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Abstract

Background: Development of automatable processes for clustering proteins into functionally relevant groups is a
critical hurdle as an increasing number of sequences are deposited into databases. Experimental function
determination is exceptionally time-consuming and can’t keep pace with the identification of protein sequences. A
tool, DASP (Deacon Active Site Profiler), was previously developed to identify protein sequences with active site
similarity to a query set. Development of two iterative, automatable methods for clustering proteins into
functionally relevant groups exposed algorithmic limitations to DASP.

Results: The accuracy and efficiency of DASP was significantly improved through six algorithmic enhancements
implemented in two stages: DASP2 and DASP3. Validation demonstrated DASP3 provides greater score separation
between true positives and false positives than earlier versions. In addition, DASP3 shows similar performance to
previous versions in clustering protein structures into isofunctional groups (validated against manual curation), but
DASP3 gathers and clusters protein sequences into isofunctional groups more efficiently than DASP and DASP2.

Conclusions: DASP algorithmic enhancements resulted in improved efficiency and accuracy of identifying proteins
that contain active site features similar to those of the query set. These enhancements provide incremental
improvement in structure database searches and initial sequence database searches; however, the enhancements
show significant improvement in iterative sequence searches, suggesting DASP3 is an appropriate tool for the
iterative processes required for clustering proteins into isofunctional groups.
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Background
As protein sequence databases have exponentially in-
creased in size [1], the demand for automated methods
to accurately characterize protein function has soared.
Many automated methods utilize full sequence similarity
or full structural similarity to classify proteins based on
function; however, studies have shown major databases
are plagued by misannotation [2–5], often due to annota-
tion transfer between proteins based on sequence similar-
ity [5, 6]. Ideally, automated methods can be developed to
identify detailed protein function such as that annotated
in the Structure-Function Linkage Database (SFLD), a

high quality dataset developed using a thoughtful combin-
ation of computation and expert curation [7]. One strat-
egy for function prediction involves subdividing large
protein sets into small groups based on functional similar-
ity. In this way, protein function can be transferred from
one protein in the group to all other proteins in the group
if the groups accurately portray functional relationships.
Notably, it is crucial to fully understand the level of
molecular functional similarity within the groups before
engaging in detailed molecular function annotation trans-
fer to avoid further misannotation.
Many methods that group proteins by sequence or

structural similarity are useful for inferring broad func-
tional similarities to the degree that such similarities
track with functional similarities. Resources such as
PFAM [8], which identifies sequence similarities using
multiple sequence alignments and hidden Markov
models, and CATH [9] and SCOP [10], which classify
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proteins based on domain structural similarities, offer
examples. Because sequence and structure similarities
do not always track with molecular function, these clas-
sification systems do not subdivide protein sets to a
detailed level of protein function. The functional groups
identified in these methods most closely resemble the
broadest level of functional detail in the SFLD – the
protein superfamily.
More recently, methods such as GeMMA [11] and

SCI-PHY [12] were developed to group proteins by func-
tional relationships; yet, early results suggested that
these methods distinguish more functional classes within
protein superfamilies beyond what current evidence can
support [11]. For example, the enolase superfamily was
used as a test set for both GeMMA and SCI-PHY and
has been comprehensively studied by the SFLD cura-
tors. GeMMA identifies 143 functional groups (using
superfamily-specific parameters) and SCI-PHY identi-
fies 201 functional groups for the enolase superfamily;
conversely the SFLD contains just 28 functional families,
each family representing a distinct chemical mechanism
as evaluated by expert curators and, in some cases,
experiment [13–17]. Developing automated methods to
accurately group proteins by detailed function remains a
significant hurdle-the level at which clustering is evaluated
is currently an area of study.
To overcome the limitations of full sequence similarity

methods in tracking detailed molecular function, active
site profiling was developed to compare proteins based
on structural features at their functional sites [18]. This
method was compared to the clustering of proteins
using PRINTS [19, 20], BLOCKS [21], BLAST [22, 23],
and PFAM [8] and was further tested on the difficult
assignment of classifying kinases by function [18]. A
software tool, Deacon Active Site Profiler (DASP), was
developed to implement active site profiling so that it
allowed searching PDB and GenBank databases for
proteins with sequences containing active site features
similar to the features of the query set [24]. DASP was
evaluated in early studies on the cyclooxygenase family
of proteins [25] and, more extensively on the peroxire-
doxin (Prx) superfamily, demonstrating its ability to
identify proteins belonging to distinct functional groups
in comparison to an expertly-defined input set [26]. A
direct comparison with PSI-BLAST on a set of 58
proteins whose functional family had been defined by
experimental biochemical analysis demonstrated the
superior performance of DASP at identifying detailed
functional relationships between proteins without identi-
fying false positives at significant scores [26]. Most
recently, the approach was used to identify targets shar-
ing specific active site features within the cytochrome
P450 protein superfamily, with subsequent experimental
verification of results [27].

For enzymes, sequence similarity networks have also
recently been used to subdivide large protein superfam-
ilies [28, 29] into subgroups useful for generating
hypotheses about the degree of sequence similarity that
correlates with detailed differences in molecular func-
tion. Later work incorporating similarities inferred from
active site motifs identified from active site profiling
showed improvement in capturing more detailed func-
tional relationships [30]. To analyze the differences
between full sequence, full structure, and active site
similarity, in that work, networks were created for pro-
teins of known structure for the well-studied SFLD
superfamilies such as the enolases. While full sequence-
and full structure-based networks corresponded well
with known functional relationships at a broad level of
functional detail (superfamily and often subgroup), the
relationship was often less precise at the most detailed
level of function (SFLD family). While active site
similarity-based networks, which identify similarity
based on active site features, tracked more closely with
known functional annotations for experimentally charac-
terized proteins at the most detailed level of function
(reaction specificity), identifying a single threshold to
define functional relationships was still difficult [30].
Ultimately, accurate identification of proteins that share
mechanistic features and, thus, chemical mechanism,
remains a challenge.
The combination of active site profiling and protein

clustering has shown notable promise in identifying
detailed protein functional relationships from a single
search of the sequence database [26, 27]. However,
DASP searches are based on single searches of the
sequence database using profiles built for proteins of
known structure, a very limited input set. To accomplish
the broader goal of clustering the universe of proteins in
ways that track with detailed molecular function, we
developed an iterative search process. At each search
iteration, the process adds members to clusters and eval-
uates whether each cluster contains more than one func-
tionally relevant group. We have developed two such
automatable processes: one to cluster protein structures
and another to cluster protein sequences. Both methods
have demonstrated promising ability to identify func-
tionally relevant groups in the well-studied enolase and
Prx superfamilies (manuscripts under review).
Both of these processes use iterative DASP searches of

databases with each iteration building on the results of
the previous search. This iterative searching illuminated
limitations of the original DASP algorithm that only
became apparent through search iterations. In this con-
tribution, we describe the enhancements to the DASP
algorithm to overcome these limitations and we demon-
strate how the software modifications changed DASP
scores and output results. The enhancements were built
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in two steps: three incremental enhancements to pro-
duce DASP2 and three more significant enhancements
to produce DASP3. Validation of the significant algorith-
mic changes implemented into DASP3 is presented here,
and their application to the iterative search processes
demonstrates the improved quality of searches. (For
completeness, the incremental software modifications to
produce DASP2 and results showing enhanced algorithm
speed are documented in Additional file 1).

Implementation
DASP algorithm overview
As previously published [25, 26], the DASP input is a list
of proteins with corresponding functionally relevant key
residues (typically three per protein) (Fig. 1a); these resi-
dues define the active site microenvironment. For each
protein, all residues with their center of geometry within
10 Å of the center of geometry of any key residue are
extracted and concatenated N- to C-terminus to create
the active site signature. The active site signature identi-
fies the features that define a given protein functional
site. Fragments containing one of the key residues are
defined as key-residue fragments. The signatures from
all input proteins are aligned to create an active site profile
(ASP, Fig. 1b). The ASP allows identification of common-
alities and differences at the active site in the set of
proteins. Motifs are identified from aligned fragments
(ignoring fragments of length one and two as they are too
short to form meaningful motifs) and arranged by length
(Fig. 1c). A position specific scoring matrix (PSSM) [31] is
calculated for each aligned motif (Fig. 1d), which cap-
tures the conserved and less conserved features at
each position in the active site across the protein set
contained in the profile.
To search the PDB and GenBank databases for pro-

teins with similar active site features, each motif in the
ASP, beginning with the longest motif, is aligned to each
continuous fragment in a given search sequence using a
sliding window method, as previously reported [25]. A
p-value is calculated for every possible match position
(Fig. 1e); this p-value takes into account the similarity
between the sequence fragment and the motif PSSM,
given the motif length, the protein length, and the back-
ground frequency of each residue in GenBank. The
p-value represents statistically the quality of the match
between the query motif and the sequence fragment
compared to the match of the query motif to a random
sequence fragment. The match position in the search
sequence corresponding to the most significant p-value
is identified for this first, longest motif and the process
is repeated with the next longest PSSM motif (Fig. 1f ),
with the stipulation that no two motifs can be matched
at overlapping positions. Once all motifs in the profile
have been aligned to the protein sequence, the p-values

for each motif are combined using QFAST [32] to pro-
duce a DASP search score, a combined p-value which
represents the statistical probability of the protein
sequence matching all input motifs, given the null hypoth-
esis of the input motifs matching a random sequence
(Fig. 1g). This process is repeated for every protein
sequence in the database; more details of the scoring
calculations can be found in Additional file 1. The search
output is visualized as a histogram showing the distribu-
tion of DASP search scores for every protein in the data-
base (Fig. 1h; only DASP scores ≤1E-5 shown).

DASP3 Implementation
During development of iterative search processes that
cluster proteins into isofunctional groups, three limita-
tions of the DASP algorithm were identified. Three
enhancements were explored to solve these iterative
search limitations: minimum useable motif length, motif
alignment process within the profile, and motif length
used in the search.
The impact of three-residue fragments on search

accuracy was evaluated first. It was previously demon-
strated that DASP search scores accurately distinguish
true positives from false positives [26]; however, a sig-
nificant overall score does not guarantee significant
p-values for individual fragments. Detailed fragment ana-
lysis revealed three-residue fragments were not always
identified in the proper position during the GenBank
searches. To investigate the relevance of three-residue
fragments, 74 GenBank searches were performed using
functionally relevant groups from six gold-standard super-
families (crotonase, enolase, glutathione transferase
(GST), peroxiredoxin, radical SAM, and vicinal oxygen
chelate (VOC)) in the SFLD [7]. Over 92,000 proteins
were identified at DASP search scores ≤1E-8. Analysis of
the individual fragment p-values indicates the p-value
distribution for three residue fragments is bimodal while
the distributions of p-values for four-, five-, and six-
residue fragments are positively skewed (Fig. 2).
We also observed that three-residue fragments identi-

fied at less-significant scores (Fig. 2a, right) are often
identified at an incorrect position in the sequence. To
investigate how often this occurred, the N- to C-
terminus order of identified fragments in each GenBank
search was compared to the N- to C- terminus order of
the input ASP motifs. Assuming no major structural
rearrangements in these superfamilies, fragments identi-
fied in a different N- to C- terminus order than the ASP
motifs suggests incorrectly identified fragments. There-
fore, the percent of proteins with fragments in the
predicted order was calculated for 22 GenBank searches
across four superfamilies in three ways: using all frag-
ments, removing three-residue fragments, and removing
both three- and four-residue fragments (Fig. 3). When
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Fig. 1 (See legend on next page.)

Leuthaeuser et al. BMC Bioinformatics  (2016) 17:458 Page 4 of 13



three-residue fragments are excluded from analysis,
eight searches demonstrate ≥50 % increase in identifying
fragments in the predicted order (Fig. 3, pink bracket).
Additionally, four other searches demonstrate between
25 and 50 % increase in identifying fragments in the
correct order (Fig. 3, orange bracket). Together, these
results suggest that these short three-residue fragments
are often being identified improperly in GenBank
searches. Conversely, fragment identification is improved
by ≥25 % in just two groups when length four fragments
are removed (Fig. 3, purple bracket). In both of these
groups, the four-residue motif is poorly formed and
contains many gaps resulting in inaccurate fragment
identification, which is addressed by the third modifica-
tion discussed below.
The lone outlier in these data is ISII Gp 6, in which

just 10 % of proteins are identified with fragments in the
correct order (Fig. 3, green arrow). In this group, the

ASP is misaligned due to structural variation among the
input structures which causes two motifs to overlap in
the majority of proteins. Because DASP-identified frag-
ments cannot overlap, the shorter of the two fragments
is identified incorrectly 87 % of the time. (Note: this
problem has been solved in DASP3. Fragment overlap is
identified at the beginning, during ASP creation, and an
error is returned; the user must identify different key
residues prior to completing the search.)
Most groups benefit significantly from the removal of

three-residue fragments in the searches, but removing
four-residue fragments does not considerably improve
the searches. Furthermore, results from these searches
show that significant important functional information
can be lost when four-residue fragments are removed,
such as the GGLG motif in the Prx superfamily [33].
Thus, DASP3 excludes fragments of three residues (or
fewer) in ASP creation and motif identification.

Fig. 2 Length three fragments produce less significant p-values than fragments of length four through six. The motif p-values for fragments of
length three residues (a), four residues (b), five residues (c), and six residues (d) are shown as histograms with motif p-values on the x-axis and
the number of fragments on the y-axis. This data comes from a test set of 74 GenBank searches from six diverse SFLD protein superfamilies

(See figure on previous page.)
Fig. 1 DASP flowchart for identifying active site profiles and searching GenBank. Key catalytic residues are chosen for each protein (a) and used
to identify sequence fragments in the active site profile (b). The fragments are separated into motifs (c) which are used in the GenBank search.
A PSSM is calculated for each motif (d) and a sliding window search (e) is utilized to identify the best positional match for each motif in each
protein sequence by calculating a p-value at each position (f). The p-values for each matched motif are combined to calculate a final DASP
search score (g). The distribution of DASP search scores for a given GenBank search are visualized using a histogram with DASP search score on
the x-axis and the number of proteins identified on the y-axis (h). The inset shows the same histogram with the y-axis capped at 1000 proteins to
better highlight the distribution of DASP search scores
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The second DASP3 modification focused on creating
ASP alignments that more accurately reflect the active site
similarity between proteins. In DASP, the ASP is an align-
ment of complete active site signatures (concatenated
fragments) which, because of variable fragment numbers
and lengths, results in misaligned motifs. In DASP3, the
active site fragments are aligned individually, rather than
as complete signatures. Fragments containing key residues
are aligned with analogous fragments first, then all other
fragments are placed in N- to C- terminus order. How-
ever, if the number of fragments containing key residues is
inconsistent across the group of proteins, the program
terminates and reports an error.

The final enhancement targeted the length of motifs
determined from the ASP. In the original implementa-
tion, motifs were extracted and compared and the short-
est fragment from each aligned set defined the length of
that motif (Fig. 4a). This implementation discarded
potentially important active site detail due to slight vari-
ation between protein structures. During iterative
searches, we discovered that this can cause some motifs
to decrease in length. To preserve useful active site
information, DASP3 defines motif length by the longest
fragment in the set. Each shorter fragment is extended
(using information from the complete protein sequence)
to the length of the longest fragment (Fig. 4b). Ultimately,

Fig. 3 Three residue fragments are responsible for the majority of incorrect fragment order. The percent of proteins identified in GenBank
searches with all fragments in the predicted N- to C- terminal order is plotted for 22 GenBank searches from four diverse SFLD protein
superfamilies. The percent where all fragments are in the predicted order is shown in black bars, whereas red bars show the additional percent
achieved when fragments of length three are not considered in the analysis and blue bars show the additional percent when both fragments of
length three and four are not considered in the analysis. The green arrow and colored braces are discussed in the text

Fig. 4 Motif p-values are more significant when ASP motifs are lengthened prior to database searching. In DASP/DASP2, motifs are identified
from the shortest fragment in the set (a) while the longest fragment in the set determines motif length in DASP3 (b). Colored areas indicate the
motif used in the database search. The motif p-values from the GenBank searches are visualized with a histogram (c) where grey indicates the
DASP/DASP2 values and cyan indicates the DASP3 values. Each motif p-value corresponds to the significance with which it was identified in one
protein (11 proteins were identified in the search)
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the longer motifs, which contain more active site sequence
information, produce more significant p-values when used
in GenBank searches (Fig. 4c). In addition, fragment
length does not degrade during iterative searches.
Validation was performed to compare DASP3 with pre-

vious versions of the software and to analyze how well
DASP3 identifies all members of known functionally rele-
vant groups. First, a paired analysis was completed to
compare DASP3 scores with DASP/DASP2 scores. As
DASP and DASP2 search scores are essentially identical
(see Additional file 1 for details), a single comparison was
necessary to demonstrate the change in DASP3 search
scores from previous versions. Subsequently, the ability of
DASP3 to identify known functionally relevant groups of
protein structures using an iterative clustering method
was assessed. Finally, we analyzed the performance of
DASP3 compared to previous versions in identifying func-
tionally similar protein sequences using both a single
GenBank search and an iterative sequence search process.

Results
DASP3 search scores segregate true positives from false
positives to a greater extent than previous versions
Because DASP search scores are a critical part of our
methods for clustering proteins into functionally relevant
groups, it is paramount to understand how DASP3 search
scores compare to DASP/DASP2 search scores. ASPs of
previously identified functionally relevant groups were
used to search both the PDB and GenBank databases with
DASP2 and DASP3 for proteins that share active site
features. Functionally relevant groups are defined here as
groups identified by our Two Level Iterative clustering
Process (TuLIP), which are largely equivalent to the
subgroups and families annotated by SFLD curators
(manuscript under review). Ideally, when each protein
group is used to search the PDB, every protein in the
group should be identified with a DASP search score more
significant than the trusted cutoff and no other proteins
should be identified with significant scores. The trusted
cutoff for TuLIP is ≤1E-10 for most of the groups but can
sometimes vary between ≤1E-8 and ≤1E-12.
Active site profiles from 79 functionally relevant

groups identified from five SFLD superfamilies (croto-
nase, enolase, GST, radical SAM, and VOC) and one
expertly curated superfamily (peroxiredoxin) were used
to search the PDB database. Each search was performed
using both DASP2 and DASP3. The search results dem-
onstrate DASP/DASP2 and DASP3 identify all group
members at search scores ≤1E-8, but the DASP3 search
scores are more significant by 2.97 orders of magnitude,
on average (Fig. 5a, left). Paired t-test calculations indi-
cate group member (true positive) DASP search scores
are significantly improved between DASP/DASP2 and
DASP3 for each superfamily with all p-values ≤1E-4

(Additional file 1: Table S1); DASP search scores for
group non-members are not significantly changed
between DASP2 and DASP3 (Fig. 5a, right).
Notably, as in previous versions, the group members

and non-members are separated by at least two orders of
magnitude in all 79 DASP3 searches (Fig. 6), demonstrat-
ing DASP3 can distinguish self and non-self across the
isofunctional groups in the six diverse superfamilies. Fur-
thermore, the average separation between the least signifi-
cantly scoring group member and most significantly
scoring non-member increases from 11 orders of magni-
tude in DASP/DASP2 to 13 orders of magnitude in
DASP3 (Fig. 6), suggesting DASP3 separates true positives
and false positives better than early versions of the soft-
ware. The line of separation between group members and
non-members falls in the range 1E-8 to 1E-12 for all 79
groups in DASP/DASP2; similarly, in DASP3, the line of
separation is between 1E-10 and 1E-14 for all groups, as
expected from the search score significance shift. The
DASP search score which separates group members from
group non-members is remarkably consistent, corroborat-
ing previous data suggesting significance thresholds for
DASP search scores are less dependent on superfamily
than other common classification methods [26].
To validate DASP3 performance in GenBank searches,

12 ASPs (from the enolase, ISII, and Prx superfamilies)
corresponding to SFLD-defined functionally relevant
groups were used to search GenBank with both DASP2
and DASP3 (Additional file 1: Table S1). Proteins were
deemed true positives or false positives based on mem-
bership in the SFLD functional group represented by the
input set, as it has been previously shown that proteins
identified at significant DASP search scores are almost
always annotated to the SFLD functional group of the
input set [26]. Any proteins identified in GenBank
searches which are not annotated in the SFLD were not
used in this analysis as accurate functional group mem-
bership cannot be determined.
Similar to the PDB searches, DASP3 search scores for

each subgroup are more significant by an average of 2.81
orders of magnitude compared to DASP/DASP2 (Fig. 5b,
left); Wilcoxon rank test p-values are < 2E-16 for each
superfamily, indicating significant improvement of DASP3
search scores (Additional file 1: Table S1).
Further, the false positive discovery rate [FP/(TP + FP)]

for both DASP/DASP2 and DASP3 is < 0.5 % at a gener-
ous threshold ≤1E-8 and < 0.01 % at a trusted threshold
≤1E-12. In this analysis, false positives are defined as
proteins that are members of SFLD functional groups
not included in the input profile. While the false positive
discovery rate is slightly higher for DASP3 (Fig. 5b,
right), the difference is not statistically significant (t-test,
p = 0.233). Taken together, these results demonstrate that
DASP3 modifications enhance significance of the returned
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score and increase the score difference between true and
false positives compared to previous versions of DASP.

DASP3 accurately identifies known functionally relevant
groups of protein structures using an iterative clustering
process
The Two Level Iterative clustering Process (TuLIP), was
recently developed to identify functionally relevant
groups of protein structures using iterative clustering
and DASP PDB searches (manuscript under review). In
TuLIP, a protein cluster is defined as a functionally rele-
vant group if the DASP PDB search returns only the
proteins in the cluster at significant scores with no false
positives. The process has demonstrated the ability to
identify known isofunctional groups in multiple super-
families (manuscript under review). However, major
changes to the DASP algorithm could profoundly affect
the groups identified in the TuLIP process. To analyze

the impact of DASP modifications on TuLIP clustering,
TuLIP was performed using both DASP2 and DASP3 on
four superfamilies.
Prior expert analysis separated the peroxiredoxin (Prx)

superfamily into six subgroups [26]. DASP was previ-
ously able to identify these subgroups distinctly in both
PDB and GenBank searches using a manually curated
starting set [26]. When TuLIP was used with DASP/
DASP2 to cluster the Prx proteins with no a priori
knowledge (Fig. 7a, left), just one of the six subgroups
was identified distinctly (Prx5 as Sct3). The Tpx sub-
group was combined with some of the PrxQ proteins,
while the remaining two PrxQ proteins formed another
group. The final three subgroups (Prx6, Prx1, and AhpE)
were combined into one TuLIP group (Sct4). Conversely,
when DASP3 was used to perform TuLIP, four of the six
subgroups (Prx5, Tpx, PrxQ, and Prx6) were grouped
according to expert subgroup annotation, while the

Fig. 5 DASP3 PDB and GenBank true positive search scores are significantly improved compared to DASP/DASP2 scores. PDB (a) and GenBank
(b) DASP search scores are visualized as boxplots for true positives (left) and true negatives (right). For the PDB searches, true positives are
proteins which are a part of the TuLIP group used as input to the search (members) while true negatives are proteins which are not a part of the
TuLIP group used as input to the search (non-members). For the GenBank searches, true positives are proteins annotated to the subgroup in
which the input proteins are annotated (members) while true negatives are proteins annotated to a different subgroup than that which the input
proteins are annotated (non-members); annotations were identified from the SFLD
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remaining two subgroups (Prx1 and AhpE) were combined
(Fig. 7a, right). In this limited test case, the TuLIP-identified
groups match the known functional groups more closely
using DASP3 than early versions of the software.
While DASP3 improves Prx subgroup identification

over previous versions, additional SFLD superfamilies
(enolase, crotonase, and GST) showed minimal differences
between the two versions. When DASP/DASP2 and
DASP3 are used by TuLIP to cluster these three super-
families into functionally relevant groups, 52 and 44 %,
respectively, of TuLIP-identified groups correspond one-
to-one with SFLD subgroups or families, a small differ-
ence that is not statistically significant (Additional file 1:
Figure S2). The subgroups and families which are com-
bined in DASP3, such as OSBS, dipeptide epimerases, and
several in the glutathione transferase superfamily, are
previously shown to be difficult to cluster [29, 34, 35].
Overall, the DASP/DASP2 and DASP3 results are

consistent with regard to TuLIP-based functionally relevant
clustering of the very limited proteins of known structure
in the PDB. In some superfamilies, such as crotonase,
enolase, and GST, DASP3 identifies functionally relevant
groups in a similar fashion to early versions of the software.
In other superfamilies, such as Prx, TuLIP is able to identify
functionally relevant groups more accurately using DASP3.

DASP3 accurately identifies known Prx isofunctional
groups of protein sequences with one GenBank search
To analyze if DASP3 can identify all Prx protein
sequences from a small set of known protein structures,

the structures in the Prx superfamily were separated into
six expertly-identified functionally relevant groups, as
previously described [26]. Each of these six groups was
used to search GenBank using DASP2 and DASP3. The
F-measure was calculated at each DASP search score
from 1E-8 to 1E-25 for both methods (Fig. 8). F-measure
is the harmonic mean of precision [TP/(TP + FP)] and re-
call [TP/(TP + FN]; true positives, false positive, true nega-
tives, and false negatives were defined by inclusion in the
previously expertly-identified groups [26], as explained in
detail by Knutson et al. (manuscript under review). All
proteins identified in these GenBank searches that were
not previously identified by Nelson et al. were not
included in the F-measure calculations as group member-
ship cannot be validated. F-measure scores range from 0
to 1 where 1 indicates the search identified all true posi-
tive proteins without identifying any false positive proteins
at the given DASP search score threshold.
On average, the F-measure does not significantly differ

between the DASP/DASP2 and DASP3 searches (Fig. 8).
However, group-by-group analysis highlights some inter-
esting behavior. In the AhpE subgroup, the F-measure
does not significantly differ at any DASP search score
threshold (Fig. 8, orange). For the Prx5 subgroup, the
F-measure is consistently higher in DASP/DASP2 than
DASP3, though the differences are small until more
significant DASP search score thresholds (Fig. 8, purple).
Similarly, the Prx1 subgroup results demonstrate a
higher F-measure in DASP/DASP2 than DASP3 at
DASP search scores ≤ 1E-17, but similar F-measure
values at less significant thresholds. For both the Prx1
and Prx5 subgroups, the lower F-measure in DASP3 is
due to the emergence of false negatives at more signifi-
cant DASP search scores; that is, some proteins are
identified at less significant DASP search scores in
DASP3 than DASP2. Interestingly, the opposite pattern
in F-measure values is observed for the Tpx, PrxQ, and
Prx6 subgroups (Fig. 8, green, pink, and red, respect-
ively). In these subgroups, the F-measure is higher in
DASP3 than DASP/DASP2, particularly at more signifi-
cant DASP search scores. Again, the presence of false
negatives in DASP/DASP2 causes the lower F-measure
scores as proteins are identified at less significant scores
in DASP/DASP2 searches than DASP3 searches. The
enhancements made to create DASP3 result in variable
F-measure improvements on a group-by-group basis,
but overall no significant differences are observed after a
single GenBank search (paired t-test at significance
thresholds ≤1E-14 for DASP/DASP2 and ≤1E-16 for
DASP3; p-value = 0.12). Notably, DASP3 identifies a
large proportion of known Prx sequences in the ap-
propriate groups; the average weighted F-measure at
significance thresholds of ≤1E-8 and ≤1E-16 is 0.97
and 0.72, respectively.

Fig. 6 DASP3 separates true positive and false positive search scores
more than previous versions. The magnitude difference between the
least significantly scoring true positive (TuLIP member) and the most
significantly scoring true negative (TuLIP non-member) is shown as a
boxplot for 79 PDB searches completed with both DASP/DASP2 and
DASP3. The PDB searches only reported proteins identified with scores
≤1E-5, so in cases where no TuLIP non-members were identified with
such scores, the best scoring TuLIP non-member was assumed to have
a DASP search score of 1.01E-5 for calculation purposes

Leuthaeuser et al. BMC Bioinformatics  (2016) 17:458 Page 9 of 13



Fig. 8 DASP3 identifies known Prx sequences in 6 isofunctional groups as well as previous software versions. The F-measure (harmonic mean of precision
and recall) of DASP/DASP2 (x-axis) and DASP3 (y-axis) Prx searches is shown as a scatterplot for DASP search scores 1E-8 to 1E-25. The F-measure decreases
with increasing DASP search score significance for all six groups, such that 1E-8 is in the upper right and 1E-25 is in the lower left. Color indicates known
Prx subgroup, as shown by the legend

Fig. 7 DASP3 identifies known Prx functional groups more accurately than previous DASP versions. a The clusters of the Prx superfamily identified by
TuLIP are shown as heat maps for DASP/DASP2 and DASP3. The color of each box represents the percent of the known Prx isofunctional group
identified by that TuLIP group, as shown by the legend. White boxes indicate no proteins from a functional group are in a given TuLIP group while
black boxes indicate all proteins from a functional group are in a given TuLIP group. b Heat maps are used to demonstrate the coverage of each Prx
functional group by DASP/DASP2 and DASP3 after each iteration of an iterative sequence search process. Box color indicates the percent of each
Prx known functional group identified with DASP search scores≤ 1E-8 at each iterative search level, as shown by the legend
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DASP3 accurately and efficiently identifies known
functionally relevant groups of protein sequences using
an iterative sequence search process
As only structurally characterized proteins are clustered
by TuLIP, GenBank searches are necessary to identify
protein sequences belonging to each TuLIP group.
Therefore, the Multi-level Iterative Sequence Searching
Technique (MISST) was developed to iteratively identify
protein sequences with active site similarity to a given
functionally relevant group and, further, to determine
when such groups should be subdivided based on active
site similarity (manuscript under review). MISST has
demonstrated the ability to identify, cluster, and subdiv-
ide the Prx superfamily and other superfamilies using
DASP2. Since MISST is a key method in our software
arsenal and relies on iterative searching of the sequence
database, it was relevant to compare the results of the
MISST process using DASP/DASP2 and DASP3. Conse-
quently, MISST was applied to the functionally relevant
groups in the Prx superfamily.
Three iterations of MISST were performed starting with

the TuLIP groups identified by both DASP/DASP2 and
DASP3 (Fig. 7a), as MISST is specifically designed to use
TuLIP results as input. On the whole, both DASP/DASP2-
and DASP3-identified MISST groups compare well with
known functional groups (Additional file 1: Figure S3).
After the first GenBank search (Search0), some subgroups
are identified more completely by DASP/DASP2 (Prx1,
Prx5, and Prx6), while some subgroups are identified
more completely by DASP3 (Tpx, PrxQ, AhpE); this result
supports the single-GenBank search result previously
described: DASP3 does not significantly improve search
results across the board after a single GenBank search.
However, a greater percentage of each subgroup was iden-
tified (at DASP search scores ≤1E-8) in fewer DASP3
iterations compared to earlier versions (Fig. 7b). Notably,
the PrxQ subgroup, which was difficult to identify using
DASP/DASP2, was identified in full after just two iterative
searches using DASP3.
Using more stringent thresholds to reduce the presence

of false positives (≤1E-14 in DASP2 and ≤1E-16 in DASP3;
see Fig. 5), we identified 21,632 total sequences with four
iterations of DASP/DASP2 searches and 23,300 total
sequences with four iterations of DASP3 searches, com-
pared to the 3,390 sequences previously identified with a
single DASP search of GenBank using a stringent thresh-
old of ≤1E-10 [26]. Much of this increase is likely due to
the five additional years of sequence addition to the data-
base. However, some are likely newly identified sequences,
given the added benefit of the modified algorithms and
iterative searches. Given these and previous results, we
expect the false positive rate at these score thresholds to
be less than 1 %, but detailed analysis of these sequences
is beyond the scope of this manuscript.

Together, these results show that beginning with
DASP3-identified TuLIP groups, iterative DASP3 Gen-
Bank searches identify the six known Prx isofunctional
groups to a similar standard as expert identification.
Additionally, superfamily coverage through iterative
searches is obtained more quickly using DASP3 than
previous versions of the software. Though the enhance-
ments produce incremental improvement for TuLIP
clustering and single GenBank searches, the improve-
ments sum to significantly improve the efficiency of
identifying and clustering across the iterative process,
which is necessary for complete functionally relevant
clustering of protein superfamilies.

Discussion
A key parameter in every classification method is the
score threshold used to distinguish group members from
non-members. In many methods, such as BLAST and
PSI-BLAST, the trusted threshold is search dependent,
making it difficult to identify a threshold for any given
search without prior knowledge of the proteins that
should be identified in that search. Previous work with
DASP demonstrated a universal generous cutoff of
≤1E-8 for GenBank searches. At this threshold, all true
positives were identified and the false positive rate was
below 1 % [26]. Similarly, 1E-8 represents the separation
of two modes in the DASP search score distribution,
separating the tail (significant scores) from the bulk of
the GenBank database scores (Fig. 1h). In our subse-
quent work with multiple, diverse superfamilies, 1E-8
has been confirmed as the generous threshold in which
proteins identified with scores ≤1E-8 almost always
belong to the superfamily of interest, but may not belong
to the subgroup or family used in the search. Notably,
this generous cutoff has consistently returned proteins
belonging to the superfamily of interest, suggesting a
universal score threshold for the DASP approach.
In Nelson et al.’s previous Prx analyses, a trusted

threshold, at which false positives drop to zero, was
identified as ≤1E-10 [26]. Subsequently, further work on
the enolase superfamily determined a trusted score
threshold of ≤1E-12 for initial GenBank searches with
the goal of reducing false positives (manuscript under
review). Iterative GenBank searches with the Prx super-
family, however, indicate that the trusted threshold
should be ≤1E-14 beyond the first search iteration; as
groups become more exclusive, the trusted threshold
must be more significant to prevent false positives. In
this work, DASP3 scores are two to three orders of mag-
nitude more significant than DASP/DASP2 scores,
suggesting the trusted threshold should be shifted when
using DASP3. Therefore, the trusted threshold for initial
DASP3 GenBank searches is ≤1E-14 and the trusted
threshold beyond the first iterative search is ≤1E-16.
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Thus far, the generous and trusted thresholds have
remained stable across the six diverse superfamilies ana-
lyzed, however, this remains to be analyzed further.

Conclusion
In this contribution, we present DASP3, software for
identifying sequences from databases that share motifs
similar to a query active site profile. DASP3 is a modifi-
cation of previously published software, DASP [24–26].
Limitations identified in DASP were addressed through
six enhancements producing DASP3. This work demon-
strated DASP3 is significantly more efficient and versatile
than DASP, a requirement for the iterative processes used
to cluster proteins into functionally relevant groups.
DASP3 produced better separation between true positives
and false positives than earlier versions of the software
and showed improved ability to accurately and efficiently
cluster the Prx superfamily into functionally relevant
groups using two recently developed iterative processes.
As an automated algorithm, DASP3 identifies isofunc-
tional groups better than previous versions of the software
and rivals expert manual curation in the SFLD.

Availability and requirements
Project name: DASP3
Project home page: https://github.com/RBVI/dasp3
Operating system(s): Platform independent, but paths

are configured for Linux
Programming language: Java
Other requirements: Java 1.5 or higher
License: GPL 3.0
Any restrictions to use by non-academics: None

Additional file

Additional file 1: This file contains additional DASP methods, including
the development and validation of DASP2, and supplemental figures
with additional validation of TuLIP and MISST. (DOCX 1543 kb)
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