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Abstract

dynamicly through Bayesian skyline plot.

Background: Coxsackievirus A16 (CV-A16), a major etiopathologic cause of pediatric hand, foot, and mouth disease
(HFMD) worldwide, has been reported to have caused several fatalities. Revealing the evolutionary and epidemiologic
dynamics of CV-A16 across time and space is central to understanding its outbreak potential.

Methodes: In this study, we isolated six CV-A16 strains in China’s Jilin province and construct a maximum clade
credibility (MCC) tree for CV-A16 VP1 gene by the Bayesian Markov Chain Monte Carlo method using 708 strains from
GenBank with epidemiological information. The evolution characteristics of CV-A16 VP1 gene was also analysed

Results: All CV-A16 strains identified could be classified into five major genogroups, denoted by GI-GV. GIV and GV
have co-circulated in China since 2007, and the CV-A16 epidemic strain isolated in the Jilin province, China, can be
classified as GIV-3. The CV-A16 genogroups circulating recently in China have the same ancestor since 2007. The
genetic diversity of the CV-A16 VP1 gene shows a continuous increase since the mid-1990s, with sharp increases in
genetic diversity in 1997 and 2007 and reached peak in 2007. Very low genetic diversity existed after 2010. The CV-A16
VP1 gene evolutionary rate was 6.656E-3 substitutions per site per year.

Conclusions: We predicted the dynamic phylogenetic trends, which indicate outbreak trends of CV-A16, and provide
theoretical foundations for clinical prevention and treatment of HFMD which caused by a CV-A1é.
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Background

In the pediatric population, hand, foot, and mouth disease
(HEMD) is a common self-limiting condition caused by
various serotypes of the enterovirus A species that is typic-
ally characterized by fever, pharyngalgia, malaise,
erythema and herpetic lesions on hands and feet, as well
as exanthema on oral mucosa and tongue [1]. A minority
of patients develop severe neurologic complications such
as acute flaccid paralysis, encephalitis, pulmonary edema,
and myocarditis, with fatal outcomes in some severely
afflicted patients [2, 3]. Over the last few decades, HFMD
has been a very common pediatric infection in the Asia—
Pacific region, with sporadic outbreaks reported in Europe
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and North America. In mainland China, HFMD has been
listed as a notifiable disease since 2008 [4—6].

Coxsackievirus A16 (CV-A16) and enterovirus 71
(EV-A71) were major pathogens of HFMD in the past
few decades, with EV-A71 more frequently associated
with neurologic diseases [7]. Vaccine trials for the
first EV-A71 vaccine have reached phase 3 clinical
testing in China, with an estimated vaccine protection
rate of 90 % against clinical EV-A71 infection-
associated HFMD and 80.4 % against other EV-A71-
associated diseases [3]. The other major pathogen of
HFMD, CV-A16 has had epidemic presence in China
and abroad for many years, but generating much
lower social concern compared to EV71.

The first CV-A16 was identified in 1951 in South Africa,
although there were no reports of an HFMD epidemic at
the time [8]. New Zealand reported the first case of
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HEMD in the world in 1957 [9]. The relationship between
CV-A16 and HFMD was confirmed by Atsop in 1959, and
officially coined the term “Hand, Foot and Mouth Disease”
based on clinical symptoms [10]. Although it is the first-
identified HFMD virus, there is no specific antiviral treat-
ment for CV-A16, which thus deserves more research at-
tention. Recent years have seen extensive research efforts
toward phylogenetic analysis of the HFMD pathogen
based on bioinformatics in order to understand correla-
tions between virus genogroup changes and disease epi-
demic trends [8, 11, 12]. At present, most extant
phylogenetic trees are constructed based on neighbor-
joining (NJ) distance, maximum parsimony (MP), and
maximum likelihood (ML) [8, 13]. In reality, however, the
difference between sequences does not completely repre-
sent the evolutionary distance, with large potential for er-
rors [14]. The posterior probability is derived based on the
Markov chain by Bayesian statistics, which allow re-
searchers to use prior knowledge for guiding the construc-
tion of phylogenetic trees and to infer the maximum
posteriori probability for estimating the most likely phylo-
genetic tree [15]. Moreover, the Bayesian method uses the
posterior probability to visually represent phylogenetic re-
lationships, thereby eliminating the need for bootstrapping
[15, 16], and is widely used to construct the phylogenetic
trees of swine-origin influenza A (HIN1) virus, measles
viruses (MV), and EV-A71 and for accurate judgments of
the relationship between genetic diversity (g) and
epidemics of associated diseases [16—18].

This study was undertaken to investigate evolutionary
and epidemiological dynamics of HFMD, with particular
focus on CV-A16 genetic history and dynamics, within
and between countries where this disease is endemic to
facilitate prediction of its emergence in new locations as
well as to provide the basis for an effective public health
response framework. Bayesian analyses were performed to
construct maximum clade credibility (MCC) tree for all
sequenced and downloaded sequences, and global popula-
tion dynamics of CV-A16 over the previous 30 years were
reconstructed to examine temporal trends in genetic
diversity and association with major epidemics.

Methods

Sample collection

A total of 52 specimens, as well as information on
patient demographics, clinical symptoms, and compli-
cations were obtained from 2012 to 2013 at Disease
Control and Prevention Center of Changchun, China.
Stool specimens were processed as described previ-
ously for subsequent RNA extraction [19]. Specimens
of other types were used directly for viral RNA
extraction. The strains used for sequencing were amp-
lified and isolated in RD (rhabdomyosarcoma) cells as
previously described [20].
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RNA extraction, RT-PCR, and sequencing

Viral RNA was extracted using QIAamp Viral RNA Mini-
Kit (QIAGEN, USA). TaKaRa RNA PCRTM Kit (AMV)
was used to do the amplification fragment according to
previous reports. The real-time PCR (RT-PCR) was firstly
performed to detect the presence of the common (univer-
sal) sequence of enterovirus (EV-F, EV-R), and the specific
sequences of EV-A71 (EV71S-F, EV71S-R) and CV-Al6
(CV-A16S-F  CV-A16S-R). Then using primers (CV-
A16VP1-F and CV-A16VP1-R) amplified CV-A16 VP1
whole sequence. Primers and reaction conditions was
shown in Additional file 1: Table S1. All results of RT-PCR
products were analyzed by 1 % agarose gel electrophoresis
[21]. A part of CV-A16 VP1 sequences have been submit-
ted to GenBank (Accession no. KT000389-KT000394).

Sequence collection and phylogenetic analyses

For phylogenetic analysis, a total of 759 CV-Al6 VP1
gene sequences before June 2013 were downloaded from
GenBank. We retrieved 706 sequences which known col-
lection dates and isolate country for analysis. The acces-
sion numbers and specific information of the sequences
was listed in Additional file 2: Table S2. These nucleo-
tide sequences were isolated mainly from large HFMD
outbreaks and sporadic cases that occurred globally over
1981-2013. Combined with the six sequences isolated
from our laboratory, a total of 708 sequences were used
in phylogenetic analysis.

Alignment processing and recombination detection

The complete VP1 sequence alignment of the CV-A16
strains was conducted with the Clustal W program in
MEGA 6.0. Excess sequence was cut off, and FASTA for-
mat that can be used in the BEAST 1.8.2 was exported.
Then we use the SEAL (sequence simulation and align-
ment evaluation software, http://tree.bio.ed.ac.uk/soft-
ware/seal/) software to edit the nucleotide sequence.
RDP3 Restructuring Package was used to detect the re-
combination of all CV-A16 sequence [22]. Then
DAMBE was used for the saturation monitoring, if
ISS <ISS.c and p =0.0000 (extremely significant), then
these sequences were unsaturated and suitable for
construction of phylogenetic tree [23]. Finally we
calculated the best alternative model With JModeltest
[24]. The calculation was done after the selection of
all the four kinds of patterns and then the statistical
of AIC value. The smaller of the AIC value, the better
fitting for the model with the data. Then, usually we
choose the model with smallest AIC value for the
construction of phylogenetic trees.

Bayesian Markov Chain Monte Carlo evolutionary analysis
Bayesian Markov chain Monte Carlo (MCMC) methods
were used to construct a maximum clade credibility tree
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Fig. 1 The maximum clade credibility (MCC) tree was estimated by Bayesian analysis of 708 CV-A16 complete VP1 sequences between 1951 and
2013. The phylogeny include 6 sequences from our laboratory as well as 702 sequences from GenBank with known collection dates and isolate
country. Branches arecolor-coded according to the different genogroups. All sequences were classified into five genogroups, denoted GI-GV, Further,
genogroup GIV could be divided into sub-genogroups GIV-1, GIV-2, and GIV-3. For the year and isolate country for each sequence, see Additional file 4:

Figure S2 in the supplemental material

(MCC) using BEASTv1.8.2 (http://beast-mcmc.google-
code.com/files/BEASTv1.8.2.tgz). Tracer v1.6 (http://
beast.bio.ed.ac.uk/Tracer) was used to output analysis
of sampling data, and then the Tree Annotator pro-
gram was employed to output the results of MCC
tree model. In the end the MCC molecular evolution-
ary tree graph was illustrated with FigTreel.3 (http://
tree.bio.ed.ac.uk/). At the same time, Bayesian skyline
plot analyses was used to reconstruct the population
history of CV-A16 by measuring the dynamics of VP1
gene genetic diversity over time with 160 typical CV-
A16 VP1 (Additional file 3: Figure S1).

JModeltest result revealed that HKY was the best sub-
stitution model, and the molecular clock model chosen
the Relaxed Clock: Uncorrelated Log-normal. Using the
Bayesian Markov Chain Monte Carlo framework, 80
million steps were run, sampling every 8000 and remov-
ing 10 % as burn-in. Convergence was assessed using
Tracer (v1.6), and effective sample size (ESS) values
above 200 were accepted.

Results

Phylogenetic analysis of CV-A16

A total of 708 sequences (including six complete VP1
genome sequences determined by our laboratory) with
complete VP1 region of CV-A16 were included in the
phylogenetic analysis. Samples collected from 14 discrete
locations in Southeast Asia (China, Japan, Malaysia,
Russia, Australia, Cameroon, South Africa, France, Saudi
Arabia, South Korea, Sweden, Taiwan, Thailand, and
Viet Nam) between 1951 and 2013. Phylogenetic ana-
lyses were performed with Bayesian Markov chain
Monte Carlo (MCMC) method. All CV-Al6 strains
identified could be classified into five major genogroups,
denoted by GI-GV (Fig. 1). Further, the genogroup GIV
could be divided into sub-genogroups GIV-1, GIV-2,
and GIV-3. The genogroup GI, which no longer played a
dominating role in contemporary epidemics, was repre-
sented by a prototype isolate (G-10), isolated in South
Africa approximately 60 years earlier. Following its ini-
tial isolation, the genogroup GI was detected in China in
2008 and 2010 (EU812514 and JQ315094). Phylogenetic
analysis revealed that genogroup GII was first reported
from Japan in 1981 (AB465366). Among the 19 GII
grouptypes, 15 were isolated from Japan during 1981-
1998, and the other four from Malaysia during 1998-
2000, with no further no genogoups reported thereafter.

Interestingly, CV-A16 strains isolated in 1995 in Yamagata,
Japan, were uniquely grouped into genogroup GIII, except
for Y95-2260 (AB634302). After 1995, genogroups GIV
and GV showed widespread co-circulation in many coun-
tries; 16 GIV-1 sub-grouptypes were composed of strains
in Yamagata in Japan (1997), Taiwan (1998 and 2005), and
in Russia (2004). Following 2005, this genigroup emerged
in Wuhan, China, until 2011. Whereas 29 strains from
Malaysia in 2005-2007, Russia in 2009-2010, France in
2010, and Japan (Yamagata) in 2011 were composed of
GIV-2. From 1998 to 2013, the GIV-3 was distributed
across eight countries, including Australia, Saudi Arabia,
Japan, Malaysia, Russia, Cameroon, Taiwan, and China.
The genogroup GV (353/708) originated from Malaysia in
1997, where the epidemic lasted 10 years (Table 1). Around
2007, the widely prevalent genogroups (GIV-3 cluster 1
and GV cluster 1) that caused major HFMD epidemics
after 1995 appeared all to have been replaced by the new
cluster (cluster 2), which has since dominated and circu-
lated endemically in the Asia—Pacific region, generating
major CV-Al6-associated HFMD outbreaks (Fig. 1).

Origin and distribution of CV-A16 from Japan, Malaysia,
and China

We, furthermore, studied country-specific epidemic
strains to evaluate the trend of CV-Al6 epidemic gen-
ogroups associated with serious HFMD outbreaks in
Japan, Malaysia, and China. From the data sets shown in
Fig. 2, we collected 255 CV-A16 strains from Japan and
identified that the CV-A16 causing HFMD originated in
Toyama in 1981. Subsequently, across 12 years, all CV-
A16 epidemic strains belonged to genogroup GII in
Japan; thereafter, genogroup GIII became the new epi-
demic strain until 1995. Shortly thereafter, genogroups
GIV and GV replaced GIII and became the predominant
genogroups since 1997. The epidemic strains GIV and
GV circulated in 1997-2002 (85/255) and 2000-2010
(139/255), respectively. Interestingly, the Japanese epi-
demic strains (e.g., 1779-Yamagata-2011) in 2011 showed
a close relationship to strains isolated during 2010-2012
from China (Figs. 2 and 5), as they all belonged to the
GV genogroup, suggesting that the China epidemic
strain invaded Japan in 2011.

In our study, 81 CV-Al6 epidemic strains from
Malaysia were collected, of which genogroup GV was
the most dominant, accounting for 83 % (68/82) (Fig. 3).
Four strains belonging to genogroup GII were detected
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Table 1 Global distribution of genogroups of CV-A16

Isolated time and location MCC NJ
1951 South Africa Gl A
2008 China: Fuyang

2010 China: Ningbo

1981-1998 Japan Gll B2
1998-2000 Malaysia

1995 Japan: Yamagata Glll Bla
1995, 1997 Japan: Yamagata GIV-1 Bla
1998, 2005 Taiwan
2004 Russia
2011China: Wuhan
2005-2007 Malaysia
2009-2010 Russia

2010 France

GIV-2 Blc

2011 Japan: Yamagata
2000-2001 Australia

2000 Malaysia

2001, 2003 Arabia;

2000, 2002-2003 Japan: Toyama
2007-2008 China

2007 Malaysia

GIV-3 cluster1 B1b

GIV-3 cluster2 B1b
2009 Cameroon

2007-2010 Russia

2011 Japan: Yamagata

2007-2013 China

1997-2003, 2005-2007 Malaysia

1998 Sweden

2000-2004, 2006, 2008 Japan: Yamagata
1999 Australia

2000-2002 Thailand

2008 South Korea

GV cluster1 Bla

2002 Japan Toyama

2010 France

2005 Australia

2006 Taiwan

2005, 2007 Malaysia

2005 Thailand

2008-2010 Japan: Yamagata

GV cluster2 Bla

2007 Japan: Toyama
2005 Vietnam

2010 Thailand
2007-2012 China

Note: The time and spatial distribution of all genogroups were shown in this
table. The comparison the genogroups is constructed by maximum likelihood
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in Malaysia only in 1998-2000. The GIV genogroup (9/
82) was a minor epidemic strain discovered in Malaysia
in 2006—2007 and closely resembles the strains (Add-
itional file 3: Figure S1, Fig. 5) detected in France, Japan,
and Russia around 2010.

It was shown that the CV-A16 that co-circulated in
China since 2007 were clustered strains of genogroups
GIV-3 and GV, except for four strains of genogroup GIV
(Wuhan0232/HuB/CHN/2011, Wuhan0289/HuB/CHN/
2011, Wuhan0158/HuB/CHN/2011, and Wuhan0136/
HuB/CHN/2011) and two strains of genogroup GI
(FY18 and CA16v-2010221). Among the 315 strains iso-
lated in China, 195 and 118 strains could be assigned to
genogroups GIV and GV, respectively, by phylogenetic
analysis (Fig. 4). The first strain of sub-genogroup GIV-3
(shzh00-1) documented in mainland China was detected
in 2000 in Guangzhou province [25]. The GIV-3 epi-
demic of 1998-2000 in China originated from a Japanese
genogroup (Fig. 5). Genogroup GV is another dominant
genogroup, which has been co-circulating with GIV-3
since 2006 that closely resembles the Japanese strains.
Figure 1 shows that the CV-A16 serotypes circulating re-
cently in China have the same ancestor, suggesting that
the epidemic strains are native and have not invaded the
region since 2007. The CV-A16 epidemic strain isolated
in the Jilin province, China, can be classified in the GIV-
3 sub-genogroup.

Genetic diversity analysis with Bayesian skyline plot

To reconstruct the evolutionary epidemiology of CV-
A16, we used Bayesian skyline plot analysis by measur-
ing the dynamics of CV-A16 VP1 genetic diversity over
time (Fig. 6). It can be observed from the evolutionary
epidemiology that CV-A16 VPI genetic diversity con-
tinuously increased since the mid-1990s, indicating evo-
lution from genogroup GII to GIII. This trend coincided
with the major HFMD outbreak, mostly caused by the
CV-A16 pathogen, in Japan in 1995. A sharp but transi-
ent increase in relative genetic diversity was observed
for the CV-A16 VPI gene between 1996 and 1997. Since
1997, several large epidemics of HFMD have been re-
ported in the Asia—Pacific region, especially in Southeast
Asia. Outbreaks with multiple cases have occurred in
Taiwan, Malaysia, and Singapore [11, 25, 26]. These
revealed the evolution of CV-A16 genogroup GIII to
genogroups GIV and GV around 1996—1997. From 1999
to 2001, the genetic diversity of CV-A16 VPI underwent
a smooth and steady rise, reflecting the transient but
sporadic occurrence of CV-Al6 outbreaks in various
parts of the world. In late 2000, a recurrence of an out-
break of HFMD occurred in Malaysia, with eight deaths
in peninsular Malaysia [25]. From 2006 to 2007, another
sharp increase emerged for the genetic diversity of CV-
A16 VPI, representing the emergence of a new branch
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Fig. 5 Origin and distribution of CV-A16 from Japan, Malaysia, and
China. Different background colors distinguish countries. The blue
color depicts Japan (n = 255), and green and pink colors display

Malaysia (n=282) and China (n=315), respectively

of the genogroups GIV and GV. After 2007, the cluster 1
of genogroups GIV-3 and GV were replaced by cluster
2, and transmission of these led to a new HEMD out-
break in China and Malaysia [20, 27]. CV-Al6 is
reported to have accounted for 90 % (399/417) of all
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enteroviruses causing HFDM in Malaysia in 2007 [27].
Since 2007, the Bayesian skyline plot of CV-A16 showed
that its genetic diversity decreased and was maintained
corresponding to the MCC (Fig. 1) no new sub-
genogroup emerged. Due to the stability of CV-A16 after
2010 and accumulated population immunity, CVA6 has
become the main pathogen of HFMD disease substitut-
ing for CV-A16 in recent years [13, 28, 29].

Codon substitution and evolution rates of CV-A16 VP1 gene
To understand the evolution of CV-A16, we estimated
codon substitution and evolution rates using the Bayes-
ian MCMC method. All three codon positions of the
CV-Al16 VPI gene had different relative substitution
rates (Table 2). The mean values of the first, second, and
third codon positions were 0.244, 0.018, and 2.67, re-
spectively. Among these codon positions, the relative
substitution rate of the third codons was highest. Simul-
taneously, our analysis showed that the CV-A16 VPI
gene evolutionary rate was estimated to be 6.656E-3 sub-
stitutions per site per year (3.978E-4, 2.456E-3; 95 %
HPD), inferred by the models of HKY, approximated to
estimates of EV-A71 and much less frequently than the
polio virus (1.036 E-2) that was estimated also by the
MCMC method previously [18, 30].

Discussion
This study establishes the phylogenetic relationship, gen-
omic diversity, and the evolutionary rate of CV-A16 for

1E3

g

Relative genetic diversity
m

GIV/GV
cluster2

Y

GIV/GV
clusterl

1E0

1980 1990

Time
Fig. 6 The genetic diversity dynamics of the CV-A16 VPT gene estimated by a Bayesian skyline plot through time. A dashed line indicates the mean,
whereas shaded areas show the upper and lower 95 % HPD values. The horizontal axis is in the unit year, and the vertical axis is the Net (the product of
the effective population size and the generation length in radiocarbon years). The plot for CV-A16 VPT shows a continuous increase since the mid-1990s,
with sharp increases in genetic diversity in 1997 and 2007. Very low genetic diversity existed in the early 1990s and in 2010
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Table 2 Estimates of the relative substitution rates for the core
gene of all three codon positions

Summary statistic CP1.mu CP2.mu CP3.mu
Mean 0.268 0.108 2624
95 % HPD lower 0.234 0.091 2.592
95 % HPD upper 0.295 0.124 2656
Effective sample size (ESS) 7502 8586 7621

the first time using the Bayesian Markov chain method,
providing new sights into the relationship of evolution-
ary history of virus population and disease periodicity.
We reconstructed the epidemic history of CV-A16 and
found that the CV-A16 virus, prevalent between 1980
and 2013, is a pathogen that originated around mid-
twentieth century.

Bayesian derivation and the maximum likelihood
method have similar characteristics in that both have ex-
cellent statistical characteristics. However, one difference
is that the Bayesian method can use posterior probabil-
ity, which is derived from the Markov chain to optimize
criterion [31]. A very accurate posterior probability can
be obtained using the Bayesian MCMC method due to
the rigorous control criterion of every link. Against this
background, we established the phylogenies of the CV-
A16 gene based on Bayesian derivation combined with
the Markov chain model method. Compared with the
phylogenetic analysis reported in the previous study [8]
using the Neighbor-joiningmethod, the CV-A16 causing
the HFMD outbreak in Yamagata, Japan, in 1995 can be
independently classified under genogroup GIII using the
Bayesian method (Fig. 1, Table 1). There were swift but
sporadic occurrences of HFMD in Japan in various years
such as 1984, 1988, and 1991 [32]. However, the nucleotide
sequence of CV-A16 were relatively stable in this period,
reflecting that the epidemic disease that occurred every
several years was determined by the cumulative proportion
of unvaccinated children and not by the viral antigen’s evo-
lution [32]. Four years late, in 1995, an HFMD outbreak
was reported in Japan, which was different from the past
episodes; CV-A16 became the main pathogen that replaced
EV71 [32, 33]. This suggested that a new CV-Al6 gen-
ogroup emerged different from former CV-A16 epidemic
strains. From the results of our Bayesian skyline plot (Fig. 6),
we can also survey the great change in the genetic diversity
of CV-A16 in 1995. Therefore, the MCC we reconstructed
on the basis of spatiotemporal divergence and genetic di-
versity is consistent with the trends of epidemic disease. It
is very interesting that genogroup GI disappeared for al-
most 60 years and then it is detected again in 2010 both in
our and previous reports [12]. We do not know the reasons
for such large-scale changes for genogroup GI, but they
may be associated with the G-10’s weakly pathogenicity
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which didn’t cause enough attention and lead to a lack of
continuity monitor data.

From the Bayesian skyline plots (Fig. 6), we can see
that every sharp change of genetic diversity resulted in a
large-scale HFMD outbreak. To some extent, the in-
crease of genetic diversity corresponding to this charac-
teristic since mid-1990 was a marker for the emergence
of a new CV-A16 genogroup. The data set also indicated
agreement between genetic diversity dynamics and
emergent genogroups, which reflect the earlier HFMD
outbreaks. Since 2007, the genetic diversity of CV-Al6
stabilized and slightly decreased, and no novel gen-
ogroup emergence was reported [12, 13, 33]. However,
there were some HFMD outbreaks caused by CV-A16 in
various provinces of China that may be attributable to
the cumulative proportion of unvaccinated children and
increased detection intensity. Since 2010, genetic diver-
sity dynamics tended to be gentler, CVA6 replaced
CVA16 become the second pathogene in Shenzhen and
Guangdong, China [34, 35].

Conclusions

CV-A16 has long been the main pathogen of HFMD,
seriously threatening human health [8, 11, 12, 33]. The
reports of some deaths caused by CV-A16 infection [2,
36, 37], suggesting that more attention should be paid to
the detection and prevention of CV-A16. From the data
we obtained, we predicted the dynamic phylogenetic
trends, which indicate outbreak trends of CV-A16, and
provide theoretical foundations for clinical prevention
and treatment of HFMD which caused by a CV-Al6.
The relatively stable nucleotide sequence will provide a
great opportunity to develop a vaccine for this disease.
So the development and administration of its vaccine
should be accelerated.

Additional files

Additional file 1: Table S1. Primers, probes and PCR ampilification
condition in this study. (DOCX 17 kb)

Additional file 2: Table S2. List of the 708 complete VP1 sequences of
CVA16 strains available from GenBank which were selected to generate
the CVA16 MCC. (XLSX 38 kb)

Additional file 3: 160 typical CV-A16 VP1 used to reconstruct the popu-
lation history of CV-A16.(PDF 38 kb)

Additional file 4: The exact time and location of 708 sequences
between 1951 and 2013.(PDF 36 kb)

Acknowledgements

This work was supported in part by grants from National Natural Science
Foundation of China (#81271897, #81611130074), foundation of Jilin Province
Science and Technology Department (#20140414048GH), the Norman
Bethune Program of Jilin University (#2012219) and Research funds from the
Jilin Key Laboratory of Biomedical Materials and Jilin University - Xinjiang
Medical University joint research project. We would like to extend our special
thanks to the two anonymous reviewers for their helpful comment on our
manuscript.


dx.doi.org/10.1186/s12985-016-0578-3
dx.doi.org/10.1186/s12985-016-0578-3
dx.doi.org/10.1186/s12985-016-0578-3
dx.doi.org/10.1186/s12985-016-0578-3

Zhao et al. Virology Journal (2016) 13:130

Funding

National Natural Science Foundation of China (#81271897, #81611130074),
Foundation of Jilin Province Science and Technology Department
(#20140414048GH), The Norman Bethune Program of Jilin University
(#2012219) and Research funds from the Jilin Key Laboratory of Biomedical
Materials and Jilin University - Xinjiang Medical University joint research
project.

Authors’ contributions

FL conceived the study. GZ designed the experiments, analyzed the data
and wrote the manuscript GW guided the experiment process. XZ and CW
contributed in data collection. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
This work was approved by the Ethics Committee of Jilin University, to ensure
the consent of all research objects.

Received: 31 March 2016 Accepted: 29 June 2016
Published online: 28 July 2016

References

1. Yil, Lu J, Kung HF, He ML. The virology and developments toward control
of human enterovirus 71. Crit Rev Microbiol. 2011;37:313-27.

2. Shekhar K, Lye MS, Norlijah O, Ong F, Looi LM, Khuzaiah R, Marzuki |,
Hussein I, Wong SL, Mohan J, et al. Deaths in children during an outbreak
of hand, foot and mouth disease in Peninsular Malaysia—clinical and
pathological characteristics. Med J Malaysia. 2005,60:297-304.

3. ZhuF, Xu W, Xia J, Liang Z, Liu Y, Zhang X, Tan X, Wang L, Mao Q, Wu J, et
al. Efficacy, safety, and immunogenicity of an enterovirus 71 vaccine in
China. N Engl J Med. 2014;370:818-28.

4. Ding NZ, Wang XM, Sun SW, Song Q, Li SN, He CQ. Appearance of mosaic
enterovirus 71 in the 2008 outbreak of China. Virus Res. 2009;145:157-61.

5. Tao ZX LiY, Wang HY, Song LZ, Liu GF, Liu Y, Lin XJ, Feng L, Yang H, Fan QY,
Xu AQ. Genotype distribution of enterovirus A species isolated in Shandong
Province, China. Bing Du Xue Bao. 2009;25:410-4.

6. Zhu JP, Xu ZG, Chen H, Zhang X, Fan DY, Wang J. Primary detection of
pathogen from children with hand, foot, and mouth disease in Beijing,
2007. Bing Du Xue Bao. 2009;25:23-8.

7. AbuBakar S, Chee HY, Al-Kobaisi MF, Xiaoshan J, Chua KB, Lam SK.
|dentification of enterovirus 71 isolates from an outbreak of hand, foot and
mouth disease (HFMD) with fatal cases of encephalomyelitis in Malaysia.
Virus Res. 1999,61:1-9.

8. Chen X Tan X, Li J, Jin Y, Gong L, Hong M, Shi Y, Zhu S, Zhang B, Zhang S,
et al. Molecular epidemiology of coxsackievirus A16: intratype and prevalent
intertype recombination identified. PLoS One. 2013,8:€82861.

9. Robinson CR, Doane FW, Rhodes AJ. Report of an outbreak of febrile illness
with pharyngeal lesions and exanthem: Toronto, summer 1957; isolation of
group A Coxsackie virus. Can Med Assoc J. 1958;79:615-21.

10.  Alsop J, Flewett TH, Foster JR. “Hand-foot-and-mouth disease” in
Birmingham in 1959. Br Med J. 1960;2:1708-11.

11. Perera D, Yusof MA, Podin Y, Ooi MH, Thao NT, Wong KK, Zaki A, Chua KB,
Malik YA, Tu PV, et al. Molecular phylogeny of modern coxsackievirus A16.
Arch Virol. 2007;152:1201-8.

12. Song JH, Park K, Shim A, Kwon BE, Ahn JH, Choi YJ, Kim JK, Yeo SG, Yoon K,
Ko HJ, et al. Complete sequence analysis and antiviral screening of
medicinal plants for human coxsackievirus a16 isolated in Korea. Osong
Public Health Res Perspect. 2015,6:52-8.

13. LuJ, Zeng H, Zheng H, Yi L, Guo X, Liu L, Sun L, Tan X, Li H, Ke C, Lin J, et
al. Hand, foot and mouth disease in Guangdong, China, in 2013: new trends
in the continuing epidemic. Clin Microbiol Infect. 2014;20:0442-5.

14. Varon A, Wheeler WC. Local search for the generalized tree alignment
problem. BMC Bioinformatics. 2013;14:66.

15. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by
sampling trees. BMC Evol Biol. 2007;7:214.

16. Wei C, ShiJ, Liu B, Shi Y, Zheng J, Xu G, Ma J, Wang G, Li F. Molecular
characterization of the measles virus genotypes in JiLin Province, China.
PLoS One. 2012;7:€46011.

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34.

35.

36.

37.

Page 11 of 11

Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK,
Cheung CL, Raghwani J, Bhatt S, et al. Origins and evolutionary genomics of
the 2009 swine-origin HINT influenza A epidemic. Nature. 2009:459:1122-5.
Tee KK, Lam TT, Chan YF, Bible JM, Kamarulzaman A, Tong CY, akebe Y,
Pybus OG. Evolutionary genetics of human enterovirus 71: origin,
population dynamics, natural selection, and seasonal periodicity of the VP1
gene. J Virol. 2010;84:3339-50.

Xu M, Su L, Cao L, Zhong H, Dong N, Dong Z, Xu J. Genotypes of the
Enterovirus Causing Hand Foot and Mouth Disease in Shanghai, China,
2012-2013. PLoS One. 2015;10:e0138514.

Zhu J, Luo Z, Wang J, Xu Z, Chen H, Fan D, Gao N, Ping G, Zhou Z, Zhang Y,
An J. Phylogenetic analysis of Enterovirus 71 circulating in Beijing, China from
2007 to 2009. PLoS One. 2013;8:e56318.

Li L, He Y, Yang H, Zhu J, Xu X, Dong J, Zhu Y, Jin Q. Genetic
characteristics of human enterovirus 71 and coxsackievirus A16
circulating from 1999 to 2004 in Shenzhen, People’s Republic of China.
J Clin Microbiol. 2005;43:3835-9.

Martin DP. Recombination detection and analysis using RDP3. Methods Mol
Biol. 2009;537:185-205.

Negrisolo E, Minelli A, Valle G. The mitochondrial genome of the house
centipede scutigera and the monophyly versus paraphyly of myriapods. Mol
Biol Evol. 2004;21:770-80.

Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution.
Bioinformatics. 1998;14:817-8.

Chan YF, Wee KL, Chiam CW, Khor CS, Chan SY, Amalina WM, Sam IC.
Comparative genetic analysis of VP4, VP1 and 3D gene regions of
enterovirus 71 and coxsackievirus A16 circulating in Malaysia between
1997-2008. Trop Biomed. 2012;29:451-66.

Huang SW, Hsu YW, Smith DJ, Kiang D, Tsai HP, Lin KH, Wang SM, Liu CC,
Su 1), Wang JR. Reemergence of enterovirus 71 in 2008 in taiwan: dynamics
of genetic and antigenic evolution from 1998 to 2008. J Clin Microbiol.
2009;47:3653-62.

Chua KB, Kasri AR. Hand foot and mouth disease due to enterovirus 71 in
Malaysia. Virol Sin. 2011,26:221-8.

Chung WH, Shih SR, Chang CF, Lin TY, Huang YC, Chang SC, Liu MT, Ko YS,
Deng MC, Liau YL, et al. Clinicopathologic analysis of coxsackievirus a6 new
variant induced widespread mucocutaneous bullous reactions mimicking
severe cutaneous adverse reactions. J Infect Dis. 2013;208:1968-78.

Tan X, Li L, Zhang B, Jorba J, Su X, Ji T, Yang D, Lv L, Li J, Xu W. Molecular
epidemiology of coxsackievirus A6 associated with outbreaks of hand, foot,
and mouth disease in Tianjin, China, in 2013. Arch Virol. 2015;160:1097-104.
Jorba J, Campagnoli R, De L, Kew O. Calibration of multiple poliovirus
molecular clocks covering an extended evolutionary range. J Virol.
2008,82:4429-40.

Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with
BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969-73.

Iwai M, Masaki A, Hasegawa S, Obara M, Horimoto E, Nakamura K, Tanaka Y,
Endo K, Tanaka K, Ueda J, et al. Genetic changes of coxsackievirus A16 and
enterovirus 71 isolated from hand, foot, and mouth disease patients in
Toyama, Japan between 1981 and 2007. Jpn J Infect Dis. 2009;62:254-9.
Mizuta K, Abiko C, Aoki Y, lkeda T, Matsuzaki Y, Hongo S, Itagaki T,
Katsushima N, Ohmi A, Nishimura H, Ahiko T. Molecular epidemiology
of Coxsackievirus A16 strains isolated from children in Yamagata, Japan
between 1988 and 2011. Microbiol Immunol. 2013;57:400-5.

Zeng H, Lu J, Zheng H, Yi L, Guo X, Liu L, Rutherford S, Sun L, Tan X,
Li H, et al. The Epidemiological Study of Coxsackievirus A6 revealing
Hand, Foot and Mouth Disease Epidemic patterns in Guangdong, China.
Sci Rep. 2015;5:10550.

He YQ, Chen L, Xu WB, Yang H, Wang HZ, Zong WP, Xian HX, Chen HL, Yao
XJ, Hu ZL, et al. Emergence, circulation, and spatiotemporal phylogenetic
analysis of coxsackievirus a6- and coxsackievirus al0-associated hand, foot,
and mouth disease infections from 2008 to 2012 in Shenzhen, China. J Clin
Microbiol. 2013;51:3560-6.

Wang CY, Li Lu F, Wu MH, Lee CY, Huang LM. Fatal coxsackievirus A16
infection. Pediatr Infect Dis J. 2004;23:275-6.

Legay F, Leveque N, Gacouin A, Tattevin P, Bouet J, Thomas R,
Chomelt JJ. Fatal coxsackievirus A-16 pneumonitis in adult. Emerg
Infect Dis. 2007;13:1084-6.



	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Sample collection
	RNA extraction, RT-PCR, and sequencing
	Sequence collection and phylogenetic analyses
	Alignment processing and recombination detection
	Bayesian Markov Chain Monte Carlo evolutionary analysis

	Results
	Phylogenetic analysis of CV-A16
	Origin and distribution of CV-A16 from Japan, Malaysia, and China
	Genetic diversity analysis with Bayesian skyline plot
	Codon substitution and evolution rates of CV-A16 VP1 gene

	Discussion
	Conclusions
	Additional files
	Acknowledgements
	Funding
	Authors’ contributions
	Competing interests
	Ethics approval and consent to participate
	References

