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ABSTRACT
Celiac disease (CD) is an immune-mediated enteropathy involving genetic and environmental
factors, whose interaction influences disease risk. The intestinal microbiota, including viruses and
bacteria, could play a role in the pathological process leading to gluten intolerance. In this study, we
investigated the prevalence of pathogens in the intestinal microbiota of infants at familial risk of
developing CD. We included 127 full-term newborns with at least one first-degree relative with CD.
Infants were classified according to milk-feeding practice (breastfeeding or formula feeding) and
HLA-DQ genotype (low, intermediate or high genetic risk). The prevalence of pathogenic bacteria
and viruses was assessed in the faeces of the infants at 7 days, 1 month and 4 months of age. The
prevalence of Clostridium perfringens was higher in formula-fed infants than in breast-fed over the
study period, and that of C. difficile at 4 months. Among breastfed infants, a higher prevalence of
enterotoxigenic E. coli (ETEC) was found in infants with the highest genetic risk compared either to
those with a low or intermediate risk. Among formula-fed infants, a higher prevalence of ETEC was
also found in infants with a high genetic risk compared to those of intermediate risk. Our results
show that specific factors, such as formula feeding and the HLA-DQ2 genotype, previously linked to
a higher risk of developing CD, influence the presence of pathogenic bacteria differently in the
intestinal microbiota in early life. Further studies are warranted to establish whether these
associations are related to CD onset later in life.
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Introduction

Celiac disease (CD) is an autoimmune enteropathy
triggered by dietary gluten in genetically predisposed
individuals. Disease development is mediated by the
recognition of gluten peptides associated with the
HLA class II DQA1/DQB1 heterodimers on antigen
presenting cells (APCs) by T cells which trigger an
aberrant immune response against self-intestinal
structures.1 Gluten-containing foods are common in
the Western diet and, on average, the daily gluten
intake is estimated to be 5–20 g/day.2 In spite of this
generalized exposure to dietary gluten of the popula-
tion, not all the individuals carrying the HLA-DQ risk

genotype finally develop CD, which means that addi-
tional genetic and environmental factors are needed to
trigger disease onset.3,4

In recent years, alterations in the gut microbiota are
being investigated as part of the modifiable factors pos-
sibly involved in the CD puzzle. CD patients have a dif-
ferent faecal and duodenal microbiota structure,
displaying increases in pathobionts (Clostridium spp.
and enterobacteria) and decreases in potential protec-
tive bacteria (Bifidobacterium spp. and Lactobacillus
group).5,6 Associations have also been established
between the HLA-DQ2/DQ8 genotype and the gut
microbiota composition, suggesting that the microbiota
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could also act as a predisposing factor for CD.7,8 Early
viral and bacterial infections have been associated with
the subsequent development of CD.9,10 A population-
based cohort study estimated that children who suffered
from more than ten episodes of respiratory or gastroin-
testinal infections presented a higher risk of developing
CD compared to children with less than four infection
events.11 Likewise, similar associations have been found
by other epidemiological studies enrolling large cohorts
and recording only the gastrointestinal infections.12,13

These observations were based on parent or hospital
reports where the causal pathogen was unidentified and
subclinical infections were not considered.11-13

Some studies have aimed to identify the etiological
agents responsible for the association between CD and
intestinal infections. A prospective study in children
genetically predisposed to CD showed that the high
frequency of rotavirus infections increased the risk of
developing the disease.14 Also a role was recently
established for reovirus in the loss of gluten toler-
ance.15 In the case of bacterial pathogens causing gas-
trointestinal infections, the development of CD was
linked to previous Campylobacter spp. infection by
one case study16; and with a higher incidence of Clos-
tridium difficile infection17; whereas animal models
have proven the role of specific enteric bacteria (E. coli
ENT CAI:5) in the gluten-induced immunopathol-
ogy.18 Interestingly, some of these pathogenic bacteria
previosly associated with the disease can produce tox-
ins that disrupt the tight junction proteins and
increase the intestinal permeability,19-22 a condition
linked to the break-down of gluten tolerance.1

Although some potential candidates have been pro-
posed, we lack strong evidence for pathogenic bacteria
as trigger factors for CD development in humans.

In the present study, we analysed the prevalence of
pathogenic bacteria and virus in the gut microbiota of
infants at familial risk of CD development. The
broader goal of our research is to gain a greater under-
standing of how early postnatal environmental factors,
and their interaction with host factors, could influence
the risk of developing CD.

Materials and methods

Ethical considerations

This study was conducted in accordance with the
ethical rules of the Helsinki Declaration (Hong Kong
revision, September 1989), following the EEC Good

Clinical Practice guidelines (document 111/3976/88 of
July 1990) and current Spanish law regulating clinical
research in humans (Royal Decree 561/1993 regarding
clinical trials). The study was approved by the local
Ethic Committees of the CSIC and of the hospitals
involved. Written informed consent was obtained
from the parents of infants included in the study.

Subjects and sampling

This study included a subset of 127 full-term new-
borns with at least one first-degree relative suffering
from CD, selected from an ongoing larger prospective
observational 5-year study described elsewhere.7

The DNA typing for CD HLA-DQA1 and HLA-
DQB1 genes was elucidated using sequence-specific
primers (Polymerase Chain Reaction-Sequence Spe-
cific Primers (PCR-SSP)).23

Infants were classified into three groups by HLA-
DQ genotyping. The high risk (HR) included those
individuals carrying the DQ2 haplotype in both cis
(DQA1�05:01-DQB1�02:01 in homozygosis) and
trans conformations (DQA1�02:01-DQB1�02:02 with
DQA1�05:05-DQB1�03:01 in heterozygosis), associ-
ated with the highest probability (20%) of developing
CD. The intermediate risk (IR) included those infants
carrying the DQ2 haplotype in cis conformation
along with any other haplotype, as well as infants
carrying the DQ8 haplotype (DQA1�03:01
DQB1�03:02) in homozygosis. This genotype is asso-
ciated with a 7% probability of developing CD. The
low risk (LR) included the infants with other com-
mon genotypes not associated with CD.24,25

Faecal samples were collected at home by the
parents at 7 days, 1 month and 4 months of age. Sam-
ples were immediately frozen at ¡20�C and delivered
to the hospital for centralization, and stored at ¡80�C.

DNA extraction and PCR conditions

Faecal samples were prepared as previously
described in Palma et al.7 PCR amplification reac-
tions were carried out in a 50 ml volume contain-
ing 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl2,
1 mM of each primer, 0.5 mM of each deoxynucleo-
side triphosphates, 2.5 U of Taq polymerase (Eco-
taq, Ecogen, Spain), and 50 ng of DNA. The
amplification products were subjected to gel elec-
trophoresis in 1% agarose gels stained with
ethidium bromide. The pathogenic reference strains
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were from the CECT (Spanish Type Culture Collec-
tion) or from bacteria isolated in our laboratory
identified by 16S rRNA gene sequencing as
described elsewhere.26 Specifically, the strains were:
Clostridium perfringens CECT 376, Clostridium dif-
ficile CECT 531, Shigella ENT CBD8, enterotoxi-
genic E. coli (ETEC) CECT 685, enteropathogenic
E. coli (EPEC) CECT 729, and Campylobacter
jejuni CECT 7572. The primers used were: C. per-
fringens (16S rDNA) F: ATG CAA GTC GAG
CGA (G/T)G, R: TAT GCG GTA TTA ATC T(C/
T)C CTT T27; C. difficile (16S rDNA) F: TTG AGC
GAT TTA CTT CGG TAA AGA, R: CCA TCC
TGT ACT GGC TCA CCT27; Shigella group (ipaH
gene coding for invasion plasmid antigen H) F:
GTT CCT TGA CCG CCT TTC CGA TAC, R:
CAT TTC CTT CAC GGC AGT GGA28; ETEC (elt
gene coding for thermolabile toxin) F: GCG ACA
AAT TAT ACC GTG CT, R: CCG AAT TCT GTT
ATA TAT ATG T29; EPEC (eae gene coding for
adhesin) F: AAA CAG GTG AAA CTG TTG CC,
R: CTC TGC AGA TTA ACC CTC TGC30; C.
jejuni (hip gene coding for the hippuricase enzyme)
F: GAA GAG GGT TTG GGT GGT G, R: AGC
TAG CTT CGC ATA ATA ACT TG.31

Virus detection

The presence of rotavirus and enteric adenovirus were
detected in faecal suspensions (1:10 w/v in PBS) by
immunochromatographic technique with commer-
cially available kits (CORIS BioConcept, Gembloux,
Belgium) following the manufacturer’s instructions.

Statistical analyses

Differences in the prevalence (positive or negative) of
the pathogenic bacteria were analysed with the Chi-
square test with the Yates’ correction to prevent

overestimation of statistical significance for small data
(count smaller than 5 in one of the cells in the table).
Analyses were carried out with GraphPad Prism 7.
Classification and Regression Tree (CRT) analysis was
also performed to predict the influence of the type of
feeding, genetic risk, and age in the prevalence of
pathogenic bacteria and virulence factors with SPSS
(version V24). Recursive partitioning with the binary
cut of entered variables was used for decision tree
development and the best separator explaining the
presence of each pathogen was chosen for tree root.
Statistically significant differences were established at
p<0.05.

Results

Subjects included in the study

This study included 127 full-term newborns with at
least one first-degree relative suffering from CD. Ges-
tation lasted an average of 38.34 § 3.80 weeks. A total
of 92 cases were born by vaginal delivery, and 35 cases
by caesarean section. The mean size of the infants at
birth was 49.88 § 2.47 cm, and the mean weight was
3361 § 603 grams. Infants were grouped according to
feeding practices at 7 days, 1 month and 4 months of
age, into formula-fed infants and breast-fed infants.
Infants were also classified into three groups according
to their genetic risk of developing CD: low risk group
(n D 43), intermediate risk group (n D 59), and high
risk group (n D 25).

Influence of milk-feeding practices on the prevalence
of pathogens

The prevalence of pathogens according to feeding
practices (breast-fed versus formula) is shown in
Table 1. For all three ages analysed (7 days, 1 month
and 4 months) infants fed with formula milk pre-
sented a higher prevalence of C. perfringens than

Table 1. Prevalence of pathogenic bacteria according to the type of milk feeding at 7 days, 1 month and 4 months of infant’s age.

7 days 1 month 4 months

Pathogen Breast feeding1 Formula feeding p value2 Breast feeding Formula feeding p value Breast feeding Formula feeding p value

C. perfringens 24/73 (32.9) 23/36 (63.9) 0.004 22/78 (28.2) 25/49 (51.0) 0.016 15/46 (32.6) 38/71 (53.5) 0.042
C. difficile 21/73 (28.8) 12/36 (33.3) 0.790 21/78 (26.9) 17/49 (34.7) 0.464 11/46 (23.9) 34/71 (47.9) 0.016
Shigella group 5/73 (6.8) 3/36 (8.3) 1.000 8/78 (10.3) 5/49 (10.2) 1.000 3/46 (6.5) 9/71 (12.7) 0.447
Enterotoxigenic E. coli 4/73 (5.5) 5/36 (13.9) 0.258 13/78 (16.7) 4/49 (8.2) 0.270 4/46 (8.7) 12/71 (16.9) 0.324
Enteropathogenic E. coli 9/73 (12.3) 1/36 (2.8) 0.203 5/78 (6.4) 3/49 (6.1) 1.000 1/46 (2.2) 6/71 (8.5) 0.318
Campylobacter jejuni 5/73 (6.8) 0/36 (0.0) 0.262 3/78 (3.8) 3/49 (6.1) 0.874 5/46 (10.9) 3/71 (4.2) 0.310

1Data are expressed as prevalence (positive/total). The percentage of positive samples is shown in parentheses.
2Differences were calculated with the Chi-square test with the Yates’ correction. Significant differences were established at p<0.050.
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breast-fed infants (p D 0.004, p D 0.016 and, p D
0.042, respectively). Besides, at 4 months old, the prev-
alence of C. difficile was higher in infants fed with for-
mula (p D 0.016).

Concerning the detection of virus, of the total num-
ber of 353 faecal samples analysed, only two were pos-
itive for rotavirus and one for enteric adenovirus.
These three positive samples were collected at
4 months of age and corresponded to formula-fed
infants.

Influence of the genotype on the prevalence
of pathogens

At 4 months of age, infants with a high genetic risk
presented a higher prevalence of ETEC, assessed by
detecting the elf virulence gene (coding for thermola-
bile toxin), than the infants with an intermediate
genetic risk in both breast-fed (p<0.001) and formula
fed infants (p D 0.018) (Table 2). The same trend was
observed when comparing the prevalence of this
pathogen in low risk versus high risk infants, but the
differences were only significant in the sub-group of
breast-fed infants (p D 0.019). At 4 months, also in
this sub-group of infants, the prevalence of C. difficile
was higher in the infants with an intermediate genetic

risk compared to a high genetic risk (p D 0.043) and
the same trend was observed comparing infants with a
low and high genetic risk (p D 0.124).

Classification and regression tree (CRT) analysis.

We use decision tree methodology as a tool for pre-
dicting the factors (type of feeding, genetic risk or age)
or the combination thereof that predominately influ-
ence the presence of pathogenic bacteria in the infants’
microbiota.32

In agremeent with the results based of the Chi-
square test, the CRT analyses showed that formula
was the milk feeding type that better predicted the
presence of C. difficile (Fig 1a). According to the CRT
analysis, formula feeding was also a better predictor of
the presence of C. perfringens (Fig 1b) in infants with
an intermediate and high genetic risk. A higher
genetic risk (intermediate and high genetic risk
groups) also predicted a higher prevalence of C. per-
fringens (Fig 1b) compared to the low genetic risk.
However, the relationship between the high genetic
risk and the higher prevalence of ETEC and C. difficile
detected by the Chi-square test was not confirmed by
the CRT analysis (Fig 1c and 1d). Finally, at the age of
1 month and 4 months the number of positive samples

Table 2. Prevalence of pathogenic bacteria in breast-fed and formula fed infants with different HLA-DQ genotype at 7 days, 1 month
and 4 months of age.

p value,3

Breast feeding Formula feeding Breast feeding Formula feeding

Pathogen Age LR IR HR LR IR HR p A p B p C p A p B p C

7 D 9/24 (37.5) 9/36 (25.0) 6/13 (46.2) 8/12 (66.7) 9/15 (60.0) 6/9 (66.7) 0.455 0.872 0.285 1.000 1.000 1.000
C. perfringens 1 M 9/27 (33.3) 9/38 (23.7) 4/13 (30.8) 11/16 (68.8) 10/21 (47.6) 4/12 (33.3) 0.565 1.000 0.891 0.342 0.140 0.665

4 M 5/15 (33.3) 7/25 (28.0) 3/6 (50.0) 15/27 (55.6) 15/27 (55.6) 8/17 (47.1) 1.000 0.831 0.583 1.000 0.811 0.811
7 D 5/24 (20.8) 10/36 (27.8) 6/13 (46.2) 5/12 (41.7) 4/15 (26.7) 3/9 (33.3) 0.761 0.218 0.387 0.681 1.000 1.000

C. difficile 1 M 6/27(22.2) 9/38 (23.7) 6/13 (46.2) 5/16 (31.3) 8/21 (38.1) 4/12 (33.3) 1.000 0.239 0.237 0.933 1.000 1.000
4 M 3/15 (20.0) 4/25 (16.0) 4/6 (66.7) 13/27 (48.1) 15/27 (55.6) 6/17 (35.3) 1.000 0.124 0.043 0.785 0.600 0.317
7 D 2/24 (8.3) 3/36 (8.3) 0/13 (0.0) 1/12 (8.3) 1/15 (6.7) 1/9 (11.1) 1.000 0.758 0.690 1.000 1.000 1.000

Shigella group 1 M 2/27 (7.4) 5/38 (13.2) 1/13 (7.7) 0/16 (0.0) 4/21 (19.0) 1/12 (8.3) 0.741 1.000 0.977 0.189 0.883 0.748
4 M 0/15 (0.0) 3/25 (12.0) 0/6 (0.0) 2/27 (7.4) 4/27 (14.8) 3/17 (17.6) 0.438 — 0.901 0.665 0.579 1.000

Enterotoxigenic
E.coli (ETEC)

7 D 1/24 (4.2) 2/36 (5.6) 1/13 (7.7) 0/12 (0.0) 3/15 (20.0) 2/9 (22.2) 1.000 1.000 1.000 0.304 0.334 1.000

1 M 5/27 (18.5) 6/38 (15.8) 1/13 (7.7) 1/16 (6.3) 0/21 (0.0) 3/12 (25.0) 1.000 0.671 0.791 0.890 0.391 0.974
4 M 1/15 (6.7) 0/25 (0.0) 4/6 (66.7) 4/27 (14.8) 1/27 (3.7) 6/17 (35.3) 0.794 0.019 <0.001 0.348 0.227 0.018

Enterotoxigenic
E.coli (ETEC)

7 D 2/24 (8.3) 4/36 (11.1) 3/13 (23.1) 1/12 (8.3) 0/15 (0.0) 0/9 (0.0) 1.000 0.454 0.552 0.909 1.000 —

1 M 1/27 (3.7) 2/38 (5.3) 2/13 (15.4) 3/16 (18.8) 0/21 (0.0) 0/12 (0.0) 1.000 0.501 0.566 0.144 0.332 —
4 M 0/15 (0.0) 1/25(4.0) 0/6 (0.0) 1/27 (3.7) 4/27 (14.8) 1/17 (5.9) 1.000 — 1.000 0.348 1.000 0.674

C. jejuni 7 D 2/24 (8.3) 3/36 (8.3) 0/13 (0.0) 0/12 (0.0) 0/15 (0.0) 0/9 (0.0) 1.000 0.758 0.690 — — —
1 M 2/27 (7.4) 0/38 (0.0) 1/13 (7.7) 1/16 (6.3) 2/21 (9.5) 0/12 (0.0) 0.330 1.000 0.570 1.000 1.000 0.730
4 M 0/15 (0.0) 4/25 (16.0) 1/6 (16.7) 3/27 (11.1) 0/27 (0.0) 0/17 (0.0) 0.276 0.627 1.000 0.235 0.418 —

1Data are expressed as prevalence (positive/total). The percentage of positive samples is shown in parentheses.
2Genetic risk of developing CD was established according to the HLA-DQ genotype. Low risk, LR; Intermediate risk, IR; High risk, HR.
3Differences were calculated with the Chi-square test with the Yates’ correction. p A comparison between LR vs IR; p B comparison between LR and HR; p C com-
parison between IR vs HR. Significant differences were established at p<0.05. Low risk, LR; Intermediate risk, IR; High risk, HR. 7 days, 7 D; 1 month, 1 M;
4 months, 4.
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for ETEC was higher than at 7 days (Fig 1e) according
to the CRT analysis.

Discussion

The prevalence of CD has increased in the last deca-
des, a trend that is not fully explained by an increase
in disease awareness and diagnosis efficiency.33,34 This
suggests that changes in the interaction between envi-
ronmental and genetic factors are contributing to a
real disease rate increase. Some epidemiological stud-
ies have proposed that milk feeding practices and
intestinal infections could play a role as predisposing
factors, but to date, a causal relationship remains
unconfirmed.3,35,36 In the present study, we have
assessed the prevalence of six potential pathogenic
bacteria and two viruses causing gastrointestinal infec-
tions in healthy infants at familial risk of developing
CD. Overall, we found that some pathogenic bacteria
are specifically associated with the formula feeding
pattern (C. perfringens and C. difficile), while others
(enterotoxigenic E. coli) seem to be related to the
HLA-DQ2 genotype. The performance of the Chi-

square test and the CRT algorithms was similar
regarding the associations between Clostridium spp.
and formula feeding, while some discrepancies were
found regarding associations with the genotype.

A previous study incluing of most of the cases
enrolled in the PROFICEL project showed that breast-
feeding promotes the colonization of Clostridium
leptum group and Bifidobacterium species; whereas
formula-feeding prometed that of C. coccoides-E. rec-
tale group by quantitative PCR using genus- and
group-specific primers.7 Here, using species-specific
primers, we have analysed the prevalence of two
potentially pathogenic species of the Clostridium
genus. The increased prevalence of C. perfringens
found at 7 days, 1 month and 4 months of age in the
formula-fed infants of our cohort is in agreement with
previous studies reporting that formula feeding pro-
moted the presence of C. perfringens.37 This bacterial
species has also been considered as a causal agent of
necrotizing enterocolitis in infants.38 Similarly, a
higher prevalence of C. perfringens has been proposed
to possibly increase the risk of suffering other chronic
intestinal disorders. Altogether, this evidence could

Figure 1. Classification and Regression Trees (CRT) to predict the influence of the type of feeding (green), genetic risk (blue), and age
(7 days, 1 month and 4 months, in red) on the prevalence of pathogenic bacteria. CRT splits the data into segments that are as homoge-
neous as possible with respect to the dependent variable.
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support the protective role attributed to breast-feeding
in reducing the rate of infections and, in turn, has
been related to a reduced risk of developing CD in
some studies.39

Our previous studies with this cohort of infants also
led to the conclusion that the HLA genotype influen-
ces the early intestinal microbiota composition.7,8 In
particular, we described that breast-fed infants with a
high genetic risk (HLA-DQ2) of developing CD had
reductions in Bifidobacterium spp., a feature that theo-
retically could be related to the development of the
disease in the later life.7,8 Besides, we observed that
infants with a high genetic risk (HLA-DQ2) had a
higher relative abundance of Proteobacteria, and of
unclassified Enterobacteriaceae.8 However, all the pre-
ceding studies were taxonomy-based, and the patho-
genic potential of the increased abundance of the
family Enterobacteriaceae remained unexplored. Here,
we describe that, at 4 months of age, the infants with
the highest genetic risk of CD development showed a
higher prevalence of ETEC, irrespective of milk feed-
ing practices, although this result was only detected by
applying a Chi-square test and was not corroborated
by the CRT analysis. A potentially pathogenic role of
E. coli in the pathogenesis and development of CD has
already been proposed.18,26 In humans, the E. coli
clones isolated from active and non-active celiac
patients carry more virulent genes than the species
isolated from healthy controls.26 Moreover, in NOD-
DQ8 mice the colonization with E. coli ENT CAI:5
isolated from one CD patient increased the sensitivity
to gluten-induced immunopathology and suggested
that this could be a contributing factor to the disease.18

The ETEC type is a major cause of diarrhoea,40,41 but
it has also been detected in asymptomatic subjects act-
ing as carriers,42-44 who would presumably have an
increased risk of developing gastrointestinal disorders.

The influence of the presence of potentially pathogenic
bacteria in the overall bacterial ecosystem is uncertain.
Correlation analysis of our previous data shows negative
associations between Bifidobacterium and Clostridium,
and between Bifidobacterium and Escherichia/Shigella.8

Then, it can be hypothesized that the higher prevalence
of C. perfringens and C. difficile, and of enterotoxigenic E.
coli might be a consequence of the reductions in Bifido-
bacterium numbers as previously observed in formula-
fed infants and the carriers of the HLA-DQ2 genotype.7,8

Unravelling which is the cause or the consequence, as
well as the mechanisms that favor the colonization of

certain bacterial groups and the co-exclusion of others
should be investigated in future studies.

In conclusion, our results show that specific environ-
mental factors, such as formula feeding and the HLA-
DQ2 genotype, already linked with a higher risk of
developing CD in epidemiological and intervention
studies, are also associated with an increased prevalence
of pathogenic bacteria in the gut microbiota of infants
at a very early age. Theoretically this could predispose
subjects to a pro-inflammatory gut ecosystem that
could, in turn, favour mucosal permeability alterations
and ultimately trigger CD development. Further studies
are, however, necessary to demonstrate a causal link
between these risk factors and CD development.
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