive in dogs that can be used as intervention
outcome measures to assess different cognitive abilities with anal-
ogous tasks in non-human primates and in humans (Table 1).
Much like humans, the aging canine shows cognitive decline with
various cognitive domains and cortical pathways being differen-
tially affected (Milgram et al., 1994). Dogs show cognitive deficits
due to age in tests measuring complex learning, executive func-
tion, spatial learning and attention, and memory (Milgram et al.,
1994, 2002b; Head et al., 1998a; Cotman et al., 2002; Tapp et al.,
2003a,b, 2004b; Christie et al., 2005; Siwak et al., 2005; Studzinski
et al., 2006). In addition to cognitive domain variability, individ-
ual dogs also show variability in cognitive function as seen in
humans (Adams et al., 2000). This variability becomes most appar-
ent in old canines, and using spatial learning and memory tasks,
we are able to distinguish three groups of variability: (1) suc-
cessful agers, (2) impaired dogs whose scores fell two SD above
the mean of the young animals, and (3) severely impaired dogs
who failed to learn the task (Head et al., 2001). The availability of
age-matched animals with and without cognitive deficits allowed
researchers to determine which types of neuropathology con-
tribute to individual cognitive impairments in these animals (e.g.,
Head et al., 1998a).

Several tasks, similar to those used for testing cognition in
non-human primates, have been developed to measure cognitive
decline in the aging canine (Milgram et al., 1994, 1999, 2002a;
Table 1). Such tasks include landmark discrimination, oddity
discrimination, object, size and black/white discrimination and

reversal tasks, and a spatial memory task. In our laboratory studies
using these cognitive tasks, all testing occurs in a modified Wis-
consin General Testing Apparatus such that the motor and sensory
demands are consistent across tasks (Milgram et al., 1994). For
each task, 10–12 trials are given per day and dogs are tested daily
until a predetermined criterion level of performance is reached;
total error scores are added up across days to provide a mea-
sure of learning and/or memory for each animal. These tasks are
described in more detail below to illustrate how a test battery can
be developed to measure the function of several brain circuits that
may be differentially affected by age and/or treatment in aging
dogs.

The landmark discrimination task, which measures visuospatial
function and allocentric learning, involves presenting dogs with
two identical objects, one of which is adjacent to a third object that
serves as a landmark (Milgram et al., 1999). Animals are required
to recognize that the landmark is an indicator of which object
covers the food reward, and selection of the object closest to this
landmark by the animal is considered a correct response. The task
is made successively more difficult by placing the landmark further
away from the object covering the reward. Previous work shows
that aged dogs are impaired on the landmark task and show age
decrements in their ability to determine how close the landmark
is to the correct object (Milgram et al., 1999, 2002a).

The oddity discrimination task measures complex learning, as
well as prefrontal cortex function (Cotman et al., 2002). Aged dogs
show deficits in oddity discrimination learning (Cotman et al.,
2002; Milgram et al., 2002b). In this task, dogs are presented with
three objects simultaneously, two of which are identical and a
third that is unique. A correct response is indicated when the dog
chooses the unique object, resulting in a reward. To prevent a
floor effect and detect progressive age decline, the oddity aspect
of this task is made successively more difficult. Animals progress
through four sets of three objects and each subsequent set contains
a unique object, which is more difficult to distinguish from others
than the previous set (Milgram et al., 2002b). Interestingly, young
dogs can solve this problem by using the strategy of selecting the
novel object for each successive set of objects such that error scores
plateau; in contrast, aged dogs do not learn a strategy but re-learn
each set of objects as a new problem (Cotman et al., 2002; Milgram
et al., 2002b).

Tests of object, size and black/white discrimination are adminis-
tered to measure associative learning ability. Object discrimination
involves presenting dogs with two different objects simultaneously
with one of the two objects consistently rewarded. Dogs must learn
to select the same object each presentation with the left/right posi-
tion being randomly determined. Similarly, the size discrimination
objects differ in size (small/large) and the black/white discrimina-
tion task objects differ only in color (black/white; Milgram et al.,
2005). Object, size and black/white discrimination are also pro-
gressively more difficult for animals to solve given the similarities
in the objects increasing. Thus, these three tasks in combination
can serve as different test versions (much like in clinical studies in
people) to assess longitudinal changes in learning while reducing
practice effects (Milgram et al., 2005).

Executive function can be evaluated immediately after discrim-
ination learning has been completed by using the object, size or
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black/white reversal objects. The reversal tasks differ from the orig-
inal discrimination task in that the positive and negative objects
for reward contingencies are reversed after animals have learned
the initial discrimination (Milgram et al., 2004, 2005). Revers-
ing the reward contingencies can show perseverative behaviors
(persistent choice of previously correct object), which are frontal
cortex dependent (Warren, 1964). A subset of the discrimination
learning tasks and all reversal learning tasks are age-dependent,
with reversal learning being consistently more impaired with
age (Milgram et al., 1994, 2004, 2005; Tapp et al., 2004b;
Siwak et al., 2005).

Memory also declines with age in dogs. The most useful age-
sensitive task we have used is a spatial memory task, in which
dogs are required to recognize the location of a sample stimulus
and then respond to a different location during the test trial. We
refer to this as a delayed non-match to position task (DNMP)
and it involves showing animals a single object covering a food
reward either on the left or right food well. After animals move
the object and obtain the reward, the object is withdrawn from
sight for a predetermined delay period (e.g., 10 s). Subsequently
animals are given two identical objects to choose from; one is
the same object in the same position as before and one is in a
novel position. The correct response is to select the object cov-
ering the novel location. Results published in 1995, Head et al.
(1995) suggested that the task was age-sensitive. We subsequently
developed a three-choice visuospatial working memory task that
allows determination of the differential age-dependent strategies
(e.g., cognitive or stimulus-dependent strategies) dogs use in solv-
ing the problem (Chan et al., 2002). In this task, rather than
just the left and right food wells are used but a center well is
also included to make the task more difficult. Further, this task
shows minimal practice effects in longitudinal studies (Head et al.,
2008). We identified the time course of the development of cogni-
tive decline and found that deterioration in spatial ability occurs
early in the aging process, between 6 and 7 years of age in dogs
(Studzinski et al., 2006).

BEHAVIORAL/FUNCTIONAL OUTCOME MEASURES FOR
PREVENTION STUDIES IN DOGS
In addition to cognitive outcome measures, researchers and veteri-
narians are interested in measuring functional outcomes. Further,
laboratory-based cognitive testing as described above is labor
intensive and requires many months to years to obtain data. An
open field test can be used to observe the behavioral patterns of ani-
mals in an empty room for 10 min. During this task, movement,
sniffing, urinating, grooming, rearing, jumping, vocalization, and
inactivity are noted (Head and Milgram, 1992; Siwak et al., 2000,
2001). Self-recognition can be evaluated through the mirror test,
originally developed for primates (Gallup, 1968; de Veer et al.,
2003), by observing the reaction of each animal with a mirror and
their reflection. Exploratory behavior of canines can be assessed
through a curiosity test in which animals are presented with var-
ious novel play objects. During their time with the objects, the
amount of time the dogs spend in physical contact with or sit-
ting next to the objects is recorded as well as their frequency
of sniffing the objects (Siwak et al., 2001). Social responsiveness
of dogs can be gaged through a few different tasks: a human

interaction test, silhouette test, and the model dog test. A human
interaction test is performed by the presence of a person in the
middle of the room and recording the reaction of the dog to
that person by measuring the time the dog is in physical con-
tact with the person, time sitting or standing beside the person,
and frequency sniffing the person (Head et al., 1997). The sil-
houette test records the animals frequency of sniffing the front
and rear regions of a cardboard silhouette of a dog posted onto
a wall (Fox and Weisman, 1970). The model dog test also records
the sniffing frequency of the dogs, but this time in response to
the presence of a life size model dog in the center of a room
(Siwak et al., 2001).

Behavioral patterns in these tasks show age effects as well as
differential effects based on the presence of intact/impaired cog-
nition. Siwak et al. (2001) characterized the behavioral profiles of
young (2–4 years), aged (9–15 years) cognitively impaired, and
aged non-impaired beagles. Young dogs tend to show greater
responsiveness to changes in environments such as the addition
of novel objects and a person. They also showed greater social
responsiveness spending the most time next to or sniffing a per-
son, silhouette, and model dog. Aged unimpaired dogs were still
responsive to alterations in environment, but to a lesser degree
than the young animals. Additionally, aged unimpaired dogs spent
the least amount of time reacting to the mirror during the self-
recognition task. Unlike either the young or aged unimpaired
canines, the aged impaired canines were unresponsive to all stim-
uli presented to the environment and randomly moved about the
room in pacing/aimless behavior. However, the aged impaired
dogs did spend the most time interacting with the mirror in the
self-recognition test (Siwak et al., 2001).

Measures of canine function can also be assessed in a clinical
setting (Landsberg and Ruehl, 1997; Landsberg and Araujo, 2005;
Landsberg et al., 2012). Clinical measures have been developed
consisting of pet dog owner based evaluation of dog behavioral
changes (Colle et al., 2000; Pugliese et al., 2006a, 2007; Bosch et al.,
2012, 2013; Landsberg et al., 2012) similar to those used in human
clinical evaluations, such as the mini mental state exam (MMSE).
Although there are different versions of these questionnaires, all
appear to be sensitive to the presence of canine cognitive dysfunc-
tion (Landsberg et al., 2012). The evaluation consists of items such
as walking, posture/emotion of expression, elimination behavior,
life rhythm, play behavior, exploratory behavior, learned specific
behavior, adaptive capabilities, and interactions with other ani-
mals or with owners. The items of individual questionnaires can
be used to derive scores that distinguish between normally and
pathologically aging dogs. Adult and older dogs generally score
worse with these types of evaluation tools, and old dogs show indi-
vidual variability in terms of the amount of cognitive dysfunction
reported (Bosch et al., 2012).

DOG NEUROPATHOLOGY AND OUTCOME MEASURES FOR
PREVENTION STUDIES
Just as canines can exhibit cognitive decline with age similar to
aging humans and patients with AD, several human-type neu-
ropathologies have been reported in dogs (Cotman and Head,
2008). In particular, the canine model has long been suggested as
an excellent model of Aβ pathogenesis (Wisniewski et al., 1990).
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Several changes observed in the aged canine brain are associated
with cognition and are discussed below.

Individuals with AD show significant cortical and hippocam-
pal atrophy relative to non-demented age matched controls (Alavi
et al., 1993; Raz et al., 1998) and losses in brain volume correlate
with cognitive decline (Ezekiel et al., 2004; Du et al., 2005). Similar
events are seen in aged canines. On cross sectional MR imag-
ing, aging canines show increased cortical atrophy and ventricular
widening (Su et al., 1998; Gonzalez-Soriano et al., 2001; Kimot-
suki et al., 2005). Ventricular widening over time was observed
by MRI in a 3-year longitudinal study (Su et al., 2005). Canine
cortical atrophy occurs earliest in the prefrontal cortex and later
with age in the hippocampus (Tapp et al., 2004a). As with humans,
the more extensive the cortical/hippocampal atrophy seen in aged
canines the more pronounced the cognitive deficits (Tapp et al.,
2004a; Rofina et al., 2006).

Neuronal loss occurs in human brain aging and could explain
the brain volume losses seen in brain imaging (West, 1993; Simic
et al., 1997). With normal brain aging, neuronal loss is only seen
in the hilus (West, 1993; West et al., 1994), while neuronal loss is
much more widespread in individuals with AD (Bobinski et al.,
1997; West et al., 2000). Individuals with AD experience neuronal
loss in the CA1, CA2, CA4, and subiculum of the hippocam-
pus (Bobinski et al., 1997; West et al., 2000; Price et al., 2001). In
aged beagles, the hilus of the dentate gyrus showed fewer neurons
compared to younger dogs (Siwak-Tapp et al., 2008). Beagles with
fewer neurons in the hilus made significantly more errors when
performing the size discrimination task (Siwak-Tapp et al., 2008).
Similarly, Pugliese et al. (2007) found that a loss of Purkinje cells
in canines correlated with data acquired by questionnaires quanti-
fying behavioral deficits. However, neuronal loss may not account
for all of the brain atrophy observed by MR as the loss of neuronal
dendritic spines occurs with AD (Knobloch and Mansuy, 2008;
Overk and Masliah, 2014) but to our knowledge, there are cur-
rently no studies published evaluating similar changes with age in
dogs.

While selective neuronal loss may occur with aging, the brain is
also able to produce new neurons. The hippocampus, for example,
grows new neurons in the subgranular layer (Eriksson et al., 1998).
Neurogenesis has been explored in aged beagles using BrdU and
doublecortin protein staining methods. Siwak-Tapp et al. (2007)
measured neurogenesis in aged beagles using BrdU and found that
animals over the age of 13 experienced a significant loss of neuro-
genesis. Fewer newer BrdU positive neurons was associated with
poorer cognitive function in learning and memory and learning
ability (Siwak-Tapp et al., 2007).

Neuronal dysfunction could result in abnormal production of
critical neurotransmitters in the brain. Thus, one potential tar-
get for therapeutics in AD is to manipulate or restore decreased
neurotransmitter levels. Some drugs targeting neurotransmitters
are already available as treatments for AD; however, as mentioned
earlier; these drugs at best provide only symptomatic relief. Neuro-
transmitter deficits have not been thoroughly explored in canines.
In humans, decreases in specific neurotransmitter systems are
associated with aging and AD (Meltzer et al., 1998; Ballard et al.,
2005; Schliebs and Arendt, 2006; Rissman et al., 2007). Dogs with
Aβ accumulation in the gyrus proreus possess fewer serotonergic

neurons (Bernedo et al., 2009). A decrease in receptor binding of
serotonin is seen with age in dogs over 8 years of age (Peremans
et al., 2002). Animals with high levels of Aβ in the prefrontal cortex
experience a loss of noradrenergic neurons in the locus ceruleus,
which is also associated with cognitive dysfunction (Insua et al.,
2010). Acetylcholinesterase density is reduced in granule cells of
the cerebellum with age (Pugliese et al., 2007). Aged canines expe-
rience a loss of gamma-aminobutyric acid interneurons in the
prefrontal cortex (Pugliese et al., 2004), as well as the CA1 and
dentate gyrus of the hippocampus (Hwang et al., 2008b). Addi-
tionally, a loss of glutamic acid decarboxylase 67 neurons in CA1
of the hippocampus is seen in aged canines over 10 years of age
(Hwang et al., 2008b). Thus, similar patterns of age-associated
neurotransmitter system dysfunction appear in aging dogs and
may be a suitable model system in which to develop or test novel
neurotransmitter pathway-based interventions. The pathogenic
mechanisms underlying neuronal dysfunction, neurotransmit-
ter losses and death may include, e.g., the deposition of Aβ,
cerebrovascular dysfunction, or oxidative damage.

Beta-amyloid (Aβ) is derived from a longer precursor protein,
the amyloid precursor protein (APP). The APP sequence of Canis
familiaris has 98% homology with human APP2 and an identical
amino acid sequence (Selkoe et al., 1987; Johnstone et al., 1991).
Additionally, dog Aβ peptides may undergo the same posttransla-
tional modifications as in humans (Satou et al., 1997; Azizeh et al.,
2000). These similarities make canines a viable aging model with-
out the need for genetic modification or overexpression of mutant
human proteins (Selkoe et al., 1987).

The Aβ present in canines is ultrastructurally fibrillar and,
though more compact deposits may form, it generally aggregates
into diffuse plaques (Giaccone et al., 1990; Russell et al., 1992;
Uchida et al., 1992; Cummings et al., 1993; Morys et al., 1994; Torp
et al., 2000a,b). This type of Aβ deposition most resembles early
AD pathology (Morris et al., 1996; Markesbery et al., 2006; Cot-
man and Head, 2008; Figures 1A,B). Since most AD therapeutics
studied today are likely to have a greater affect if applied earlier
in the disease progression, the early AD-like pathology canines
produce makes them an attractive model for prevention studies
(Martin et al., 2011b). As with cognitive decline, AD-like neu-
ropathology has a region specific progression in both humans
and canines (Wisniewski et al., 1970; Selkoe et al., 1987; Giac-
cone et al., 1990; Braak and Braak, 1991; Head et al., 2000; Thal
et al., 2002). Though this progression in dogs is similar to that
reported in humans, it is not identical. In canines, the accu-
mulation of Aβ begins in the prefrontal cortex (approximately
8 years at age of onset) and continues to develop with increasing
age to include other regions such as the temporal and occipi-
tal cortex (Russell et al., 1996; Head et al., 2000; Cotman and
Head, 2008). The severity of neuropathology can vary between
individual animals but can be linked to the extent of cogni-
tive decline (Cummings et al., 1996a; Head et al., 1998b; Colle
et al., 2000; Rofina et al., 2006). For instance, animals who per-
form worse in reversal learning tasks have greater Aβ pathology
in the prefrontal cortex, while those deficient in size discrimi-
nation learning show higher amounts of Aβ in the entorhinal

2http://www.ensembl.org/Canis_familiaris/
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FIGURE 1 | Immunoreactivity for Aβ 1-42 in frontal cortex brain tissue of

(A) an aged canine and (B) an aged human. Compact Aβ deposits are
similar in humans and canines (arrow head). The outline of an intact neuron

enveloped by a diffuse plaque is visible (arrow). Aβ 1-40 immunoreactivity of
cerebral amyloid angiopathy is similar in aged canine occipital cortex (C) and
aged human occipital cortex (D). Reproduced from Martin et al. (2011b).

cortex (Cummings et al., 1996a; Head et al., 1998a; Pop et al.,
2010b).

Aβ peptide can also be measured in the cerebrospinal fluid
(CSF) of dogs (Sarasa et al., 2013). Measuring CSF Aβ as a ratio
of Aβ 42/Aβ 40 is a good predictor of Aβ in the brain in dogs
(Head et al., 2010). While brain Aβ increases with age, CSF Aβ

decreases with age reflecting the hypothesis that Aβ migrates from
the periphery and deposits in the brain with age and AD.

Aside from the fibrillar Aβ found in diffuse plaques in AD, a
smaller, more soluble form of Aβ – oligomeric Aβ – is also seen
in the aged dog brain. This more toxic form of Aβ affects synap-
tic function and can even be found in plaques (Walsh et al., 2002;
Kayed et al., 2003; Selkoe, 2008). Higher levels of oligomers are
present in canines and humans with increasing age and cogni-
tive decline. The greater the cognitive deficit, the more prevalent
oligomers are in the brain (Tomic et al., 2009; Pop et al., 2010a).
Similar to fibrillar Aβ, oligomeric Aβ can be measured in CSF,
where levels are inversely related to levels in the brain (Head et al.,
2010).

Aβ can also aggregate in the cerebral blood vessel walls and
cause cerebrovascular pathology (Prior et al., 1996; Attems, 2005;
Herzig et al., 2006). This type of deposition is referred to as cere-
bral amyloid angiopathy (CAA; Figures 1C,D). Typically CAA
is composed of the shorter Aβ 1-40 peptide (Wisniewski et al.,
1996; Attems, 2005; Herzig et al., 2006). Both humans and canines
exhibit CAA pathology, with a particular vulnerability in the
occipital cortex (Attems et al., 2005). CAA impairs the blood

brain barrier, vascular function, and can cause microhemorrhages
(Uchida et al., 1990; Prior et al., 1996; Deane and Zlokovic, 2007).
Because of these complications, CAA may contribute to cognitive
decline in both humans (Ellis et al., 1996; Rensink et al., 2003;
Nicoll et al., 2004; Attems, 2005) and canines (Giaccone et al.,
1990; Uchida et al., 1990, 1991; Head, 2013). Much like humans,
canines experience microhemorrhages with age (Uchida et al.,
1991). These cerebral hemorrhages are present in both animals
with and without CAA, but are more common in those with the
blood vessel pathology (Uchida et al., 1991). Given the significant
overlap of cerebrovascular pathology with AD, the spontaneous
accumulation of CAA in dogs also offers as yet, an underappreci-
ated model system to test the effects of cerebrovascular pathology
on cognition and AD neuropathology.

Aβ deposition may lead to oxidative damage or vice versa,
oxidative damage may lead to Aβ (Butterfield, 1997). Ultimately,
oxidative damage accumulates with age and can lead to neu-
ronal dysfunction and thus impact cognition (Butterfield et al.,
2001). Oxidative damage occurs over time due to the overpro-
duction of reactive oxygen species (ROS) produced primarily
by mitochondria. When there is an overabundance of ROS,
various mechanisms including production and release of endoge-
nous antioxidants are in place to restore a homeostatic balance.
However, ROS overproduction may exceed the levels or pro-
duction rate of endogenous antioxidants and result in oxidative
damage to proteins, lipids, and nucleotides. Oxidative damage
can be measured by the amount of protein oxidation (carbonyl
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groups), 4-hydroxynonenal, lipofuscin, lipofuscin-like pigments,
and malondialdehyde (lipid peroxidation). Further, 8-hydroxy-2′-
deoxyguanosine (8OHdG) can be measured to detect DNA/RNA
oxidation.

While oxidative damage occurs with normal aging, it is more
pronounced in AD (Smith et al., 1991, 1996, 2000; Ames et al.,
1993; Lovell et al., 1999; Montine et al., 2002; Pratico et al., 2002;
Butterfield et al., 2007; Lovell and Markesbery, 2008), and sim-
ilar patterns are seen in canines. In the canine model, there is
evidence that ROS production is higher than in younger ani-
mals. In mitochondria isolated from aged canine brain, there
is an increased production of ROS compared to mitochondria
isolated from young animals (Head et al., 2009). Canines also
experience an accumulation of carbonyl groups with age (Head
et al., 2002; Skoumalova et al., 2003). Lipid peroxidation is exhib-
ited in old dogs, measured by 4-hydroxynonenal (Papaioannou
et al., 2001; Rofina et al., 2004, 2006; Hwang et al., 2008a), lipofus-
cin (Rofina et al., 2006), lipofuscin-like pigments (Papaioannou
et al., 2001; Rofina et al., 2004), or malondialdehyde (Head et al.,
2002). Increased 8OHdG in aged canines has also been reported
(Rofina et al., 2006; Cotman and Head, 2008). In particular,
increased protein oxidation and lipid peroxidation (lipofuscin-like
pigment) correlates with cognitive decline in dogs (Skoumalova
et al., 2003; Rofina et al., 2004, 2006). Given that canines exhibit
age-associated oxidative damage in the brain that correlates with
poorer cognition, these animals are suitable to study antioxidant
treatment/prevention strategies.

One hallmark AD pathology canines do not produce is NFTs
(Selkoe et al., 1987; Russell et al., 1992). While no research to date
has observed NFTs in the canine brain, the increased phosphoryla-
tion seen at some sites of tau in AD cases also occurs in cognitively
impaired canines (Kuroki et al., 1997; Wegiel et al., 1998; Papaioan-
nou et al., 2001; Head et al., 2005; Pugliese et al., 2006b). This lack
of NFT pathology could possibly be due to significant differences
in the tau protein sequence between canines and humans3. How-
ever, an advantage to dogs not accumulating NFTs is that they serve
as a model that is selective for Aβ pathology and ideally suited for
testing interventions that target this toxic protein.

TREATMENT STUDIES IN AGED DOGS AND PREDICTING
HUMAN CLINICAL TRIALS
Several studies have tested therapeutic strategies using the canine
model of aging and AD with both cognitive and neuropatho-
logical outcome measures (Table 2). Several of these involve
dietary and/or environmental manipulations. One of the earliest
studies to develop a treatment for cognitive dysfunction in aged
dogs tested an antioxidant-rich diet in combination with behav-
ioral enrichment. The behavioral enrichment included increased
exercise, interaction with other dogs, and cognitive enrichment
(Cotman et al., 2002; Milgram et al., 2002a, 2004, 2005). The
diet included vitamins E and C, fruits and vegetables, lipoic acid
and carnitine. Compared to control animals, those receiving an
antioxidant-rich diet committed fewer errors during landmark
acquisition and retention tasks (Milgram et al., 2002a) as well
as oddity discrimination tasks (Cotman et al., 2002). Treatment

3http://www.ensembl.org/Canis_familiaris/

with an antioxidant diet and behavioral enrichment resulted in
improved performance during black and white object discrim-
ination and reversal (Milgram et al., 2005). Pop et al. (2010b)
found dogs provided with both behavioral enrichment and an
antioxidant diet have an overall reduction in Aβ pathology across
multiple regions of the brain. However, when looking at group
treatment effects, only the antioxidant-treated animals had a
significant reduction in Aβ plaque pathology. Additionally, the
combination treatment approach of behavioral enrichment and
an antioxidant-rich diet in aged canines was unable to reduce
existing brain Aβ (Pop et al., 2010b). While plaque load was
affected by the dual intervention, soluble and insoluble Aβ 1-40
was not affected, and only soluble levels of Aβ 1-42 were lowered
specifically in the prefrontal cortex. A trend toward a signif-
icant decrease in oligomers specifically in the parietal cortex
was observed in canines receiving the combined treatment (Pop
et al., 2010b). Interestingly, the combination group also showed
reduced oxidative damage (Opii et al., 2008) with the antioxi-
dant diet group alone showing reduced mitochondrial dysfunction
(Head et al., 2009). Further, the behavioral enrichment group,
independent of the antioxidant diet treatment showed less neu-
ron loss in the hippocampus (Siwak-Tapp et al., 2008) as well as
improved levels of brain derived growth factor (Fahnestock et al.,
2010).

Supplemental medium-chain TAG (MCT) increases ketone lev-
els in the brain, and these ketones can in turn be used as an
alternative energy source. Pan et al. (2010) measured cognitive
effects seen due to this supplement on the landmark discrimi-
nation, oddity discrimination, and two choice egocentric spatial
learning tasks. Results indicated aged dogs given a diet with MCT
supplementation performed better than those receiving a control
diet in all tasks (Pan et al., 2010).

In contrast, fewer benefits on cognition were observed in a study
using a medical food cocktail (Head et al., 2012). Dogs receiving a
combination cocktail containing an extract of turmeric containing
95% curcuminoids, an extract of green tea containing 50% epi-
gallocatechin gallate, N-acetyl cysteine, R-alpha lipoic acid and
an extract of black pepper containing 95% piperine exhibited
fewer errors compared to control animals during the landmark
task indicating improved spatial attention. However, other areas
of cognition were unaffected and brain Aβ remained unchanged
(Head et al., 2012).

In 2008, a therapeutic approach that directly targeted Aβ

reduction was explored in which aged beagles were actively immu-
nized with fibrillar Aβ1-42 for 2 years (Immunized - IMM)
based upon previous work in transgenic mouse models of AD
(Schenk et al., 1999). This immunotherapy approach led to no
improvement in cognitive function, but interestingly a long
term maintenance of executive function was noted based on
error scores from the size reversal learning task (Head et al.,
2008). However, significant benefits to brain pathology were
observed in the IMM dogs who showed significantly decreased
Aβ plaque load in prefrontal, entorhinal, and occipital cor-
tical regions, as well as reduced CAA (Head et al., 2008).
While soluble and insoluble brain Aβ 1-40 and 42 signifi-
cantly decreased in treated canines, there was no significant
reduction in soluble oligomers. This study suggests that reducing
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or eliminating pre-existing Aβ in aging dogs is not sufficient to
improve cognition.

Outcomes from the longitudinal dog vaccination study are sim-
ilar to reports of the clinical trial in patients with AD where no
differences between antibody responders and placebo groups on
several cognitive and disability scales was observed. A small num-
ber of patients enrolled in the AN1792 study have come to autopsy
and show Aβ plaque reduction without any effect on the extent
of NFT or CAA (Nicoll et al., 2003; Ferrer et al., 2004; Masliah
et al., 2005). Further, the frontal cortex showed the largest response
to immunotherapy (Masliah et al., 2005), which is similar to our
observations in the dog. The most recent autopsy study of eight
patients that were in the AN1792 study further confirm reduced
Aβ pathology in response to treatment, 5 years after the last injec-
tion (Holmes et al., 2008). However, reduction of brain Aβ did not
slow disease progression and seven of eight patients had severe end
stage dementia prior to death. (Gilman et al., 2005). Interestingly,
a composite score of a neuropsychological test battery indicated
“less worsening”of decline in antibody responders after 12 months
and an improvement in the memory domain (Gilman et al., 2005).

Bosch et al. (2013) recently showed benefits of an active fibril-
lar Aβ40 and Aβx−40 combination vaccine on cognition in aged
housed beagles and pet dogs treated for 51 days. Over the course
of treatment, cognitive evaluations by questionnaire were given at
31 days post treatment and at the end of treatment. Immunized
animals showed a significant improvement in cognitive evalua-
tion scores at both 31 and 51 days post treatment compared to
pre-immunized scores (Bosch et al., 2013). Differences in the for-
mulation, the outcome measures or the source of animals may
explain the positive effects in the Bosch study compared with the
previous beagle vaccine studies.

Several studies in the aged dog have tested the effects of drugs
already approved for use in humans, with novel applications
to brain aging. For example, several cross-sectional or case-
control epidemiological studies revealed a striking link between
cholesterol-lowering drugs (e.g., statins and others) and a 20–70%
reduction in risk of developing AD (Jick et al., 2000; Wolozin et al.,
2000, 2007; Hajjar et al., 2002; Rockwood et al., 2002; Rodriguez
et al., 2002; Zamrini et al., 2004; Dufouil et al., 2005). Modest cog-
nitive benefits have been reported in preliminary AD clinical trials
with simvastatin (Simons et al., 2002) and atorvastatin (Sparks
et al., 2005a,b, 2006a,b). In particular, AD patients with mild to
moderate dementia who were treated with 80 mg/day atorvastatin
had significantly improved scores on one measure of cognition
Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-
Cog) at 6 months of treatment, with smaller non-significant
benefits at 12 months (Sparks et al., 2005b).

Statins may reduce the risk of incident AD through the pre-
vention of Aβ production (Simons et al., 1998; Hartmann, 2001).
In rodent models, treatment with inhibitors of 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) or statins reduces Aβ

(Petanceska et al., 2002). However, rodents respond to statin treat-
ment by massively upregulating HMG-CoA reductase levels (Fears
et al., 1980; Alberts, 1990; Todd and Goa, 1990; Thelen et al., 2006).
To compensate, long-term studies in rodent often employ physio-
logically excessive doses, making it difficult to translate the results
of these studies into human trials.

The dog model is particularly useful to study chronic statin
treatment, given similarities with humans in terms of dose require-
ments, responsiveness, drug handling, and metabolism (Gerson
et al., 1989; Alberts, 1990). For example, 12 dogs were treated
with 80 mg/day of atorvastatin for 14.5 months (Murphy et al.,
2010). Peripheral levels of cholesterol, low density lipoproteins,
triglycerides and high density lipoproteins were reduced in treated
dogs. Surprisingly, a transient impairment in reversal learning
was observed, suggesting prefrontal dysfunction. Spatial memory
remained unchanged up to over a year of treatment. The lack
of cognitive benefits of treatment was also reflected by a lack of
reduction in plasma, CSF, and brain Aβ. Interestingly, BACE1 pro-
tein level was decreased in the brains of atorvastatin-treated dogs.
This intriguing outcome may suggest that statins might be more
useful to prevent the production of Aβ through lowering BACE1
if started in animals in middle age, consistent with human studies
indicating that middle-aged individuals using statins are protected
from AD.

More recent work on the brain from statin-treated aged dogs
suggests that additional benefits of atorvastatin include reducing
oxidative damage and upregulating endogenous protective path-
ways. Thus, statins may have multiple benefits to the brain by
affecting several pathways impaired by aging (Barone et al., 2011,
2012; Martin et al., 2011a; Butterfield et al., 2012). Aged dogs are
a unique model that may provide novel insights and translational
data to predict outcomes of statin use in human clinical trials.

SUMMARY
Aged dogs capture many features of human aging and AD includ-
ing cognitive decline and neuropathology. Canine studies show
that multi-targeted approaches may be more beneficial than single
pathway manipulations (e.g., antioxidants combined with behav-
ioral enrichment vs. Aβ vaccine). Further, prevention studies could
be accomplished in a 5-year period to test the effects of an interven-
tion on the development of cognitive decline and neuropathology.
Interestingly, an immunotherapy study in aged dogs illustrates
the predictive validity of using this model system as aged dogs
did not show cognitive improvements with an Aβ vaccine despite
showing significant brain Aβ reductions, much like reports in the
AD clinical trial. The canine model has numerous advantages as
described above, however, systematic cognitive testing can be a
lengthy and costly (given per diem rates) process and requires
significant technical support. Still, the canine model should be
considered an option since it is less involved and costly than a
human clinical prevention study. Overall, using the dog as a pre-
clinical model for testing preventive approaches for AD may be
a useful step that complements work in rodents and non-human
primates.
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