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Background: There is a lack of published research on the impact of the first wave of the COVID-
19 pandemic in Taiwan. We investigated the mortality risk factors among critically ill patients
with COVID-19 in Taiwan during the initial wave. Furthermore, we aim to develop a novel AI
mortality prediction model using chest X-ray (CXR) alone.
Method: We retrospectively reviewed the medical records of patients with COVID-19 at Taipei
Tzu Chi Hospital from May 15 to July 15 2021. We enrolled adult patients who received invasive
mechanical ventilation. The CXR images of each enrolled patient were divided into 4 cate-
gories (1st, pre-ETT, ETT, and WORST). To establish a prediction model, we used the Mobile-
netV3-Small model with “Imagenet” pretrained weights, followed by high Dropout
regularization layers. We trained the model with these data with Five-Fold Cross-Validation
to evaluate model performance.
Result: A total of 64 patients were enrolled. The overall mortality rate was 45%. The median
time from symptom onset to intubation was 8 days. Vasopressor use and a higher BRIXIA score
on the WORST CXR were associated with an increased risk of mortality. The areas under the
curve of the 1st, pre-ETT, ETT, and WORST CXRs by the AI model were 0.87, 0.92, 0.96, and
0.93 respectively.
of Biomedical Sciences and Engineering, National Central University, No. 300, Zhongda Road, Zhongli
Fax: þ886 3 425 3427.
Y.-C. Hsu).
contributed equally to the manuscript.

B.-T. Pham, J.-C. Wang et al., The COVIDTW study: Clinical predictors of COVID-19 mortality and a
t X-ray, Journal of the Formosan Medical Association, https://doi.org/10.1016/j.jfma.2022.09.014

09.014
n Medical Association. Published by Elsevier Taiwan LLC. This is an open access article under the CC
mons.org/licenses/by-nc-nd/4.0/).

mailto:syic@ncu.edu.tw
https://doi.org/10.1016/j.jfma.2022.09.014
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.sciencedirect.com/science/journal/09296646
http://www.jfma-online.com
https://doi.org/10.1016/j.jfma.2022.09.014


C.-W. Wu, B.-T. Pham, J.-C. Wang et al.

+ MODEL
Conclusion: The mortality rate of COVID-19 patients who receive invasive mechanical ventila-
tion was high. Septic shock and high BRIXIA score were clinical predictors of mortality. The
novel AI mortality prediction model using CXR alone exhibited a high performance.
Copyright ª 2022, Formosan Medical Association. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
Introduction

The first coronavirus disease 2019 (COVID-19) outbreak
occurred in Wuhan city in China in December 2019. The
pathogen of COVID-19 was identified as severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is
highly contagious and has rapidly led to a global pandemic. As
of December 15, 2021, there were approximately 270 million
confirmedcases and5.3million confirmeddeathsworldwide.1

Due to effective public health policies, there were only
small-scale outbreaks in Taiwan. The total population of
Taiwan in 2021 was approximately 23.6 million people. As
of December 15, 2021, there were only 16,759 confirmed
COVID-19 cases and 849 COVID-19 deaths in Taiwan.2 The
first large-scale COVID-19 outbreak in Taiwan took place
between May 15 and July 15, 2021. There were 14,052 new
cases of COVID-19 during this period.2 As of May 15, 2021,
only 316,200 doses of the COVID-19 vaccine (AstraZeneca)
were available in Taiwan.2 Almost all patients with COVID-
19 at the initial wave of infection were unvaccinated.
Before the advent of the COVID-19 vaccines, a meta-
analysis reported that the estimated mortality rate of pa-
tients with COVID-19 receiving invasive mechanical venti-
lation (IMV) was 45%.3 Real-world data are limited in
Taiwan. We aimed to investigate the outcomes of patients
with COVID-19 receiving IMV in Taiwan.

Scoring systems of CXR are reproducible and reliable
tools for predicting the risk of intensive care unit (ICU)
admission or mortality among patients with COVID-19.4,5
Such scoring systems include the BRIXIA6 and percent
opacification. We assessed whether these scoring could be
applied to COVID-19 in Taiwan. Several mortality prediction
scores exist, such as the DICE score7 and the 4C Mortality
Score.8 These are based on clinical parameters, including
sex, age, comorbidities, serum biomarkers, and blood ox-
ygen levels. We aimed to identify such clinical predictors in
the Taiwanese population. Artificial intelligence (AI) has
recently demonstrated great applicability in medicine. AI
models using CXR to prognosticate COVID-19 outcomes are
limited. We aimed to build a novel AI prediction model to
predict COVID-19 mortality based on CXR alone. Because
this study presents data on the first large-scale COVID-19
outbreak in Taiwan, we named the study COVIDTW. The
novel AI model was named the COVIDTW model.
Materials and methods

We retrospectively reviewed the medical records of pa-
tients with COVID-19 at Taipei Tzu Chi Hospital from May 15
to July 15, 2021. All enrolled patients had reverse
transcriptase-polymerase chain reaction (RT-PCR)-
confirmed COVID-19. We excluded patients who did not
2

receive IMV or were not admitted to the ICU. Patients aged
<18 y/o were also excluded. All patients underwent the
first CXR (1st CXR) at the emergency department. We
extracted baseline characteristics, including age, sex, body
mass index (BMI), the first cycle threshold (CT) value of RT-
PCR, the ability to perform activities of daily living
(dependence or independence), smoking history, educa-
tional attainment (cut-point: bachelor’s degree or higher),
comorbidities, medications, COVID-19 complications, and
serum biomarkers, including serum D-dimer level, C-reac-
tive protein (CRP) level, and albumin level.

On the day of endotracheal intubation, we collected
data on white blood cell count, CRP level, lactate, blood
oxygen level (P/F ratio Z PaO2/FiO2), and ventilator
setting {positive end respiratory pressure (PEEP) þ pressure
control level (PC) Z peak inspiratory pressure (PIP)}. All
patients received pressure-controlled ventilation. The
maximum PIP was less than 40 cmH2O. We calculated the P/
F ratio from the arterial blood gas (1st ABG) obtained about
2 h after endotracheal intubation. The physician and res-
piratory therapist adjusted the ventilator settings accord-
ing to the 1st ABG. In the current study, we analyzed the
adjusted ventilator settings to predict mortality.

The serial CXR images of each patient were labeled as
the 1st CXR (the first CXR in the emergency room), the pre-
ETT CXR (the CXR immediately before endotracheal intu-
bation), the ETT CXR (the CXR immediately after endotra-
cheal intubation), and the WORST CXR (the worst CXR
during hospitalization). Dr. Chih-Wei Wu (a pulmonologist
with 13 years of experience in thoracic radiology) reviewed
all CXR images and calculated the BRIXIA and percent
opacification scores of each. The BRIXIA score6 is a semi-
quantitative score and was also calculated by Dr. Yao-
Kuang Wu (a pulmonologist with 33 years of experience in
thoracic radiology). The mean BRIXIA score was used to
predict the mortality. The interclass correlation coefficient
(ICC) was used to evaluate the agreement between two
experienced experts. We have demonstrated the repre-
sentative CXR figures of the BRIXIA scores in Supplementary
Figs. 1e5. Supplementary Fig. 4 shows the representative
WORST CXR of a non-survivor with a high BRIXIA score.
Supplementary Fig. 5 shows the representative WORST CXR
of a survivor with a relatively low BRIXIA score.

During the COVIDTW study, all patients were unvacci-
nated, and anti-SARS-CoV-2 monoclonal antibodies were
unavailable. Systemic dexamethasone 6 mg QD up to 10
days was routinely administered to all patients receiving
IMV according to the proven survival benefits.9 Tocilizumab
was routinely administered to patients with serum CRP
levels �7.5 mg/dL according to the RECOVERY study.10
Physicians used a combination of midazolam, fentanyl, or
cisatracurium to achieve patient-ventilator synchrony. If
PaO2/FiO2 < 100, the intensivist would consider prone
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Fig. 1 Flowchart of patient enrollment.
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positioning or implementation of extracorporeal membrane
oxygenation (ECMO) in patients with severe acute respira-
tory distress syndrome (ARDS).

The natural history of COVID-19 critical illness was pre-
sented by a time-to-events table. Day 1 was defined as
symptom onset. The events included tracheal intubation,
WORSTCXR,peak serumCRP level, peak serumD-dimer level,
and nadir serum albumin level. We also present other clinical
courses, including length of ICU stay, length of hospital stay,
and duration of IMV, of deceased and survived patients.

We used Prism 9 statistical software to analyze the data.
The ManneWhitney U test was used to compare non-
Gaussian continuous variables. Fisher’s exact test was
used to compare the categorical variables. Logistic
regression was used to analyze data with binary outcomes.
We utilized the KaplaneMeier method to plot the time-to-
event figure and log-rank test to compare the differences.
Differences between serial CXR images was tested by one-
way analysis of variance (ANOVA). A p value < 0.05 was
considered statistically significant.

Experimental setup for artificial intelligence

The small size of the dataset was a major challenge for this
research. Deep learning models would easily overfit with
the training data, and not perform well with the testing set.

To overcome the data limitation problem, the use of a
lightweight model is important. In this work, we used the
MobilenetV3-Small model with the “ImageNet” pretrained
weights, followed by high Dropout regularization layers
specifically to address the overfitting problem. We chose
the sigmoid function (Supplementary functional equation 1)
as the output activation to achieve binary classification.

Regarding MobileNetV3, in addition to the efficient last
stage, the lightweight model introduces a combination of
hardware-aware network architecture search (NAS) com-
plemented by the NetAdapt algorithm. Moreover, the
network design includes the use of a hard-swish activation
and squeeze-and-excitationmodules in the “MBConv” blocks.
The swish nonlinearity is listed in Supplementary functional
3

equation 2. This has been proven experimentally to improve
accuracy. However, as the sigmoid function is computation-
ally expensive, itwasmodified to produce the hard swish or h-
swish function (Supplementary functional equation 3).

In addition, we deployed some preprocessing layers
within the model, which only applies to the training pro-
cedure to conduct data augmentation. These preprocessing
layers augment the image data by rotation, translation,
flipping, and random contrast adjustment to increase the
amount of relevant image data given our limited dataset.
Early stopping was also applied to reduce overfitting.

We used the binary cross-entropy as the loss function
(Supplementary functional equation 4). Adam was chosen
for the optimizer; we first pretrained the model at a
learning rate of 0.001 and then fine-tuned it with a slower
learning rate of 0.0001.

Data preparation for artificial intelligence

We collected the X-ray images of 64 COVID-19 patients.
Each person’s data consisted of four X-ray images repre-
senting the four groups of diagnostic procedures: 1st CXR,
pre-ETT, ETT, and WORST. Our goal was to predict the
probability of mortality in each group. In the current
research, we performed an experiment with the first three
diagnostic groups.

For each state, we trained the model with five-fold
cross-validation method to evaluate its performance. The
performance was assessed as the average of the five-fold
area under the receiver operating characteristic curve
(AUROC), accuracy, positive predictive value, sensitivity,
and F-1 score. For more details, please refer to the Sup-
plementary section on data preparation for AI.

Ethical statement

The study was approved by the Institutional Review Board
of Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foun-
dation (Protocol Number: 10-X-045), and the requirement



Table 1 The baseline characteristics of patients with COVID-19 and clinical risk factors for mortality.

Characteristics Deceased
patients
n Z 29 (45%)

Survived
patients
n Z 35 (55%)

P value Total n Z 64 (100%) P value of
univariate
logistic
regression

P value of
multivariate
logistic
regression

Odds ratio
with 95% CI
of multivariate
logistic
regression

Sex, n (%) 0.690 0.690
Female 11 (38%) 15 (43%) 26 (41%)
Male 18 (62%) 20 (57%) 38 (59%)

Age (years), median (IQR) 70 (64.5e79) 63 (51e70) 0.003e 67 (59.5e74) 0.005e 0.135 1.078 (0.985e1.208)
Body Mass Index, median (IQR) 25.3 (22.6e28.0) 25.8 (23.1e28.9) 0.5265 25.6 (22.8e28.5) 0.505
1st CT value in RT-PCR, median (IQR) 21 (18.5e26) 22 (19e27) 0.589 21.5 (19e27) 0.527
Functional status, n (%) 0.119 0.098
independence 21 (72%) 31 (89%) 52 (81%)
dependence 8 (28%) 4 (11%) 12 (19%)

Ever-smoker, n (%) 8 (28%) 9 (26%) 0.866 17 (27%) 0.866
Education level, n (%)
(Bachelor’s degree or higher)

3 (10%) 11 (31%) 0.07 14 (22%) 0.036e 0.9611 1.086 (0.030e30.65)

Comorbidities, n (%)
Any 22 (76%) 29 (83%) 0.489 51 (80%) 0.490
Hypertension 17 (59%) 19 (54%) 0.728 36 (56%) 0.728
Diabetes Mellitus 14 (48%) 15 (43%) 0.665 29 (45%) 0.665
Dyslipidemia 5 (17%) 12 (34%) 0.160 17 (26%) 0.119
Congestive heart failure 2 (7%) 2 (6%) >0.999 4 (6%) 0.846
Coronary artery disease 2 (7%) 1 (3%) 0.586 3 (5%) 0.446
COPD 2 (7%) 2 (6%) >0.999 4 (6%) 0.846
ESRD 1 (3%) 1 (3%) >0.999 2 (3%) 0.893
Cancer 2 (7%) 0 (0%) 0.201 2 (3%) NAb

Stroke 3 (10%) 1 (3%) 0.321 4 (6%) 0.213
Hypothyroidism 1 (3%) 3 (9%) 0.620 4 (6%) 0.387

Prone positioning, n (%) 4 (14%) 2 (6%) 0.396 6 (9%) 0.269
ECMO, n (%) 1 (3%) 0 (0%) 0.453 1 (2%) NAb

Medications, n (%)
Enoxaparin use 26 (90%) 26 (74%) 0.198 52 (81%) 0.109
Remdesivir use 20 (69%) 25 (71%) 0.830 45 (70%) 0.830
Tocilizumab use 23 (79%) 22 (63%) 0.152 45 (70%) 0.147
Triple anestheticsa 23 (79%) 26 (74%) 0.770 49 (75%) 0.636
Total number of antibiotics 4 (2e5) 3 (1e4) 0.025e 3 (2e5) 0.05

Ventilator settings, median (IQR) 0.156 0.993 (0.981e1.002)
PaO2/FiO2 108.2 (77.2e221.9) 225 (137.4e316.7) 0.004e 177.4 (93.5e283) 0.014e

Positive end expiratory pressure (cmH2O) 8 (8e10) 8 (8e10) 0.127 8 (8e10) 0.161
Pressure control level (cmH2O) 18 (15e20) 18 (16e20) 0.345 18 (16e20) 0.614
Peak inspiratory pressure (cmH2O) 28 (24e30) 26 (24e28) 0.159 26 (24e30) 0.240
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Complications, n (%)
Vasopressor use 27 (93%) 10 (28%) <0.001e 37 (58%) <0.001e 0.040e 26.81 (1.584e1003)
Bacteremia 5 (17%) 1 (3%) 0.08 6 (9%) 0.04e 0.213 78.26 (0.587-

>10000)
Acute kidney injury 26 (90%) 13 (37%) <0.001e 39 (61%) <0.001e 0.728 0.584 (0.023e11.67)

Serum markers, median (IQR)
White blood cell count (uL) 7190 (4915e11835) 8890 (5990e11240) 0.443 8080 (5225e11143) 0.497
Lactate (mmol/L) 1.7 (0.9e2.3) 1.6 (1e2.1) 0.864 1.6 (1e2.1) 0.771
Peak D-dimer value (ng/mL) 10000d (6659

e10000)
6672d (3544e9696) 0.004e 8983d (4367e10000) 0.008e d d

1st D-dimer value (ng/mL) 1253 (662e3763) 1442 (675e7304) 0.8694 1314 (671e6141) 0.386
Peak CRP value (mg/dL) 15.6 (10.1e20.4) 11.3 (6.7e16.9) 0.061 12.0 (9.1e18.5) 0.102
ETT CRP value (mg/dL) 8.9 (3.8e15.0) 10.5 (2.9e16.9) 0.925 9.0 (3.7e16.5) 0.921
1st CRP value (mg/dL) 8.5 (4.2e15.3) 8.8 (2.1e14.8) 0.730 8.7 (2.7e14.7) 0.444
Nadir albumin value (g/dL) 2.5 (2.3e2.8) 2.9 (2.6e3.1) <0.001e 2.7 (2.5e3.1) <0.001e

1st albumin value (g/dL) 3.3 (3.1e3.9) 3.4 (3.0e3.6) 0.574 3.4 (3.1e3.7) 0.418 0.311 0.223 (0.009e3.888)
CXR categories, median (IQR)
BRIXIA score of 1st CXR 7 (4e12) 6 (3e9) 0.151 7 (4e10) 0.125
Percent opacification score of 1st CXR 50% (18%e80%) 35% (15%e50%) 0.104 40% (15%e64%) 0.081
BRIXIA score of the pre-ETT CXR 11 (8e13) 10 (8e14) 0.997 10 (8e13) 0.859
Percent opacification score of the pre-ETT CXR 70% (50%e83%) 65% (45%e80%) 0.379 70% (50%e80%) 0.323
BRIXIA score of the ETT CXR 12 (10e16) 11 (9e14) 0.150 12 (9e15) 0.123
Percent opacification score of the ETT CXR 80% (68%e90%) 80% (55%e90%) 0.257 80% (61%e90%) 0.134
BRIXIA score of the WORST CXR 17 (15e18) 13 (10e16) <0.001e 15 (12e17) <0.001e 0.038e 2.042 (1.107e4.394)
Percent opacification score of the WORST CXR 95% (90%e100%) 80% (60%e90%) <0.001e 90% (75%e95%) <0.001e 0.7116 0.105 (0.001e17161)

Data are presented as the number (percentage) or median � interquartile range.
Abbreviations: IQR Z interquartile range, CT Z cycle threshold, RT-PCR Z reverse transcription-polymerase chain reaction, COPD Z chronic obstructive pulmonary disease, ESRD Z end
stage renal disease, CRP Z C-reactive protein, ETT-CRP Z the CRP level on the day of endotracheal intubation, CI Z confidence interval, CXR Z chest X-ray, ECMO: extracorporeal
membrane oxygenation, 1st CXR Z the first CXR obtained at the emergency department, pre-ETT CXR Z the CXR immediately before endotracheal intubation, ETT CXR Z the CXR
immediately after endotracheal intubation, WORST CXR Z the worst CXR during hospitalization.
c: The odds ratio approaches 1.

a Triple anesthetics means that the patient received midazolam, fentanyl, and cisatracurium simultaneously.
b NA (not applicable): the logistic model was not fitted due to complete separation.
d If a D-dimer level is > 10000 ng/mL, it is depicted as 10000 ng/mL (detection limit). Because 24 (38%) patients had a peak D-dimer > 10000 ng/mL, peak D-dimer was not included in

the multivariate logistic regression.
e Denotes statistical significance, which is also marked by gray shading.
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Table 2 Natural history of critically ill patients with COVID-19 (n Z 64).

Time schedule (days), median þ IQR Deceased
patients n Z 29

Survived
patients n Z 35

All patients
n Z 64

Hazard ratio
(95% CI)

P value

Day 1 Z symptom onset

Time to intubation 7 (4.5e11.5) 8 (13e31) 8 (5e12) 1.360 (0.820e2.254) 0.180
Time to the WORST CXR 19 (13e28.5) 11 (7e16) 15 (9e23.75) 0.4972 (0.300e0.825) 0.002a

Time to peak serum CRP level 9 (4.5e20.5) 10 (5e12) 9 (5e13.75) 0.957 (0.586e1.565) 0.850
Time to peak serum D-dimer level 13 (8.5e16) 14 (10e21) 10 (13e17) 1.474 (0.885e2.455) 0.097
Time to nadir serum albumin level 15 (10.5e22) 15 (13e19) 15 (12e20) 1.024 (0.626e1.677) 0.919

Note: Data are presented as the median � interquartile range or hazard ratio with 95% confidence interval.
Abbreviations: IQR Z interquartile range, CI Z confidence interval.

a Denotes statistical significance, which is also marked by gray shading.

Table 3 Performances of the COVIDTW model.

Performance
metric

Fold-
1

Fold-2 Fold-
3

Fold-4 Fold-
5

Average

AUROC
1st CXR 0.898 0.905 0.845 0.875 0.814 0.868
Pre-ETT CXR 0.881 0.857 1.00 0.857 1.00 0.919
ETT CXR 1.00 0.952 0.976 0.929 0.943 0.960
WORST CXR 0.800 1.00 0.929 1.00 0.900 0.926

Accuracy
1st CXR 92.9% 92.3% 84.6% 85.7% 83.3% 87.8%
Pre-ETT CXR 91.7% 92.3% 92.3% 92.3% 91.7% 92.1%
ETT CXR 92.3% 84.6% 92.3% 92.3% 100% 92.3%
WORST CXR 83.3% 100.0% 92.3% 100.0% 91.7% 93.5%

Abbreviation: AUROC Z area under the receiver operating
characteristic curve.
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for informed consent was waived by the Institutional Re-
view Board of Taipei Tzu Chi Hospital, Buddhist Tzu Chi
Medical Foundation.
Results

Fig. 1 shows the flowchart of patient enrollment. A total of
435 patients were admitted for COVID-19. 79 patients were
admitted to the ICU. Among the 64 patients receiving IMV in
the ICU, 29 died, and 35 survived. The overall mortality of
patients with COVID-19 receiving IMV was 45%. Table 1
shows the baseline characteristics of patients with COVID-
19 and the clinical risk factors for mortality. The first part
of Table 1 compares the differences between the deceased
and survived patients. The second part of Table 1 shows the
P values of univariate logistic regression, P values of
multivariate logistic regression, and 95% confidence inter-
val of the odds ratio of possible risk factors for mortality.
After univariate logistic regression, the statistically signifi-
cant risk factors included older age, an education level
below a bachelor’s degree, a lower P/F ratio, the use of
vasopressors, the presence of bacteremia, acute kidney
injury, a higher peak serum D-dimer level, a lower nadir
serum albumin level, and a higher BRIXIA or percent opa-
cification score on the WORST CXR. The above nine risk
factors were chosen for multivariate logistic regression and
6

D-dimer > 10,000 ng/mL was defined as 10,000 ng/mL
(detection limit). Because 24 (38%) patients had a peak D-
dimer > 10,000 ng/mL, peak D-dimer was not included in
the multivariate logistic regression. After multivariate lo-
gistic regression, the statistically significant risk factors
were vasopressor use and a higher BRIXIA score on the
WORST CXR.

There were no statistically significant differences in the
1st, pre-ETT, and ETT CXR scores between the two groups.
Only one 42-year-old woman received ECMO but unfortu-
nately succumbed to progressive ARDS. The ICC of the 1st,
pre-ETT, ETT, and WORST BRIXIA scores were 0.908, 0.820,
0.901, and 0.918, respectively.

Table 2 presents the natural history of critically ill pa-
tients with COVID-19. The median time to intubation for all
patients was 8 days. The deceased patients had a longer
time to WORST CXR than the survived patients (19 days vs.
11 days, P Z 0.002). Supplementary Table 1 shows other
clinical courses including the length of ICU stay, length of
hospital stay, and duration of IMV.

Table 3 presents the performance of the COVIDTW
model. The average AUROCs were 0.87, 0.92, 0.96, and
0.93 for the 1st CXR, pre-ETT CXR, ETT, and WORST CXR,
respectively. The average accuracies were 88%, 92%, 92%,
and 94% for the 1st CXR, pre-ETT CXR, ETT, and WORST
CXR, respectively. Other performance metrics for the
COVIDTW model are shown in Supplementary Table 2
(positive predictive value), Supplementary Table 3 (sensi-
tivity), and Supplementary Table 4 (F-1 score).

Both the BRIXIA (Fig. 2A, P < 0.001) and percent opacifi-
cation scores (Fig. 2B, P < 0.001) of the WORST CXR were
significantly higher among deceased patients. Therewere no
significant differences between the deceased and survived
patients in other CXR stages (1st, pre-ETT, and ETT).

There were significant increases in the BRIXIA scores
(Fig. 3A) and percent opacification scores (Fig. 3B) from the
1st CXR to pre-ETT, ETT, and WORST CXR.
Discussion

The COVIDTW study presents the first large-scale COVID-19
outbreak in Taiwan. We investigated the outcomes of crit-
ically ill patients and clinical predictors of mortality. A
novel AI model using CXR alone showed good performance
in predicting mortality.



Fig. 2 (A) Comparison of BRIXIA scores between deceased and survived patients for different CXR images. (B) Comparison of
percent opacification scores between deceased and survived patients for different CXR images. The plot shows the median with
interquartile ranges. Abbreviation: ns Z nonsignificant.
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In this study, approximately 50 clinical parameters were
extracted. After univariate logistic regression analysis, we
identified nine significant risk factors. These nine risk fac-
tors were consistent with those reported in the literature.
However, after multivariate logistic regression, only two
risk factors were identified (use of vasopressors and a
higher BRIXIA score on the WORST CXR.) as statistically
significant. However, the factors like white blood cell
counts, CRP, lactate, blood oxygen level, ventilator set-
tings, and subsequent treatment are known to have a
strong impact on mortality, but not in the COVIDTW study.
The main reasons for the difference may result from dif-
ference in the study population, sample size, sampling time
of serum biomarkers, time points of ventilator settings, etc.
As for blood oxygen levels, in a retrospective study
including 123 mechanically ventilated patients with COVID-
7

19 in China, the P/F ratio on the day of ICU admission was
an independent risk factor for mortality.11 In contrast to
the abovementioned study, the time point of P/F ratio
recording in the COVIDTW study was 2 h after endotracheal
ventilation. Continuous changes in lung mechanics after
COVID-19 infection are complicated. The most represen-
tative time point of the P/F ratio recording requires further
investigation.

After endotracheal intubation in patients with COVID-19,
few subsequent treatments have been shown to impact
mortality. In the COVIDTW study, only patients with serum
CRP level >7.5 mg/dL received Tocilizumab according to
the mortality benefits from the RECOVERY study.10 How-
ever, the optimal CRP cutoff value for mechanically venti-
lated patients with COVID-19 is unknown. A single-center
study that included 154 mechanically ventilated patients



Fig. 3 Serial changes in the BRIXIA scores (3A) and percent opacification scores (3B) for different CXR images. P values are shown
in the figure. The plot shows the mean with standard deviation.
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with COVID-1912 did not delineate a specific CRP value for
enrollment, and the results showed that Tocilizumab was
associated with lower mortality. As for ventilator settings,
limiting mechanical power13 and use of low tidal volume
ventilation14 have mortality benefits for mechanically
ventilated COVID-19 patients. However, in the COVIDTW
study, the physicians did not calculate the mechanical
power owning to limited resources, and there were no
uniform protocols for low tidal volume ventilation. Prone
positioning reduces mortality rates in moderate-to-severe
ARDS due to COVID-19.15 In the COVIDTW study, many
real-world dilemmas, such as septic shock, acute gastroin-
testinal bleeding, and severe obesity, impeded routine use
of prone positioning.

In the COVIDTW study, the severity of WORST CXR was
associated with mortality. Previous studies focused on the
first CXR image upon presentation and showed that the
BRIXIA and percent opacification scores could predict
COVID-19 mortality.4,5 However, in the COVIDTW study,
the 1st CXR scores were not significantly different between
deceased and survived patients. The reason could be
related to the different study populations. In the COVIDTW
study, all patients received IMV and were admitted to the
ICU, but the ICU admission rates were 8.3% (63/751)4 and
17% (58/340)5 in prior studies. In addition, in the COVIDTW
study, the pre-ETT, and ETT CXR scores also had compara-
ble severities between survived and deceased patients.
This suggests that the physicians had similar judgments of
respiratory failure and indications for tracheal intubation.

The COVIDTW study suggested that use of vasopressors
was a risk factors for mortality. Our results are consistent
with those reported in the literature. An observational
study enrolling 217 critically-ill COVID-19 patients in the
United States reported that vasopressor-requiring shock
was significantly associated with mortality.16 In total, 90%
8

of the deceased patients received vasopressors in contrast
to the 54% of patients who survived. A retrospective study
including 86 ICU patients with COVID-19 from Saudi Arabia
revealed that septic shock was a significant predictor of
death (odds ratio Z 58, P < 0.001).17 Consequently, the
health care system should focus on hemodynamically un-
stable patients and prevent complications in patients with
COVID-19.

In the early era of the COVID-19 pandemic, the majority
of AI studies focused on COVID-19 detection by CXR or chest
computed tomography (chest CT). Later, AI-related studies
attempted to generate a prognostic model based on chest
CT images. However, CXR is more accessible and practical
than chest CT in resource-limited health care systems. Few
studies have developed AI models based on CXR images for
predicting COVID-19 outcomes.18-20 In the United States,
Jiao et al. developed AI prediction models using the CXR
images and clinical parameters of 1834 patients with COVID-
19 to predict critical or noncritical outcome.18 The AI per-
formance (AUROC) using CXR alone was 0.753. A multicenter
study in Italy developed 3 AI models to predict mild or se-
vere outcomes based on the admission CXR images of 820
patients with COVID-19.19 The AI performance (accuracy)
using CXR alone ranged from 0.658 to 0.742. The EXAM
model was built by using CXR images and clinical parameters
of 16,148 patients.20 The AUROC for predicting future ox-
ygen requirement was >0.92. The above 3 studies utilized
the earliest CXR (at ER or admission) to predict outcomes.
However, the COVIDTW model employed 4 different stages
of CXR (i.e., 1st CXR, pre-ETT, ETT, and WORST) to prog-
nosticate the outcome. To our knowledge, the COVIDTW
model is the first AI-based prediction model built using CXR
images of intubated patients. A prognostic model based on
the CXR obtained immediately after intubation (ETT CXR in
the COVID model) is essential for critically ill patients.
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Transportation of patients to the CT room has several dis-
advantages, such as catheter dislodgement, lack of oxygen
support, and increased transmission risk. Further studies are
required to develop reliable AI-based models using post-
intubation CXR to prognosticate outcomes.

The COVIDTW study has inherent limitations, including
its retrospective design and small sample size. Owing to
small sample size, the COVIDTW model used five-fold cross-
validation for internal validation. Internal validation usually
leads to a higher performance of the prediction model than
external validation. Optimally, a novel prognostic model
should be externally validated using an independent data-
set before incorporation into clinical practice. Further
studies are required to enroll more patients with different
baseline characteristics to improve the COVIDTW model.

In conclusion, the overall mortality rate of COVID-19
patients receiving IMV was 45%. The risk factors for COVID-
19 mortality include the use of vasopressors and a higher
BRIXIA score on the WORST CXR. The AI COVIDTW model
uses CXR to predict COVID-19 mortality. The models built
with the 1st, pre-intubation, post-intubation, and worst
CXRs all achieved high performances.
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