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Abstract: This study identified lactic acid bacteria (LAB) that play a major role in kimchi fermented at
low temperature, and investigated the safety and functionality of the LAB via biologic and genomic
analyses for its potential use as a starter culture or probiotic. Fifty LAB were isolated from 45 kimchi
samples fermented at −1.5~0 ◦C for 2~3 months. Weissella koreensis strains were determined as the
dominant LAB in all kimchi samples. One strain, W. koreensis SK, was selected and its phenotypic
and genomic features characterized. The complete genome of W. koreensis SK contains one circular
chromosome and plasmid. W. koreensis SK grew well under mesophilic and psychrophilic conditions.
W. koreensis SK was found to ferment several carbohydrates and utilize an alternative carbon source,
the amino acid arginine, to obtain energy. Supplementation with arginine improved cell growth
and resulted in high production of ornithine. The arginine deiminase pathway of W. koreensis SK
was encoded in a cluster of four genes (arcA-arcB-arcD-arcC). No virulence traits were identified in
the genomic and phenotypic analyses. The results indicate that W. koreensis SK may be a promising
starter culture for fermented vegetables or fruits at low temperature as well as a probiotic candidate.
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1. Introduction

Members of the Weissella genus belonging to the Leuconostocacea family are gram-positive,
non-spore forming, heterofermentative, and short-rod bacteria [1]. Weissella can be isolated from a
variety of sources, including fermented foods, milk, vegetable, soil, and the gastrointestinal tracts
of humans and animals [2]. To date, the Weissella genus comprises 19 validly described species [2].
Weissella koreensis isolated from kimchi, a traditional Korean fermented food, was first proposed as a
novel species belonging to the Weissella genus in 2002 by Lee et al. [1].

Several health benefits or functions related with Weissella species, including anti-tumor, anti-obesity,
and immuno-modulatory effects, have been reported [3–5]. Although human infections caused by
Weissella species are rarely reported, some Weissella species were reported to be involved in disease
outbreaks, including endocarditis, sepsis, and fish mortality [6,7]. Thus, any strain intended to be used
as a starter culture or probiotic should be properly evaluated in terms of safety.

Members of the Weissella genus have been reported as one of the major lactic acid bacteria (LAB)
responsible for kimchi fermentation [8]. Among Weissella species, Weissella confusa and Weissella cibaria
species are being extensively studied for their use as probiotics based on functional and genomic
characteristics [2,9], whereas only few studies have been conducted on the functional, genomic,
and metabolic features of W. koreensis [4,10].
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The aim of this study was to identify a dominant LAB species in kimchi fermented at 1ow
temperature as well as investigate its safety and functionality via biologic and genomic analyses for its
potential use as a starter culture or probiotic. For this, we isolated a total of 50 LAB strains as dominant
LAB from various kimchi samples, which were fermented at −1.5~0 ◦C for 2~3 months. One strain
was selected among the isolates, after which its whole genome was sequenced, and genomic features
analyzed. Furthermore, its phenotypic characteristics such as carbohydrate assimilation, growth at
different temperatures, acid-alkali tolerance, amino acid (arginine) catabolism, and virulence traits
were investigated and further compared with its genome analysis data.

2. Materials and Methods

2.1. Isolation and Identification of LAB

Freshly made kimchi was collected from different locations in South Korea and fermented at
−1.5~0 ◦C (Kimchi refrigerator, LG, Changwon, Korea) for 2~3 months. The resulting kimchi sample was
macerated, and the kimchi slurry was filtered through a sterile thin cloth [11]. The kimchi filtrate was then
serially diluted with sterile-distilled water and spread onto de Man, Rogosa, and Sharpe (MRS; Difco,
Sparks, MD, USA) +2% CaCO3 agar. The plates were incubated at 30 ◦C for 2~3 days, after which colonies
forming a clear zone on the MRS+2% CaCO3 agar were tentatively selected as a LAB strain. The isolates
were identified by gram-staining, catalase test, morphological observation under a microscope (Eclipse
55i, Nikon, Tokyo, Japan), and determination of 16S rRNA gene sequences [12,13]. The determined
16S rRNA gene sequences were compared with sequences available in the GenBank database (https:
//www.ncbi.nlm.nih.gov/) using CLUSTAL W (https://www.genome.jp/tools-bin/clustalw).

2.2. Polymerase Chain Reaction (PCR)-Denaturing Gradient Gel Electrophoresis (DGGE)

The prepared kimchi filtrate was centrifuged (13,475× g, 5 min, 4 ◦C), the pellet washed, and DNA
extracted using a genomic DNA preparation kit (Qiagen, Hilden, Germany). The extracted DNA was
then used as a template for PCR amplification of the 16S rRNA gene using 27F and 1492R 16S universal
primers [14]. The purified amplicon was used as a template for nested PCR targeting the V3 region of
the 16S rRNA gene using the DGGE primers of Lac1 and GC Lac2 [15]. DGGE was conducted using
8% (w/v) acrylamide with the Dcode system (BioRad, Hercules, CA, USA). Bands of interest were
extracted from gels, reamplified using the DGGE primers of Lac1 and GC Lac 2, and sequenced using
an automated DNA sequencer (Applied Biosystem, Forster City, CA, USA). The determined partial
ribosomal DNA sequences were queried by Blast searches of the GenBank database to identify the
closest known relatives.

2.3. Whole Genome Sequencing, Assembly, and Annotation

Whole genomic DNA from the LAB isolate was extracted using DNeasy Blood & Tissue Kits
(Qiagen). The extracted DNA was completely sequenced by Macrogen (Seoul, Korea) using PacBio RS
single-molecule real-time (SMRT) sequencing and Illumina HiseqXten sequencing. The PacBio SMRT
reads were assembled using the hierarchical genome assembly process, and errors in PacBio sequencing
were corrected by paired-end reads obtained by Illumina sequencing. The complete genome of the
LAB isolate consisting of a chromosome and plasmid were deposited in GenBank under the accession
numbers CP043431-2. Sequences were further annotated by RAST server using the classic scheme
(https://rast.theseed.org/FIG/rast.cgi). Protein coding sequences (CDSs) encoded on the plasmid were
annotated by using NCBI BlastX (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

2.4. Plasmid Preparation and Digestion

Plasmid in the LAB isolate was extracted by using a QIAprep spin miniprep kit (Qiagen).
The isolated plasmid DNA was digested with restriction enzymes, Bgl II and Blp I, at 37 ◦C for 1 h.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.genome.jp/tools-bin/clustalw
https://rast.theseed.org/FIG/rast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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The plasmid digestion mixtures were separated by electrophoresis on 1% (w/v) agarose gel stained
with ethidium bromide.

2.5. Phenotypic Properties

2.5.1. Carbohydrate Assimilation

Carbohydrate assimilation of the LAB isolate was investigated using an API 50 CHL (BioMérieux,
Marcy l’Etoile, France) according to the manufacturer’s instructions. W. koreensis KACC 11853T,
obtained from the Korean Agricultural Culture Collection (Wanju, Korea), was used as a control.

2.5.2. Growth at Different Temperatures

Growth of the LAB isolate at different temperatures was observed in MRS broth at −1.5, 5, 10, 15,
25, and 30 ◦C for 24~2016 h. Growth was determined by monitoring the absorbance at 600 nm (A600;
Ultrospec 2100 pro, Biochrom, Cambridge, UK). Growth of viable cells after cultivation at different
temperatures was also measured; briefly, the culture was serially diluted, spread on MRS (Difco) agar,
and incubated at 30 ◦C, after which the colonies on the plate were counted.

2.5.3. Cell Viability According to pH Level

To determine the acid and alkali tolerances of the LAB isolate, the isolate was adjusted to pHs
ranging from 3.0~10.0 for 24~48 h. Specifically, the isolate was cultivated in 5 mL of MRS broth for
24 h, centrifuged (9950× g, 5 min, 4 ◦C), and then resuspended in 5 mL of MRS broth adjusted to pHs
of 3.0, 4.0, 5.0, 8.0, 9.0, and 10.0. MRS broth without pH adjustment (pH 6.5) was used as a control.
Subsequently, the suspensions were incubated at 30 ◦C for 24 or 48 h, after which cell viabilities
of suspensions were determined. Homofermentative LAB, Lactobacillus plantarum AF1 (GenBank
accession No. FJ386491), which shows strong acid tolerance [16], was used as a control LAB.

2.5.4. Arginine Catabolic Ability

The LAB isolate was cultivated in MRS, MRS+1% arginine, and MRS+1% citrulline broths (pH 6.5)
at 30 ◦C for 12, 18, 24, 48, and 72 h. Thereafter, viable cells, total cells (A600), pH level, and acidity of the
culture were measured. Simultaneously, organic acids, ethyl alcohol, amino acids (arginine, citrulline,
and ornithine), and ammonia contents of the culture supernatant were measured.

Organic acids and amino acids were analyzed by HPLC (Ultimate 3000, Thermo Scientific
Dionex, Sunnyvale, CA, USA). For organic acid and ethyl alcohol analysis, an Aminex 87H column
(300 × 10 mm; Bio-Rad) was used, and the elution solvent was 0.01 N H2SO4 at a flow rate of
0.5 mL/min. Organic acids and ethyl alcohol were detected using an RI detector (RefractoMAX520,
Tokyo, Japan) [17]. For amino acid analysis, the filter-sterilized culture broth was derivatized using
O-phthalaldehyde (OPA)-fluorenylmethyl chloroformate (FMOC) [18] and then analyzed using the
HPLC system (Ultimate 3000) equipped with a UV detector and FL detector (Agilent 1260, Agilent,
Santa Clara, CA, USA). An Inno C18 column (5 µm, 4.6 × 150 mm; Youngjin, Seongnam, Korea) was
used. The mobile phase was prepared with A solution (40 mM sodium phosphate (pH 7.0)) and B
solution (water:acetonitrile:methanol = 10:45:45). The program was initiated using solutions A:B = 95:5
(v/v) for 0~24 min, 45:55 for 24~25 min, 10:90 for 25~34.5 min, and 95:5 after 34.5 min at a flow rate
of 1.5 mL/min [17]. Ammonia was analyzed by cation-chromatography (Dionex ICS 5000, Thermo
Scientific Dionex) equipped with a suppressed conductivity detector and cation self-regenerating
suppressor (CSRS-Ultra, 4 mm; Thermo Scientific Dionex) in recycle mode. An Ionpac CS16A column
(4 × 250 mm, Thermo Scientific Dionex) was used. Mobile phase was 40 mM methane sulfonic acid at
a flow rate of 1 mL/min.
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2.5.5. Biogenic Amine Production

LAB were incubated in MRS broth supplemented with a precursor amino acid (1% arginine,
ornithine, or histidine) at 30 ◦C for 48 h, after which the culture was centrifuged (9950× g, 15 min,
4 ◦C). The supernatant was further filter-sterilized (0.4 µm pore size, Advantec, Dublin, CA, USA),
freeze-dried, and then concentrated 5-fold in distilled water. The concentrated sample (2 mL) was added
to 10 mL of 5% trichloroacetic acid-0.4 M perchloric acid, after which 0.2 mg of 1,7-diaminoheptane was
added as an internal standard. The mixture was homogenized for 5 min, derivatized using benzoyl
chloride, dissolved in 0.5 mL of 50% methanol, and then injected (20 µL) for HPLC analysis [19].
The HPLC system (Waters 2695, Waters, Boston, MA, USA) consisted of Waters 2996 photodiode array
detector (254 nm) along with Waters Empower software. A SunFire C18 column (3.5 µm, 4.6 × 150 mm;
Waters) was used at a flow rate of 0.4 mL/min. The program was initiated with 50% methanol,
maintained at 50% methanol for 15 min, increased to 90% methanol for 10 min, decreased to 50%
methanol for 5 min, and then maintained at 50% methanol for an additional 5 min [20].

2.6. Statistical Analysis

Data are presented as the means and standard deviations (means ± SD) of two independent
experiments performed in duplicate. Statistical analyses on the data were performed using the
Duncan’s multiple range test of SPSS version 26.0 for Windows (SPSS, Chicago, IL, USA) with the
significance determined at p < 0.05.

3. Results and Discussion

3.1. Kimchi Samples and Isolation of LAB

Mesophilic LAB play a key role in lactic acid fermentation of dairy foods, which occurs at
37~42 ◦C [21]. On the other hand, kimchi is generally fermented at low temperature (−1~10 ◦C),
although sometimes it is fermented at room temperature (15~20 ◦C) to accelerate the fermentation
process [8,11]. In Korea, to ensure and maintain quality, a special kimchi refrigerator equipped with
a fermentation mode at 6~7 ◦C and storage mode at −2~−1 ◦C is used for the long-term storage
of kimchi [22].

Analyses have shown that LAB communities belonging to the genera Leuconostoc, Lactobacillus,
and Weissella are mainly responsible for kimchi fermentation [23]. However, the dominant LAB strain
in fermented kimchi can vary depending on the fermentation temperature, as LAB present in kimchi
materials have different growth properties according to temperature [8,22]. In this study, we tried
to identify and characterize a key LAB in kimchi fermented at low temperature (around 0 ◦C) for
long-term storage. Thus, a total of 45 freshly made kimchi samples (pH 5.81~6.39) were collected
from 38 different regions in Korea and then immediately fermented at −1.5~0 ◦C for 2~3 months
(Supplementary Table S1). After fermentation, pHs of the kimchi samples ranged between 4.18~4.39
(data not shown), which indicates ripened kimchi.

Isolation of LAB from the kimchi samples was performed next. Relatively tiny-shaped colonies
with a faint clear zone on MRS+2% CaCO3 plate were detected as dominant LAB (accounting for
38~96% of the plates) from all 45 kimchi samples, whereas the others showed definitely larger colonies
with a distinct clear zone (data not shown). A total of 50 LAB strains were isolated from 45 kimchi
samples (Supplementary Table S1). All isolates were gram-positive, catalase-negative, and short
rod-shaped cells. When 16S rRNA gene sequences (1,268~1,523 bp) of the 50 isolates were compared
with those of LAB type strains in GenBank, all 50 sequences showed 100% homology with those of
W. koreensis JCM11263T (Supplementary Table S1). This result is very unique, considering the 16S rRNA
gene sequences of other LAB species such as Leuconostoc and Lactobacillus species show high similarities
(greater than 99.54% but not 100%) with those of type strains in GenBank [24,25]. The reason that all 50
16S rRNA gene sequences of the isolates showed 100% homology with each other along with type
strain in GenBank should be investigated via further experimentation.
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Among the 50 isolates, we selected 15 isolates from 45 kimchi samples according to sampling
location; LAB 1, 3, and 6 from Seoul/Gyeonggi, LAB 11, 14, and 18 from Gangwon, LAB 23, 26,
and 31 from Chungcheong, LAB 34 and 37 from Busan/Gyeongsang, and LAB 41, 43, 45, and 48
from Gwangju/Jeolla (Supplementary Table S1). Subsequently, to confirm that the selected 15 isolates
are indeed dominant LAB in each kimchi sample, analysis of bacterial communities in the kimchi
samples was performed by PCR-DGGE (Figure 1). Microbial population profiles of the kimchi samples
were different from each other. However, the arrow-indicated bands identified (with 100% identity)
as W. koreensis were detected as a ticker band from all 15 kimchi samples (Figure 1). The results
demonstrate that W. koreensis was a dominant LAB in kimchi fermented at low temperature (−1.5~0 ◦C
for 2~3 months). Kim also reported that W. koreensis is easily detected in kimchi stored at −1 ◦C for
1~2 months [26].
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Figure 1. PCR-DGGE patterns of 16S V3 rRNA gene sequences in the kimchi samples. 1: Kimchi 1,
2: Kimchi 3, 3: Kimchi 5, 4: Kimchi 10, 5: Kimchi 13, 6: Kimchi 17, 7: Kimchi 21, 8: Kimchi 23, 9:
Kimchi 27, 10: Kimchi 30, 11: Kimchi 33, 12: Kimchi 37, 13: Kimchi 39, 14: Kimchi 41, 15: Kimchi 43.
The closest relative of the fragments (arrow-indicated) was determined and compared using sequences
from GenBank as described in the Materials and Methods.

Finally, one isolate (LAB 6) designated as W. koreensis SK among the 15 isolates was selected based
on carbohydrate assimilation (Supplementary Table S2) for further experimentation.

3.2. Genome Properties of W. koreensis SK

A total of four complete genome sequences of W. koreensis (SK in this study, KACC 15510,
WiKim0080 and CBA3615) can be obtained from GenBank as of now. The genomes of the four
strains were compared and their general features are summarized (Table 1). The complete genome of
W. koreensis SK was found to consist of a circular single chromosome (1,451,607 bp) and one circular
plasmid (10,481 bp) with 35.5% and 36.9% G+C contents, respectively (Figure 2A, Table 1). A total of
1318 protein coding genes were identified among the 1389 predicted total genes, along with 71 RNA
genes on the chromosome and 11 coding genes on the plasmid. The general features of the four strains
are slightly different from each other; WiKim0080 strain harbors the biggest genome (1,537,013 bp)
along with two plasmids, while KACC 15510 harbors the smallest genome (1,441,470 bp).

Table 1. Comparison of general genome features of W. koreensis SK and other W. koreensis strains.

Feature
SK KACC 15510 WiKim0080 CBA3615

Chromo-
Some Plasmid Chromo-

Some Plasmid Chromo-
Some Plasmid Chromo-

Some Plasmid

Genome size (bp) 1,451,607 10,481 1,422,478 18,992 1,495,237 31,842
9934 1,491,842 19,971

G+C content (%) 35.5 36.9 35.5 36.7 35.5 40.0
27.5 35.4 38.7

Total genes (no.) 1389 11 1379 24 1454 32
11 1443 27
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Table 1. Cont.

Feature
SK KACC 15510 WiKim0080 CBA3615

Chromo-
Some Plasmid Chromo-

Some Plasmid Chromo-
Some Plasmid Chromo-

Some Plasmid

Protein coding
sequences (no.) 1318 11 1308 24 1382 32

11 1371 27

rRNAs (no.) 15 - 15 - 15 - 15 -
tRNAs (no.) 56 - 56 - 57 - 57 -

GenBank
Accession No. CP043431 CP043432 CP002899 CP002900 CP026847 CP026848

CP026849 CP046070 CP046071

Assembly level 1 Complete Complete Complete Chromosome
Source Kimchi Kimchi Kimchi Kimchi

Reference This study 2 [27] [10] [28]
1 Complete; all chromosomes are gapless and have no runs of 10 or more ambiguous bases, there are no unplaced or
unlocalized scaffolds, and all the expected chromosomes are present. Chromosome; there is sequence for one or
more chromosomes. This could be a completely sequenced chromosome without gaps or a chromosome containing
scaffolds or contigs with gaps between them. There may also be unplaced or unlocalized scaffolds. 2 W. koreensis was
deposited in The Korean Collection for Type Cultures (Jeongeup, Korea) under the accession No. KCTC14235BP.
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Figure 2. Genomic features of W. koreensis SK. (A) Circular representation of the chromosome and
plasmid genome of W. koreensis SK. Marked characteristics are shown from outside to the center; CDS on
forward strand, CDS on reverse strand, tRNA, rRNA, GC content and GC skew. (B) Subsystem feature
of the genomic sequence of W. koreensis SK analyzed with RAST server. Out of 1334 coding sequences
predicted by RAST server, the subsystem coverage is 51% (the green bar), which contributes to a total
of 237 subsystems. The blue bar refers to the % of proteins that are not included in the subsystems.
(C) Agarose gel electrophoresis of pSK. M, size marker; 1, ccc pSK; 2, linear pSK digested with Bgl II, 3;
linear pSK digested with Blp I. (D) Physical and genetic map of pSK from W. koreensis SK. Orientation
of deduced CDSs are marked by black arrows.

All protein coding sequences (CDSs) of W. koreensis SK were functionally annotated by subsystems
based on RAST server (Figure 2B). The function annotated results indicate that genes in the W. koreensis SK
chromosome were related with protein metabolism (15.57%), carbohydrates (10.97%), DNA metabolism
(9.07%), cell wall and capsule (8.82%), RNA metabolism (7.28%), nucleosides and nucleotides
(6.83%), amino acids and derivatives (6.61%), etc. Genes for protein metabolism, which account
for the highest percentage of the SK strain genome, were shown to be mainly related with protein
biosynthesis to maintain cell metabolism. Regarding RAST functional annotation for carbohydrates,
W. koreensis SK was shown to harbor genes for glucose metabolism as a central carbohydrate, followed
by chitin/N-acetylglucosamine, lactose/galactose, glycerate, lactate, glycerol/glycerol-3-phosphate,
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mannose, ribose, xylose, gluconate/ketogluconate, deoxyribose/deoxynucleoside, and arabinose.
Regarding functional annotation for amino acids and derivatives, W. koreensis SK was found
to harbor genes related with arginine degradation (37.29%), polyamine metabolism (22.03%),
methionine biosynthesis and degradation (22.03%), as well as glutamine, glutamate, and asparagine
biosynthesis (8.47%).

For the safety assessment of W. koreensis SK, genes related with biogenic amine production,
hemolysis, and disease and defense such as antibiotic resistance were investigated. RAST analysis
identified a gene encoding a hemolysin III in W. koreensis SK. There are multiple reports that most
Weissella species are vancomycin-resistant, as they harbor a D-alanine-D-alanine ligase gene [9].
The D-alanine-D-alanine ligase gene contributing to vancomycin resistance was also identified in
W. koreensis SK. However, the analysis did not detect any other genes related with biogenic amine
production, toxins, production of superantigens, antibiotic resistance except for vancomycin, or disease
and defense in the genome of W. koreensis SK (Figure 2B).

On the other hand, restriction enzyme sites on plasmid pSK were investigated using NEB
Cutter V2.0 tools (http://nc2.neb.com/Nebcutter2/), and 31 single-cutter restriction sites were identified.
pSK was extracted from W. koreensis SK by digestion with Bgl II and Blp I at the predicted single-cutter
restriction site on pSK. One circular plasmid comprising 10,481 bp in W. koreensis SK was confirmed
by this plasmid digestion (Figure 2C). Among the 11 coding genes on pSK, seven putative proteins
(designated ORF 1 to ORF 7) showing greater than 98% homologies with the CDSs in BlastX with
100% query cover were functionally annotated as mobilization protein, RepB for replication of plasmid,
copper transport repressor, heavy-metal associated domain-containing protein, cadmium-translocating
P-type ATPase, glyoxalase/extradiol dioxygenase family protein, and fructose permease (Table 2).

Table 2. ORFs and their deduced proteins on plasmid pSK from W. koreensis SK.

ORF ORF
Length (a.a)

Related Protein
(Length of a.a) Identity (%) Accession No.

of Related Protein

1 411 mobilization protein
[Weissella koreensis] (411) 99.76 WP_104914736.1

2 384

MULTISPECIES: RepB
family plasmid replication

initiator protein
[Leuconostocaceae] (384)

98.18 WP_102753750.1

3 151
CopY/TcrY family copper

transport repressor
[Weissella confusa] (151)

100.00 WP_135469337.1

4 58
heavy-metal-associated

domain-containing protein
[Weissella soli] (58)

100.00 WP_147153977.1

5 692

MULTISPECIES:
cadmium-translocating

P-type ATPase
[Leuconostocaceae] (692)

99.86 WP_004909401.1

6 127

MULTISPECIES:
glyoxalase/bleomycin

resistance/extradiol
dioxygenase family protein

[Weissella] (127)

100.00 WP_104914740.1

7 242 MULTISPECIES: fructose
permease [Leuconostoc] (242) 98.76 WP_071952482.1

Functional annotation of coding sequences (CDSs) on plasmid pSK was performed using basic local alignment
search tool (BlastX).

http://nc2.neb.com/Nebcutter2/
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3.3. Phenotypic Characteristics of W. koreensis SK

3.3.1. Carbohydrate Assimilation

Regarding carbohydrate assimilation, W. koreensis strains were positive for 6~8 carbohydrates,
which is a substantially lower number than other LAB species. For instance, Lactobacillus or Leuconostoc
species can utilize numerous (15~23) carbohydrates [25,29,30]. The 15 isolates and W. koreensis
KACC 11853T as a control (Supplementary Table S2) were positive for ribose, D-glucose, D-mannose,
and N-acetyl glucosamine as well as weakly positive for gluconate. Differences in carbohydrate
assimilation among LAB were observed for L-arabinose, D-xylose, and D-fructose; 12 isolates showed
the same carbohydrate assimilation profile as W. koreensis KACC 11853T, while LAB 3 was only negative
for L-arabinose, LAB 23 was only negative for D-xylose, and strains LAB 3, 6, and 23 were negative
for D-fructose. From the results of carbohydrate assimilation, we selected LAB 6, identified and
designated as W. koreensis SK in Section 3.1, which showed the same carbohydrate assimilation profile
as W. koreensis KACC 11853T except for fructose assimilation, for further experiments.

When the results of carbohydrate assimilation were compared with gene annotation for carbohydrates,
W. koreensis SK was shown to ferment L-arabinose, ribose, D-xylose, D-glucose, D-mannose,
N-acetylglucosamine, and gluconate along with harboring genes for utilization of those carbohydrates.
W. koreensis SK was also found to harbor genes related with glycerol, galactose, and lactose utilization,
but these genes were not phenotypically expressed. Specifically, in the case of lactose utilization, it is
well known that LAB can utilize lactose, but it is more common in dairy originated LAB. As kimchi
does not contain lactose, LAB in kimchi might not require lactose as a carbon source. We previously
reported the lactose-negative metabolism of kimchi-originated LAB; most LAB such as Leuconostoc
and Weissella species isolated from kimchi are lactose-negative [16,30]. We also previously reported
that the more evolutionally developed strains might have deleted or turned off expression of lactose
metabolic genes [16]. However, the current study indicates that kimchi-originated LAB, W. koreensis
SK, still retain lactose utilization genes (eight copies) without any phenotypic gene expression.

On the other hand, W. koreensis SK was determined to be fructose-negative, whereas the other
13 W. koreensis strains, including KACC 11853T, were fructose-positive (Supplementary Table S2).
For LAB to metabolize fructose as a carbon source, fructose should be transported inside of the cell
by the fructose transport system, after which fructose can be converted into fructose-6-phosphate
by fructose kinase (fk) or mannitol by mannitol dehydrogenase (mdh) [23]. However, neither of
these fructose-metabolizing genes (fk and mdh) were detected in the genome of W. koreensis SK,
whereas one copy of fructose-permease gene (ORF 7) was identified in plasmid pSK (Table 2).
In addition, most Lactobacillus and Leuconostoc species reported to be fructose-positive [23] were
found to usually harbor several copies of fructose-permease genes encoded on their chromosomes
(https://rast.theseed.org/ FIG/rast.cgi). The results suggest that some W. koreensis strains may have
deleted fructose-metabolizing genes during their evolutionary process and now utilize other carbon
sources instead of fructose to obtain energy. Thus, a fructose-permease gene encoded on plasmid pSK
may be considered as an evolutionary trace of the past fructose-metabolizing ability of W. koreensis SK.

3.3.2. Growth at Different Temperatures

Growth of W. koreensis SK at different temperatures was investigated (Figure 3). Optimum growth
temperature of W. koreensis SK was 25~30 ◦C, but W. koreensis SK grew well at 5 ◦C (A600:1.90, and 8.58 CFU/mL
for 264 h of cultivation) and even at −1.5 ◦C (A600:0.96 and 8.45 log CFU/mL for 672 h). As shown
in Figure 3, W. koreensis SK, reported as a psychrophilic bacterium [8], was able to grow well under
mesophilic as well as psychrophilic conditions.

https://rast.theseed.org/
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3.3.3. Tolerance to Acid and Alkali Conditions

As shown in Figure 4, the acid tolerance of W. koreensis SK was significantly weaker than that of
L. plantarum AF1, which showed strong acid tolerance (94.3~99.6% survival rate) after treatment with
phosphate-buffered saline or simulated gastric juice (pH 2.5) for 1 h [16]. Cell viability of W. koreensis
SK was dramatically reduced between pH 3.0~4.0; no surviving W. koreensis SK cells were detected
upon treatment at pH 3.0 for 24 h, and reduced (approximately 90-folds) cell viability was observed
upon treatment at pH 4.0 for 48 h compared to the control (pH 6.5) at 48 h. On the other hand,
the strong acid-tolerant LAB strain L. plantarum AF1 was stable within the pH range of 3.0~6.5 for
24~48 h. It has been reported that members of Lactobacillus and Weissella, including L. sakei, L. plantarum,
and W. koreensis, show strong acid tolerance, and they become more dominant as the kimchi fermentation
environment becomes more acidic [23]. However, according to the results in Figure 4, L. plantarum AF1
was strongly acid-tolerant while W. koreensis SK was not.
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). The suspension was incubated at 30 ◦C for 24 or 48 h. Thereafter, viable cells of the suspension
were determined.

L. plantarum AF1 showed significantly higher stability in MRS for 48 h than W. koreensis SK.
Cell viability of L. plantarum AF1 slightly was reduced depending on the increase in pH from 8.0 to
10.0. However, the alkali tolerance of W. koreensis SK was determined to be quite high, and reduction
of SK viable cells at pH 9.0~10.0 was significantly less compared to that below pH 8.0.
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3.3.4. Biogenic Amine (BA) Production and Other Virulence Traits

Although BAs are required for many critical biological functions, excessive human consumption of
BAs can have toxicological effects [31]. BAs such as agmatine, putrescine, and histamine can be produced
by microbial decarboxylation of amino acids, arginine, ornithine, and histidine, respectively [31]. In this
study, we examined whether or not W. koreensis SK produces BAs via amino acid decarboxylation or
in combination with decarboxylation and the ADI pathway. As shown in Supplementary Figure S1,
no BA was detected among the W. koreensis SK cultures, which supports the gene analysis in which
W. koreensis SK was demonstrated as lacking biogenic amine-forming genes. However, some Weissella
strains have been reported to produce BAs such as histamine and putrescine [32]. The selection of LAB
starters lacking pathways for BA accumulation is essential to develop high-quality foods with reduced
contents of these toxic compounds. Thus, it was proposed that the inability of a strain to synthesize
BAs is an important selection criterion for starter cultures [32].

In our previous study, the potential virulence of W. koreensis SK was investigated; W. koreensis SK
did not show α- or β-hemolysis activity [33]. However, in this study, a gene encoding hemolysin III was
identified in W. koreensis SK. Most LAB species have been recognized as Generally Recognized as Safe
(GRAS) by the U.S. Food and Drug Administration [34] or have attained Qualified Presumption of Safety
(QPS) status by the European Commission-European Food Safety Authority (EFSA) [35]. However,
Weissella species have not yet attained QPS status [36], and thus breakpoints for antibiotics for Weissella
species have not been made available by the EFSA. The minimal inhibitory concentrations (MICs)
(0.5~8 µg/mL) [33] of antibiotics (ampicillin, gentamycin, kanamycin, streptomycin, erythromycin,
tetracycline, and chloramphenicol) for W. koreensis SK have been reported to be significantly lower
than those for other Weissella species, including W. koreensis, as determined by previous reports [37,38].
Breakpoints (MICs) of vancomycin for LAB such as Lactobacillus and Leuconostoc species are not required
according to the guidelines of the EFSA [39], as most LAB are intrinsically vancomycin-resistant with
MICs greater than 512 µg/mL [16,33]. Regarding vancomycin, W. koreensis SK showed a significantly
lower MIC (128 µg/mL) [33], although our results show that it harbors a vancomycin-resistant gene.
These results indicate that that W. koreensis SK is susceptible to all antibiotics tested except vancomycin.
Based on these results, it can be concluded that W. koreensis SK is safe for human consumption as a
starter culture or a probiotic.

3.3.5. Growth of W. koreensis SK in MRS Supplemented with Arginine and Citrulline

To investigate the arginine catabolic features of W. koreensis SK, strain SK was cultivated in
MRS, MRS+1% arginine, and MRS+1% citrulline. Viable cells (CFU/mL), total cells (A600), pH level,
and acidity of the culture were measured during 72 h (Figure 5). Cell viabilities of the three cultures
were almost identical during 12~24 h, with a maximum cell viability of 8.99 log CFU/mL. However,
cell viability of MRS dramatically decreased after 24 h, and 1.96 log CFU/mL was detected at 72 h.
Viable cell counts among the others gradually decreased after 24 h; 6.60 log CFU/mL in MRS+1%
arginine and 7.35 log CFU/mL in MRS+1% citrulline were detected at 72 h (Figure 5A).

Total cell growth levels of the three different cultures were significantly different (Figure 5B).
Total cell growth of MRS+1% arginine (A600:3.70) was substantially higher than those of the other two
cultures (A600:2.57 for MRS and A600:2.53 for MRS+1% citrulline). All three W. koreensis SK cultures
reached stationary phase from 24 h, and the highest A600 values were obtained between 18~24 h.

The pHs (acidity %) of the cultures were pH 4.36 (1.05%) for MRS culture, pH 5.10 (0.65%) for
MRS+1% citrulline culture, and pH 6.40 (0.31%) for MRS+1% arginine culture at 72 h (Figure 5C,D).
Organic acid production due to cell growth in MRS resulted in a pH decrease. However, the pH of
MRS+1% arginine culture slightly decreased until 12 h, after which it increased and reached its peak at
48 h, even though its total cell growth was significantly higher than those of the other two cultures
(Figure 5).
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Supplementation with arginine or citrulline has been shown to enhance bacterial growth, as bacteria
use arginine and citrulline as energy, carbon, and nitrogen sources [40]. In this study, growth
enhancement of W. koreensis SK was observed upon supplementation with arginine but not citrulline
(Figure 5B). Arginine deiminase (ADI) converts L-arginine into L-citrulline and ammonia, after which
L-citrulline is transferred to ornithine transcarbamoylase, which yields ornithine and carbamoyl
phosphate. Carbamoyl phosphate is then converted into ammonia, carbon dioxide, and ATP by
carbamate kinase [40]. Genes for the ADI pathway were identified in W. koreensis SK by RAST
functional annotation (Figure 2B). Ammonia production by the ADI pathway of W. koreensis SK may
have caused the increase in pH in MRS supplemented with arginine or citrulline. However, the pH of
MRS culture decreased due to lack of ammonia production, which resulted in rapid reduction of cell
viability at 72 h due to the weak acid tolerance of W. koreensis SK, as supported by Figure 4. The pH
of W. koreensis SK culture in MRS supplemented with arginine (pH 6.40) at 72 h was clearly higher
than those of the other two cultures (pH 4.36 for MRS, pH 5.10 for MRS+1% citrulline), and SK culture
showed higher total cell growth (Figure 5). These results definitively show that arginine facilitates the
growth of W. koreensis SK, whereas citrulline has no such effect even though citrulline supplementation
caused a rise in pH along with ammonia production.

3.4. Arginine and Glucose Metabolism by W. koreensis SK

We determined the arginine catabolic products of W. koreensis SK in MRS, MRS+1% arginine,
and MRS+1% citrulline cultures (Table 3). Added arginine and citrulline were converted into
their metabolites and reached their highest amounts at 72 h. Most of the added arginine (MRS-A)
was completely converted into citrulline (676.13 mg/L), ornithine (7174.73 mg/L), and ammonia
(2321.34 mg/L) at 72 h. Added citrulline in MRS-C (6687.78 mg/L) gradually decreased in concentration
(2155.59 mg/L) and was converted into ornithine (4254.92 mg/L) at 72 h. Glutamic acid levels of the
three cultures gradually increased during 72 h of cultivation.
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Table 3. ADI and glucose metabolites produced by W. koreensis SK. Unit: mg/L

Substrate Culture Content
Incubation Time

0 h 24 h 72 h

Arginine/
Citrulline

MRS

Glutamic acid 614.69 ± 17.96 a,C 666.74 ± 9.16 a,B 719.00 ± 16.48 a,A

Glutamine N.D 1 N.D N.D
Citrulline 11.38 ± 3.85 c,A 3.07 ± 0.85 c,B 3.91 ± 0.20 c,B

Arginine 301.38 ± 62.79 b,A 7.48 ± 2.65 b,B 5.09 ± 1.74 b,B

Ornithine 38.78 ± 10.09 b,B 93.25 ± 13.10 c,A 99.16 ± 8.37 c,A

NH3 453.06 ± 49.30 a,A 462.52 ± 46.27 b,A 443.97 ± 10.23 c,A

MRS-A

Glutamic acid 611.92 ± 17.25 a,C 677.89 ± 5.39 a,B 739.63 ± 11.00 a,A

Glutamine N.D N.D N.D
Citrulline 47.90 ± 11.75 b,C 841.70 ± 75.64 b,A 676.13 ± 12.60 b,B

Arginine 7713.34 ± 34.57 a,A 62.25 ± 9.10 a,B 41.68 ± 1.07 a,B

Ornithine 55.81 ± 21.42 b,B 6569.52 ± 327.28 a,A 7174.73 ± 148.56 a,A

NH3 465.11 ± 8.64 a,B 2334.97 ± 182.86 a,A 2321.34 ± 143.57 a,A

MRS-C

Glutamic acid 617.07 ± 16.83 a,C 676.51 ± 12.01 a,B 725.21 ± 10.52 a,A

Glutamine N.D N.D N.D
Citrulline 6687.78 ± 5.11 a,A 4504.69 ± 199.02 a,B 2155.59 ± 69.07 a,C

Arginine 229.10 ± 0.08 b,A 5.01 ± 1.60 b,B 4.95 ± 0.24 b,B

Ornithine 1010.71 ± 63.32 a,A 3048.81 ± 76.68 b,B 4254.92 ± 193.10 b,C

NH3 479.51 ± 32.06 a,B 697.32 ± 112.75 b,B 938.11 ± 29.22 b,A

Glucose

MRS

Lactic acid 209.00 ± 9.85 a,C 5917.63 ± 201.77 b,B 7556.81 ± 31.06 a,A

Formic acid 144.36 ± 1.12 a,B 180.37 ± 1.05 b,A 198.10 ± 17.70 a,A

Acetic acid 4396.08 ± 49.64 a,C 4538.84 ± 4.50 a,B 4730.90 ± 28.87 a,A

EtOH N.D 354.56 ± 10.03 b,B 431.56 ± 1.16 b,A

Citric acid 1947.97 ± 38.88 a,A 1870.40 ± 22.09 a,A 1895.47 ± 38.77 a,A

MRS-A

Lactic acid 210.14 ± 2.50 a,B 6965.00 ± 255.56 a,A 7078.32 ± 9.72 b,A

Formic acid 145.69 ± 19.66 a,B 233.16 ± 4.01 a,A 228.98 ± 15.42 a,A

Acetic acid 4351.16 ± 54.43 a,B 4539.66 ± 25.54 a,A 4534.56 ± 34.99 bA

EtOH N.D 458.74 ± 23.58 a,A 464.78 ± 4.60 a,A

Citric acid 1932.38 ± 57.61 a,B 1817.38 ± 7.87 a,A,B 1832.65 ± 13.49 a,b,A

MRS-C

Lactic acid 194.64 ± 3.72 a,C 5339.90 ± 192.18 b,B 7166.88 ± 223.21 a,b,A

Formic acid 148.02 ± 30.62 a,A 207.75 ± 14.47 a,b,A 197.35 ± 3.49 a,A

Acetic acid 4220.48 ± 238.05 a,A 4475.87 ± 2.93 b,A 4481.72 ± 69.85 b,A

EtOH N.D 323.44 ± 15.38 b,B 444.94 ± 5.91 b,A

Citric acid 1825.29 ± 108.46 a,A 1823.65 ± 35.44 a,A 1767.00 ± 41.11 a,A

W. koreensis SK was cultivated in MRS, MRS+1% arginine (MRS-A), and MRS+1% citrulline (MRS-C) at 30 ◦C for 72 h.
Each content from the culture supernatant was measured at 0, 24, and 72 h as described in Materials and Methods.
Values are mean ± SD from duplicate determination. Means with different letters are significantly different (p < 0.05)
by one-way ANOVA, followed by Duncan’s multiple range test; a~c: means for culture media (row); A–C: means
for incubation time (column). 1 N.D: Not detected.

The RAST annotation results confirm arginine degradation via the ADI pathway, which is
composed of ADI encoded by arcA, ornithine transcarbamoylase (encoded by arcB), and carbamate
kinase (encoded by arcC), in W. koreensis SK. The ADI pathway of W koreensis SK was shown to be
encoded by a cluster of four genes (arcA-arcB-arcD-arcC) and one arginine repressor gene (argR) located
downstream of the cluster transcribed in the opposite direction (Figure 6A). It has been reported
that clusters containing the structural genes encoding the ADI pathway are quite diverse, and the
order of the genes differs among different species [41]. Analysis of the arc gene cluster found in the
genomes of 1281 different bacterial species revealed the presence of 124 arc gene clusters and two types
of L-arginine/L-ornithine exchangers, which belong to two different gene families (arcD and arcE) in
bacteria. The majority of the arc gene clusters analyzed contain either arcD or arcE, but few (3/124)
contain both [40]. Analysis of gene order in the 124 different bacterial clusters showed that the order
of transcription was arcA followed by arcB and then arc with few exceptions. The arcD or arcE gene
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(and other arc genes) is added to this sequence or inserted in between. For example, the ADI gene
cluster in Lactobacillus brevis contains arcE1-arcA-arcB-arcD-arcT-arcC-argR and 2CS-arcE2-arcD in the
opposite direction [42], whereas the ADI pathway of Lactobcoccus lactis is encoded by a cluster of nine
genes, arcD2-arcT-arcC2-arcC1-arcD1-arcB-arcA-argS with -argR encoded in the opposite direction [40].
The order and direction of arcA, arcB, arcC, and arcD in W. koreensis SK were shown to be the same as
those in other bacteria, but the numbers of these genes encoding the ADI pathway were found to be
different. In particular, duplicated genes and other associated genes mostly of unknown function in
other bacteria [40] were not found in W. koreensis SK.

Microorganisms 2020, 8, x FOR PEER REVIEW 13 of 16 

 

gene (and other arc genes) is added to this sequence or inserted in between. For example, the ADI 
gene cluster in Lactobacillus brevis contains arcE1-arcA-arcB-arcD-arcT-arcC-argR and 2CS-arcE2-arcD 
in the opposite direction [42], whereas the ADI pathway of Lactobcoccus lactis is encoded by a cluster 
of nine genes, arcD2-arcT-arcC2-arcC1-arcD1-arcB-arcA-argS with -argR encoded in the opposite 
direction [40]. The order and direction of arcA, arcB, arcC, and arcD in W. koreensis SK were shown to 
be the same as those in other bacteria, but the numbers of these genes encoding the ADI pathway 
were found to be different. In particular, duplicated genes and other associated genes mostly of 
unknown function in other bacteria [40] were not found in W. koreensis SK. 

Figure 6. Schematic representation of ADI pathway-related gene cluster (A) and ADI pathway (B) 
in W. koreensis SK. Red character: identified compound or gene, green character: cannot identify, 

and black character: did not try to identify. Numbers in A indicate start and stop bases in the 
genome of W. koreensis SK. Solid arrow: proven pathway and dotted arrow: unproven pathway. 

Furthermore, carbamoyl phosphate synthetase (carA and carB), glutamine synthetase (glnA), and 
glutamine-fructose-6-phosphate transaminase (glmS) were detected in W. koreensis SK (Figure 6A). 
Glutamine can be synthesized from glutamate and ammonia by glutamate synthetase. However, 
glutamine was not detected in any of the three cultures at any time during cultivation (24 h and 72 h 
in Table 3 as well as in MRS+1% glutamate culture; data not shown) in the presence of glutamate, 
ammonia, and ATP. Based on the results, the arginine catabolic pathway of W. koreensis SK was 
constructed (with solid line) in Figure 6B based on genome analysis and determination of arginine 
catabolic products. 

Glucose metabolites by W. koreensis SK were also determined (Table 3). Five compounds were 
detected; lactic acid and ethanol were significantly elevated during incubation, whereas the other 
compounds showed no significant changes. This result indicates that W. koreensis SK showed typical 
heterofermentative fermentation, in which glucose is converted into lactic acid, ethanol, and carbon 

Figure 6. Schematic representation of ADI pathway-related gene cluster (A) and ADI pathway (B)
in W. koreensis SK. Red character: identified compound or gene, green character: cannot identify,
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of W. koreensis SK. Solid arrow: proven pathway and dotted arrow: unproven pathway.

Furthermore, carbamoyl phosphate synthetase (carA and carB), glutamine synthetase (glnA),
and glutamine-fructose-6-phosphate transaminase (glmS) were detected in W. koreensis SK (Figure 6A).
Glutamine can be synthesized from glutamate and ammonia by glutamate synthetase. However,
glutamine was not detected in any of the three cultures at any time during cultivation (24 h and 72 h
in Table 3 as well as in MRS+1% glutamate culture; data not shown) in the presence of glutamate,
ammonia, and ATP. Based on the results, the arginine catabolic pathway of W. koreensis SK was
constructed (with solid line) in Figure 6B based on genome analysis and determination of arginine
catabolic products.

Glucose metabolites by W. koreensis SK were also determined (Table 3). Five compounds were
detected; lactic acid and ethanol were significantly elevated during incubation, whereas the other
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compounds showed no significant changes. This result indicates that W. koreensis SK showed typical
heterofermentative fermentation, in which glucose is converted into lactic acid, ethanol, and carbon
dioxide. The highest amount of lactic acid was detected in MRS+1% arginine at 24 h and MRS at
72 h. While the highest amount of ethanol was detected in MRS+1% arginine, followed by MRS+1%
citrulline, the lowest amount was detected in MRS culture at 24~72 h. The results of ethanol production
by W. koreensis SK among the three cultures are consistent with those of total cell growth in Figure 5B.
The improved cell growth caused high production of lactic acid and ethanol, followed by strong
expression of the ADI pathway. This resulted in high production of ammonia, which was further
neutralized by the lactic acid produced. As a consequence of neutralization with lactic acid and
ammonia produced after 24 h, the lowest amount of lactic acid (7078.32 mg/L) was detected in MRS+1%
arginine at 72 h. During arginine catabolism (Figure 6B), the concomitant production of ammonia
by W. koreensis SK caused an increase in pH, which may promote survival of SK strain in an acidic
environment. Based on the results, we can conclude that the detection of W. koreensis strains in the
middle or late stage of kimchi fermentation (acidic condition) [23] could be attributed to their ammonia
production ability, which neutralizes the produced acids according to cell growth, not to their acid
tolerance ability.

L-Ornithine is an amino acid with a variety of significant functions, including stress reduction,
improvement of sleep quality, physical fatigue reduction, wrinkle improvement, anti-obesity effect,
and others [43]. Moreover, ornithine is a metabolic intermediate that plays a role in the urea cycle by
detoxifying ammonia in order to reduce the level or ammonia in the bloodstream [43]. L-Citrulline has
been reported to retard high glucose-induced endothelial senescence as well as provide nutritional
support in malnourished patients, especially those who are aging and have sarcopenia [44]. In this
study, ornithine production (7174.73 mg/L) by W. koreensis SK supplemented with 1% arginine was
significantly higher than those (45~46 mg/L) of other W. koreensis strains [45]. Production of ornithine
and citrulline by W. koreensis SK can be enhanced by optimization of this process through further
experimentation. This unique property of W. koreensis SK implies that SK strain has potential as a
functional starter culture or probiotic. The ADI pathway is widely utilized in bacteria, most abundantly
in Lactobacillales [40]. We believe that this study is the first report to verify the ADI pathway of
W. koreensis based on genome analysis and determination of arginine catabolic products.

4. Conclusions

W. koreensis strains were identified as dominant microorganisms in kimchi fermentation at low
temperature (around 0 ◦C). The result indicates that W. koreensis strains play a major role in kimchi
fermentation at low temperature. Regarding carbohydrate assimilation, W. koreensis strains showed a
lesser degree (positive for 6~8 carbohydrates) of carbohydrate assimilation compared to Lactobacillus
or Leucnostoc species. W. koreensis strains were found to utilize an alternative carbon source, the amino
acid arginine, to obtain energy. In particular, W. koreensis SK selected among the 50 isolates in this study
showed advanced arginine utilization. Accordingly, arginine supplementation improved bacterial
growth and resulted in high production of ornithine. W. koreensis SK was able to grow well under
mesophilic as well as psychrophilic conditions. Furthermore, W. koreensis SK was found to be safe
for human consumption and beneficial due to its functional material production (ornithine) ability.
The results of this study indicate that W. koreensis SK may be a promising starter culture for fermented
vegetables or fruits at low temperature as well as a probiotic candidate.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/8/1147/s1,
Figure S1: HPLC analysis of biogenic amine from W. koreensis, Table S1: Isolated LAB strains and their 16s rRNA
gene sequences similarities with sequences in the GenBank database, Table S2: Carbohydrate assimilation of LAB.
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