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Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad
spectrum of structurally and mechanistically unrelated drugs across membranes, severely
impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression
of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR,
which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby
decreasing intracellular drug concentration. Therefore, modulators of ABC transporter
could be used in combination with standard chemotherapeutic anticancer drugs to
augment the therapeutic efficacy. This review summarizes the recent advances of
important cancer-related ABC transporters, focusing on their physiological functions,
structures, and the development of new compounds as ABC transporter inhibitors.
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INTRODUCTION

Multidrug resistance (MDR) refers to the resistance of a wide spectrum of structurally and
mechanistically unrelated drugs across the membrane. This process is among the culprits of
failure of cancer chemotherapy, since the cancer cells can efflux chemotherapy agents and
therefore reduce the intracellular drug levels (Ahmed et al., 2020). Members of the ATP-binding
cassette family have been found to be involved in this process. To be specific, the ABC transporter
family can be divided into seven subfamilies according to their genome sequences and TMDs
(transmembrane domain) structures (Taylor et al., 2017). Some of them have been reported to act
both as importers and exporters of bacteria, however, in eukaryotic cells, they all efflux pumps
(Robey et al., 2018). P-glycoprotein (P-gp) was the first identified member within this family and a
high-resolution structure of the mouse homolog, which has 87% sequence identity with human has
been elucidated (Juliano and Ling, 1976). Except for P-gp, ABCC1(also known asMRP1)and ABCG2
(also known as BCRP) have also been extensively studied (Toyoda et al., 2019; Ambjørner et al.,
2020), confirming their prominent roles in multidrug resistance of cancer cells. During the past few
decades, numerous efforts have been made to solve the drug resistance caused by these transporter
proteins. However, most of these attempts lead to disappointing results for both the first generation
and the second generation of inhibitors, because they exhibit either unacceptable levels of toxicity or
less potential inhibiting effects (Adamska and Falasca, 2018). So far, more inhibitors have been
exploited (from nature or synthetic sources Gonçalves et al., 2020). In addition, researchers have
achieved a deeper understanding of the phenomenon of chemotherapy resistance through their concerns
to the genes and signaling pathways that modulate the expression of these proteins (Li et al., 2018; Sultan
et al., 2018; Huang et al., 2020; Zhou et al., 2020). In this review, we summarize the recent progress of the
most clinically significant ABC transporters ABCB1, ABCG2, and ABCC1 that cause multi-drug
resistance during cancer therapy, with the emphasis on novel small molecule compounds that are
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tested in preclinical and clinical studies, mainly on natural
products, synthetic compounds, aiming to provide a wider
perspective to understand the multidrug resistance and new
strategies targeting ABC transporters in cancer treatment.

LOCATIONS, SUBSTRATES, CANCER
TYPE

ABCB1 (P-gp)
P-gp was the first found human ABC transporter of all known
ones and was identified as a glycoprotein responsible for
modulating drug permeability (Juliano and Ling, 1976). MDR,
the gene encoding P-gp, is located in chromosome 7 at q21 and
contains 28 exons encoding 1280 amino acids of this 170 kDa
protein (Gottesman et al., 1995). P-gp are similarly expressed in
human and mouse tissues, with a more biased expression in
excretory tissues, including breast, blood-brain barrier, liver,
pancreas, and kidney, and in the apical membrane of epithelial
cells located at physiological barriers (Sita et al., 2017;Wang et al.,
2017; Christie et al., 2019; Zhang et al., 2020). P-gp exports
neutral or positively charged hydrophobic compounds and
xenobiotics from cells, thereby protecting them from
cytotoxicity (Sharom, 2011; Fletcher et al., 2016). The critical
role of P-gp in the blood-brain barrier (also known as BBB), was
first illustrated by Schinkel et al. (Schinkel et al., 1994). They
found the deletion ofAbcb1a andAbcb1b can lead to CNS toxicity
from ivermectin, however, despite its defensive role in protecting
cells, the overexpression of P-gp mRNA and protein in clinical
specimens in breast, kidney, and lung cancers portends a poor
response to chemotherapy, resulting in low survival rates (Robey
et al., 2010; Amiri-Kordestani et al., 2012). P-gp can efflux
chemotherapy agents and reduce intracellular drug levels
(Ahmed et al., 2020), which is one of the major causes of
chemo-resistance. The major substrates involved in the
multidrug resistance of P-gp are structurally and
mechanistically unrelated drugs (Abdallah et al., 2015; Yu
et al., 2016; Bugde et al., 2017; Gameiro et al., 2017; Lu et al.,
2017). Moreover, P-gp is preferable to express in poorly
differentiated and most invasive cells (Ohtsuki et al., 2007;
Mesraoua et al., 2019). In a range of soft tissue sarcomas, P-gp
expresses most in the largest and most aggressive tumors (Oda
et al., 2005). Single-nucleotide polymorphisms (SNP) occurring
in ABCB1 genes can result in increased or decreased transporter
efficacy, depending on the gene type of the variants, which
remains complex so far (Dulucq et al., 2008; Zu et al., 2014).

ABCG2
ABCG2 plays a pivotal role in extruding exogenous and
endogenous substrates and drugs (Ando et al., 2007; Chen YL
et al., 2016; Halwachs et al., 2016; Gewin et al., 2019; Mares et al.,
2019; Orlando et al., 2019; Traxl et al., 2019), which is related to
many multidrug resistant cancer cell lines, including acute
lymphoblastic leukemia (ALL), retinal progenitors, hepatic
metastases, gastric carcinoma, fibrosarcoma, nonsmall cell lung
cancer, glioblastoma and myeloma (Natarajan et al., 2012; Olarte
Carrillo et al., 2017; Abdel Gaber et al., 2018; Reustle et al., 2018;

Zhang et al., 2018). ABCG2 locates in the plasma membrane of
the cell and expresses in normal tissues like placenta, prostate,
kidney, blood-brain barrier, liver, ovary, small intestine, and
seminal vesicle (Jackson et al., 2018), which is responsible for
regulating the intracellular levels of hormones, lipids, ion and
intracellular organelles such as mitochondrion (Ding et al., 2019),
lysosome (Chapuy et al., 2008), endoplasmic reticulum
(Kashiwayama et al., 2009), Golgi apparatus (Tsuchida et al.,
2008). ABCG2 also has a wide range of mechanistically and
structurally different substrates, such as mitoxantrone,
methotrexate, camptothecins, topotecan and irinotecan, SN-38,
epipodophyllotoxin, imidazoacridinones, the anthracycline
doxorubicin (Bram et al., 2009a; Bram et al., 2009b; Mao and
Unadkat, 2015) and tyrosine kinase inhibitors (Dohse et al., 2010;
Hegedüs et al., 2012). ABCG2 has a less important role in uric
acid transport, however, its dysfunction leads to several diseases
linked to hyperuricaemia such as gout, kidney disease, and
hypertension (Bram et al., 2009b; Ishikawa et al., 2013). What
is more, phytoestrogen sulfate conjugates (Wetering and Sapthu,
2012), uremic toxin, and indoxyl sulfate (Takada et al., 2018) are
unique substrates of ABCG2. A genetically engineered mouse
model about BRCA1-associated breast cancer (Brca1−/−p53−/−
mice) has identified that ABCG2 overexpression is the cause of
acquired topotecan resistance, and the genetic ablation of ABCG2
improves the survival rate of topotecan-treated animals (Zander
et al., 2010). In fact, in some cancer cell lines, more than one ABC
transporter is overexpressed. High levels of ABCG2, ABCB1, and
ABCC1 have been found within primitive leukemic CD34+/38-
cells (Raaijmakers et al., 2005). The co-expression contributes to
multidrug resistance, which requires multi-transporter inhibitors
to achieve a better clinical outcome (Robey et al., 2010). However,
although the ABCG2-involved multidrug resistance mechanisms
are basically clear, the clinical trial relevant to ABCG2 inhibitors
has received few satisfying results (Fletcher et al., 2016).

ABCC1
ABCC1 was identified in 1992 from human small-cell lung cancer
cell lines whose drug resistant behavior occurred without the
overexpression of P-gp (Cole et al., 1992). ABCC1 expresses in
the plasma membrane of some normal tissues and cells including
liver, kidney, lung, intestine, blood-brain barrier and peripheral
blood monocellular cells (Uhlén et al., 2015). Overexpression of
ABCC1 is related to endometria, acute myeloblastic, glioma,
lymphoblastic leukemia, head and neck, non-small cell lung
cancer, neuroblastoma, melanoma, prostate, breast, renal,
thyroid cancer (Cole, 2014; Johnson and Chen, 2017;
Emmanouilidi et al., 2020; Si et al., 2020). To be specific,
ABCC1 is a lipophilic anion pump, conferring resistance to
anti-cancer drugs (Cole, 2014). Compared with P-gp, the
substrates of ABCC1 have more diverse structures and most of
them are amphipathic organic acids with large hydrophobic
groups (Kumar and Jaitak, 2019). Endogenous substrates are
mainly pro-inflammatory molecules such as Leukotrienes C4
(LTC4), hormones such as estrogens and prostaglandins,
sphingosine-1-phosphate, antioxidants like glutathione and
glutathione disulphide (Csandl et al., 2016; Basu et al., 2017;
Fallatah and Georges, 2017). Noteworthy, Glutathione (GSH) has
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an impact on ABCC1 transport activities (Nasr et al., 2020).
ABCC1 and GSH are synergistic to some extent. They co-
transport anticancer drugs such as doxorubicin, vincristine
and etoposide. ABCC1 also transports GS-conjugated anions
such as LTC4 and reduced GSH with low affinity and GSSG
with a higher affinity (Leier et al., 1994; Drozd et al., 2016; Zhang
et al., 2016; Gana et al., 2019). Exogenous substrates include many
natural products like flavonoids, vincristine, daunorubicin,
doxorubicin, imatinib, methotrexate and organic anions,
metabolites of drugs (Zhou et al., 2008; Whitt et al., 2016).
Importantly, the MYCN oncogene, a driver of tumorigenesis
in neuroblastoma, can regulate ABCC1 drug transporter at the
level of transcription (Weiss et al., 1997; Porro et al., 2010;
Henderson et al., 2011).

STRUCTURE AND FUNCTION

The ABC transporter family is divided into 7 subfamilies
according to their genome sequences and core TMDs
(transmembrane domain) structures (Taylor et al., 2017). The
three transporters we discuss here belong to the type III ABC
system, for they all consist of 2 × 6 TMs (transmembrane helix), a
striking difference between the type I ABC systems with a
minimal core of 2 × 5 transmembrane helices (TMs) and type
II ABC systems harboring 2 × 10 TMs (Parcej and Tampé, 2010;
Braunová et al., 2019). Except from ABCC1, ABCB1 and ABCG2
are both half-transporters, working as a homodimer. Two NBDs
dimerize to form two ATPase binding sites, which catalyze the
ATP hydrolysis following a common mechanism: a glutamate
residue interacts with hydrolytic water for the attack of the ATP
phosphate (Moody et al., 2002; Oldham and Chen, 2011; Weigl
et al., 2018). In NBD1 of ABCC1, the corresponding residue is not
a glutamate but an aspartate whose side chain is not long enough
to interact with the hydrolytic water (Geourjon et al., 2001).

ABCB1
ABCB1 has been viewed as a “hydrophobic vacuum clearer”
(Waghray and Zhang, 2018) because most of the substrates
transported by this protein are hydrophobic and distributed
into the lipid bilayer (Gatlik-Landwojtowicz et al., 2006). Each
ABCB1 contains 1 TMD, 1 nucleotide binding domain (NBD),
and forms an active transporter through dimerization. The
specific binding site is located in the TMDs and the ATP
hydrolysis occurs in the intracellular NBDs (Alam et al.,
2019). In the apo state, the portals open to the cytoplasm and
the inner leaflet of the lipid bilayer (Figure 1A). The portals are
large enough to accommodate the potential substrates from the
lipid bilayer and allow these hydrophobic compounds to pass
through. The portals are formed by the proximity TMs (TM4/6,
TM10/12). Most of the amino acid residues in the binding pocket
are hydrophobic and located in the upper side of the pocket. Only
15 of the 80 residues are polar and located in the lower half of the
pocket (Dawson and Locher, 2006). Different substrates or
inhibitors, due to their different structures, may bind to
different residues. Paclitaxel (Taxol) interacts with residues
Q725, Q347, Q990 while zosuquidar interacts with M985,

F982 (Alam et al., 2018; Alam et al., 2019). The conserved
glutamine Q475 in NBD1, Q1118 in NBD2 can coordinate
with Mg2+ and gama-phosphate of ATP, thus they play an
important role in ATP hydrolysis and drug transport (Kim
and Chen, 2018) (Figure 1B). In addition, tyrosine residues
also play an important role as hydrogen bond donors and
acceptors in ABCB1 drug transport activity. To evaluate the
importance of the hydrogen bond in ligand-protein
interactions, 15 conserved residues interacting with substrates
are substituted with tyrosine residues. This so-called 15Ymutants
can still transport small and medium size substrates, however,
large substrates like Bodipy-Vinblastine cannot be normally
transported. This demonstrates that in some cases it is not the
hydrogen bond but the physico-chemical properties which affect
the transportation (Vahedi et al., 2017).

ABCG2
ABCG2 is a half transporter, with 6 transmembrane helixes and
1 ATP-binding site. The high-resolution structure which was first
elucidated in 2017 (Taylor et al., 2017; Figure 2A) brings an
insight of the molecular mechanisms underlying the transport
behavior. ABCG2 has 1 NBD and 1 TMD located on a single
polypeptide chain and forms a homodimer as an active
transporter. Unlike ABCB1 transporter, the distance between
the NBDs and the membrane within the ABCG2 is smaller
due to the shorter transmembrane helix and intracellular loops
(Locher et al., 2002; Woo et al., 2012). The interface of TMD is
formed by TM2 and TM5a from opposing ABCG2 monomers
(Taylor et al., 2017). ABCG2 has two cavities involved in the
transport behavior (Figure 2B). The larger cavity 1 and the
smaller cavity 2 are separated by two leucine (L554, L554’)
motifs (Khunweeraphong et al., 2017; Jackson et al., 2018;
Manolaridis et al., 2018). Cavity 1 opens to the cytoplasm and
inner leaflet of the lipid bilayer, and cavity 2 opens to the
extracellular, which is located below the EL3 external loop
(Khunweeraphong et al., 2019). The function of cavity 1 is to
accommodate potential substrates, especially the flat, polycylic
and hydrophobic ones, while cavity 2 possesses lower affinity for
these substrates because of its less pronounced hydrophobic
interface (Orlando and Liao, 2020). However, the lower
affinity may release substrates more easily (Taylor et al., 2017).
Two critical steps are involved in the process of substrate
transport. Firstly, the di-leucine valve regulates the small
molecules to enter the upper cavity, which is a key element for
the catalytic cycle. Secondly, the essential residue E585 are
harbored by the re-entry helix in the roof, making it more
accessible to the extracellular (Khunweeraphong et al., 2019).
Themutants N436A, F439A decrease both the substrate transport
activity and ATPase activity which proves the functions of these
two residues in binding and transporting estrone-3-sulfate (E1S)
(Figure 2C). Moreover, the hydrogen bond between N436 and
the sulfate group of E1S and the stacking interaction between the
phenyl ring of F439 and the ring system of E1S are important for
binding affinity. Another mutant V546F reduces the transport
activity but simultaneously increases the ATPase activity,
indicating that the addition of two phenyl rings at this
position mimics the binding of a substrate and stimulates the
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ATPase activity, but can cause “clog” upon binding with E1S
(Manolaridis et al., 2018).

ABCC1
ABCC1 transporter is encoded by ABCC1 gene, with the weight
of 190 kDa and contains 1580 amino acids (Cole et al., 1992).
Although there is a 23% sequence identity between P-gp and
ABCC1, they have an intriguing substrate overlap. ABCC1 is a
single polypeptide, containing transmembrane domains
(TMDs) and two nucleotide-binding domains (NBDs)
(Johnson and Chen, 2017). Only the one nucleotide-binding
domain located on the NBD2 is responsible for hydrolyzing
ATP and providing energy for translocation (Conseil et al.,
2019). ABCC1 contains a N-terminal membrane-bound region
(TMDo) domain that links to the transporter core through a Lo
linker (Figure 3A). The truncation of TMDo behaves like wild-
type (Bakos et al., 1998; Johnson and Chen, 2017), whereas the
loss or mutation of Lo linker results in false protein folding and
defective function (Bakos et al., 1998; Bakos E et al., 2000;

Bakos É et al., 2000). The binding pocket of ABCC1 transporter
is formed by two bundles, TM1 and TM2, and the inner-face
residues provided by these two bundles are quite different
(Conseil et al., 2019). Positively charged residues locate in TM1
while hydrophobic residues locate in TM2. The positive
charged region usually binds with the moiety of GSH and
another region rich in hydrophobic residues binds to the
substrate (Johnson and Chen, 2017). LTC4 can be
selectively transported by ABCC1 (Figures 3B,C) and the
way in which LTC4-GSH conjugates to pass through
ABCC1 has been elucidated by several studies (Loe et al.,
1996; Liening et al., 2016; Conseil et al., 2019). Amphipathic
substrates that contain both negatively charged and
hydrophobic residues can be transported without
conjugating with GSH. Besides MYCN oncogene regulates
the transcription of ABCC1, the transfection of MCF-7/VP-
16 breast cancer cells with miR-326 can downregulate ABCC1
expression and increase cancer cell sensitivity to etoposide and
doxorubicin (Liang et al., 2010).

FIGURE 1 | Ribbon representation of the ABCB1 structure. (A) apo state of ABCB1, and (B) ATP-binding state of ABCB1.

FIGURE 2 | Ribbon representation of the ABCG2 structure (A) ribbon representation of the ABCG2 structure, with the two halves of ABCG2 colored purple and
orange, respectively. (B) Surface representation of cavity 1, cavity 2 and Leucine plug (C) ABCG2 binds with E1S and the residues F439 and N436 can form stacking
interactions and hydrogen bond with E1S, respectively.
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ABC TRANSPORTER INHIBITORS

The past few decades have seen numerous efforts made to solve
the drug resistance caused by ABC transporter proteins. Many of
the first and second-generation ABC transporter inhibitors
exhibit either high levels of toxicity or low potential inhibiting
effects (Adamska and Falasca, 2018). Researchers are exploiting
more potent inhibitors, mainly focusing on synthetic compounds
and chemicals from nature plants. The chemical structures of
representative ABC inhibitors are shown in Figures 4–6.

P-GP INHIBITORS

Natural Products
Flavonoids
Majority of flavonoids are inhibitors of P-gp (Boumendjel et al.,
2002; Falcone Ferreyra et al., 2012) and their inhibitory
mechanisms are different, such as blockage of the binding site
(Nabekura et al., 2008), interference with ATP hydrolysis
(Shapiro and Ling, 1997), decrease of P-gp expression (Sun
et al., 2013). Naringenin (1), isolated from the aerial parts of
Euphorbia pedroi, exhibits multiple cellular functions such as
antioxidant, anti-inflammatory, P-gp inhibitory activities (Chen
et al., 2019). Upon applying together with felodipine in KB-V1
cells, it can decrease the P-gp expression level in KB-V1cells and
increase the concentration of felodipine (Surya Sandeep et al.,
2014). Quercetin (2), which is abundant in onions, apples,
broccoli and berries, has a wide range of biological activities

including antiproliferation and proapoptotic actions with cancer
cells. Used in combination with the chemotherapeutic agent
daunorubicin in gastric cancer cells, quercetin can down-
regulate the ABCB1 gene, reduce the overexpression of
P-glycoprotein, and inhibit the efflux of drugs. Finally,
quercetin significantly sensitizes cancer cells to action of
daunorubicin and increases the percentage of apoptosis
(Borska et al., 2012). Another study found that methylated
EGC and GC derivatives (3) exhibited better inhibitory effects
targeting ABCB1 with an EC50 range from 102 to 195 nM,
meanwhile they are not the substrates of ABCB1(Wong et al.,
2015). Chalcones are precursors for the synthesis of flavonoids,
which can also reverse multidrug resistance (Yin et al., 2019).
2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone modulates
the expression of P-gp gene. When combined with 5-
fluorouracil (5-FU), it can significantly elevate tumor
inhibition rate to 72.2% in BEL-7402/5-FU cell lines (Huang
et al., 2012). SAR studies demonstrate that the introduction of a
basic group on the chalcone moiety could enhance the P-gp
inhibition and weaken the BCRP inhibition. The basic chalcones
are better P-gp inhibitors, while the non-basic chalcones are
better BCRP inhibitors. The good activity of chalcone is mainly
related to properly placed electron donor atoms rather than
lipophilicity, especially the meta-disubstituted dimethoxy motif
on either ring A or B (Figure 7; Liu et al., 2008).

Alkaloids
Alkaloids are secondary metabolites found in plants, fungi, and
bacteria. The main structural feature of alkaloids is a heterocyclic

FIGURE 3 | Ribbon representation of the ABCC1 structure (A) ribbon representation of the ABCC1 structure, with the TMDo colored dark blue and Lo linker
colored purple (B) three-dimension of ABCC1 binding with LTC4, the proximity residues, and their interactions with LTC4 are annotated in the picture (C) the systematic
illustration of ABCC1 binding with LTC4.
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ring bearing one or more basic nitrogen. Such nitrogen atom is
necessary for P-gp inhibitory activity (Qiu et al., 2014). Quinine
(4), is reported to reverse doxorubin resistance in 8226/DOX6
myeloma cells and the quinine dimer can reverse the Rh123 efflux
in MCF-7/DX1 cells through P-gp inhibition. Further
modifications focus on the variations of the linker within the
dimer and the introduction of triazole ring systems (Pires et al.,
2009). Sanguinarine (5) is a benzylisoquinoline that can increase
the bax/bcl2 ratio, thereby activating caspases to reverse the P-gp-
induced drug resistance (Eid et al., 2012). Berberine (6) is a
calcium channel blocker, which can inhibit the Wnt signaling
pathway and P-gp so as to increase the intracellular accumulation
of drugs (Zhang et al., 2019). Berbamine (7) can downregulate the
mRNA of P-gp in imatinib-resistant BCR-ABL-positive human

leukemia K562 (K562-r) cells (Wei et al., 2009). Tetrandrine (8), a
bisbenzyl isoquinoline, can regulate NF-κB signaling pathway
and inhibit P-gp in MCF-7/ADR cell lines when synergistically
used with paclitaxel as self-assembled nanoparticles (Jiang et al.,
2017). Verapamil (9), a papaverine derivative, is a classic
chemosensitizer and the first found P-gp inhibitor. It can
competitively inhibit the transport function of P-gp without
interrupting ATP hydrolysis, and increase the intracellular
accumulation of many anticancer drugs to overcome the P-gp-
mediated MDR (Wang and Sun, 2020).

Indole alkaloids such as Reserpine (10), Indole-3-carbinol and
indole-3-carbaldehyde can inhibit P-gp mediated efflux of drugs
like doxorubicin, vincristine (Henrich et al., 2006; Wei et al.,
2012). 3,4,5-trimethoxybenzyl leuconicine A (11), a derivative of

FIGURE 4 | The chemical structures of representative P-gp inhibitors.
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leuconicine A, is a potent P-gp inhibitor as it decreases the dose of
vincristine in a resistant cancer cell lines (Munagala et al., 2014).

Lamellarin O (12), isolated from southern Australian marine
sponge, possesses inhibitory effects on both P-gp and ABCG2. It
increases the accumulation of P-gp transporting drugs like DOX
in SW620/DOX300 cells through the blockage of the binding site

(Huang et al., 2014). Cyanogramide bearing a novel spirocyclic
pyrrolo [1,2-c]imidazole skeleton, which is isolated from
Actinoalloteichus cyanogriseus WH1-2216-6 can reverse the
DOX-induced resistance in K562/A02 and MCF-7/DOX cells,
the vincristine (VCR)-induced resistance in KB/VCR cells (Fu
et al., 2014) with moderate activities in micro-molar range. A

FIGURE 5 | The chemical structures of representative ABCG2 inhibitors.

FIGURE 6 | The chemical structures of representative ABCC1 inhibitors.
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series of 5-halogenated-7-azaindolin-2-onederivatives containing
a 2,4-dimethylpyrrole moiety are evaluated for their anticancer
effects inMCF-7, HepG2, HT-29, A549, PANC-1, Hela. Themost
active one (13), IC50s: 4.49–15.39 μM) was proved to be even
more potent than Sunitinib (IC50s: 4.70–>30 μM) against all
tested cancer cell lines (Wang M et al., 2015). Another
polysubstituted pyrrole, 4-acetyl-3- (4-fluorophenyl)- 1-
(p-tolyl)-5-methylpyrrole, was found to reverse digoxin with a
IC50 value of 11.2 µM and enhance the pharmacokinetic
properties of P-gp substrates (Bharate et al., 2015). Piperine, a
piperidine alkaloid from Indian spice black pepper, can
downregulate the expression level of transporter ABCB1,
ABCC1, and ABCG2 genes (Manayi et al., 2018). Piperine
mainly inhibits P-gp activity by interacting with its nucleotide
binding domain, that is to say, it competes with ATP binding site
in P-gp (Singh et al., 2013). Take this into consideration, two
piperine analogs Pip1 (14) and Pip2 were synthesized and
exhibited better interaction with P-gp than piperine (Syed
et al., 2017). Tertiary alkaloids like stemocurtisine and
oxystemokerrine, isolated from Stemona aphylla and
Stemofoline burkillii, also can inhibit P-gp to some extent.
Stemofoline can inhibit P-gp of human cervical carcinima cell
line (KB-V1) in a dose and time-dependent manner
(Chanmahasathien et al., 2011).

Terponoids
Terponoids can be divided into several types according to the
number of isoprene units within their parent structure like
monoterponoids (bearing 10 C), diterponoids (bearing 20 C),
sesquiterponoids (bearing 15 C), tetraterpenes (bearing 40 C).
Studies have shown that lipophilic substituents at C6 position
and the carbonyl group at C2, C3, C8 positions are required to
make terponoids ideal P-gp inhibitors (Kumar and Jaitak, 2019).

Sooneuphanone D (15), isolated from Euphorbia soongarica, is
a potent P-gp inhibitor with a remarkable MDR reversal activity
much higher than verapamil. When sooneuphanone D is applied
together with navelbine, it can significantly reduce the IC50 values
of navelbine within KBV200 cell lines, indicating its reversal
effects in P-gp overexpressed cancer cell lines (Gao and Aisa,

2017). In another study, 28 cucurbitane-type triterponoids,
isolated from Momordica balsamina and their derivatives were
studied for their collateral sensitivity effect on three different
human cancer entities. Balsaminol F (16) exhibits collateral
sensitivity effect through high anti-proliferative activity in
gastrolic cancer cell lines (EPG85-457). Its derivatives such as
balsaminagenin C exhibit reversal of multidrug resistance in
human MDR1 gene-transfected mouse lymphoma cells
(Ramalhete et al., 2016; Ramalhete et al., 2018). A myrsinol
diterpene J196-10-1, isolated from LANGDU, exhibits reversal
effects through competitively inhibiting P-gp transporters and
increasing intracellular drug accumulation without altering
MDR1 gene expression (Wang et al., 2016). Sipholenol A (17),
isolated from Red Sea Sponge Callyspongia siphonella, mediates
drug efflux activities of P-gp without altering the expression level
of P-gp. Substitution of the methyl group at C15 and the
oxidation of the hyroxyl group to a ketone at C4 can both
cause reduced reversal activity (Jain et al., 2007; Shi et al., 2007).

ABCG2 INHIBITORS

Natural Product
Flavonoids
Naringenin (1) is a common dietary flavanone which can be
found in citrus fruits like oranges, bergamots and lemons
(Ferreira et al., 2018). Naringenin and its derivatives were
evaluated as multidrug resistance (MDR) reversers in cancer
cells. The carbonyl group of naringenin was modified into
hydrazones, azines, carbohydrazides which contain nitrogen
atom or extra aromatic moieties. Azines and carbohydrazide
derivatives exhibit potent efflux inhibition. Among them, the
azine derivatives exert high inhibitory activity due to the
introduction of C�N-N�C moiety and have dual inhibition on
both ABCG2 and ABCC1 (Ferreira et al., 2018). Chrysin (18)
shows inhibitory activities toward ABCG2 with an IC50 of 4.6 ±
0.5 μM, while tectochrysin and 6-prenylchrysin exhibit inhibitory
activities in R482 ABCG2-transfected HEK-293 cells with an IC50

of 3.0 ± 0.9 μM and 0.29 ± 0.06 μM, respectively. In general,

FIGURE 7 | The structure-activity relationship of chalcones as ABC transporter inhibitors.
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flavones inhibit ABCG2 more efficiently than flavonols,
isoflavones and flavanones (Ahmed-Belkacem et al., 2005). As
mentioned earlier, introducing different groups on the chalcone
template can produce corresponding inhibitory effects on P-gp
and BCRP. With respect to chalcone derivatives, the replacement
of B-ring with a quinoxaline moiety accompanied with different
patterns of hydroxy and methoxy substitutions at A-ring can
result in higher and obvious BCRP inhibitory effects in HEK293-
ABCG2 cells (Winter et al., 2014). The quinoxaline contributes
the electrostatic interactions between the two nitrogen atoms and
the ABCG2 protein (Kraege et al., 2016b). There are four key
structural features that improve the ABCG2 inhibition: the ortho-
position of the amide linker; the presence of a phenyl or 2-thienyl
substitution at the amide linker; 3,4-dimethoxy substitution on
ring B (Kraege et al., 2016a; Kraege et al., 2016c; Silbermann et al.,
2019; Yin et al., 2019).

Terponoids
Guajadial (19), isolated from the leaves of Psidium guajava, is a
natural meroterpenoid which has been found to have anti-tumor
activity, especially in breast cancer cell lines. Guajadial has
reversal effects in MCF-7/ADR and MCF-7/PTX cells by
inhibiting both expressions of P-gp and ABCG2. Meanwhile, it
suppresses the PI3K/Akt pathway, which is related to cell
proliferation, apoptosis, and migration (Li et al., 2019).

Tariquidar Analogs
Tariquidar (20) was an intrinsically the third-generation P-gp
inhibitor which can reverse the resistance of doxorubicin,
vinblastine in advanced breast cancer (Durante et al., 2017).
However, due to its high toxicity in a phase III clinical trial
for non-small cell lung cancer (NSCLC) (Nobili et al., 2006) and
susceptibility to hydrolysis, a large number of tariquidar analogs
have been synthesized to optimize its pharmacological properties.
In a recent study, researchers synthesized a series of tariquidar
derivatives and found that some of them are able to reverse both
ABCB1 and ABCG2-mediated drug efflux, respectively. The
mechanism may be related to the inhibition of ATP
hydrolysis, but needs to be further verified by ATPase assay
(Teodori et al., 2017). The unstable ester moiety was further
replaced by ketones, which increase the stability in mouse plasma.
UR-MB108 (21) and UR-MB136 (22) are the most effective
ABCG2 inhibitors so far with the IC50 value about 80 nM in
a Hoechst 33,342 transport assay. The molecular mechanism of
their inhibitory effects lies in the depressing of ATPase by locking
the inward-facing conformation (Antoni et al., 2020).

Ko143 Analogs
The fungal toxin fumitremorgin C (23, FTC) is a specific inhibitor
targeting ABCG2, however, the neurotoxicity prevents its further
use (Allen et al., 2002). Later, tetracyclic analogs of FTC were
developed, among which Ko143 (24) was found to be the most
potent one, but it is unstable in mouse plasma and has nonspecific
effects on ABCC1 and ABCB1. These have led to further
structural study of ABCG2 and the development of Ko143
analogs as specific ABCG2 inhibitors (Weidner et al., 2015).
Ko143 analogs are as potent as or even superior than Ko143.

The modifications at C-9 position with methoxy group forms a
hydrogen bond with T435 in cavity 1. The removal of methoxy
groups and addition of small hydrophilic groups reduce the
binding energy, while small hydrophobic groups do not make
any differences. The tert-butyloxycarbonyl group, which can
form van der Waals interactions with residues at C-3 position,
also leads to decreased inhibitory effects when exchanged with
ion-bearing moieties (Jackson et al., 2018).

ABCC1 INHIBITORS

Natural Products
Flavonoids
Flavonoids-type compounds can also exert ABCC1 inhibitory
activity in MDCKII-MRP1 cells. Chromones bearing
substituted amino groups with N-substituted carboxamide
moieties in C-2 are synthesized and tested for their
inhibitory activities, among which (2- [4-(Benzo [c][1,2,5]
oxadiazol-5-ylmethyl)piperazin-1-yl]-5,7-dimethoxy-4H-
chromen-4-one (25) is proved to be the most potent ABCC1
inhibitor and stable in mouse plasma (Obreque-Balboa et al.,
2016; B et al., 2020). In another study, flavonoid dimers are
found to be more potent toward ABCC1 than their counterpart
monomers (Dury et al., 2017). Three flavono stilbenes isolated
from Sophora alopecuroides L were found to have an inhibitory
effect toward ABCC1, which can increase the intracellular
concentrations of 6-carboxyfluorescein diacetate and
doxorubicin in MRP1-transfected U-2 OS cells (Ni et al.,
2014). Timosaponin A-III (26, TAIII), a saponin isolated
from the rhizome of Anemarrhena asphodeloides, were
found to reverse both P-gp and ABCC1-induced drug
resistance through regulation of PI3K/Akt signaling
pathway (Chen J-R et al., 2016; Gergely et al., 2018).
Chrysin (18), 3-methoxy-chrysin and 5,7-dihydroxy-4′-
fluoro-flavone are more effective and less toxic than
verapamil. Hydroxylation at different places of chrysin can
alter the activity, for example, hydroxylation at C-5 or C-7 can
increase GSH efflux, while hydroxylation at C-6 leads to the
opposite results. However, when hydroxylation occurs both at
C-5 and C-7, the activity does not increase (Lorendeau et al.,
2014). In general, structure-activity relationships
demonstrated that although the absence of a hydroxyl
group at C-3 of flavonoid C ring is absolutely required to
induce ABCC1-cell death, but it cannot to stimulate GSH
efflux (Lorendeau et al., 2014).

Alkaloids
The inhibitory effects of pyrrolo [3,2-d]pyrimidines toward
ABCC1 show that piperazine, which bears large phenylalkyl
side chains at C-4 position, can increase the inhibitory
activities, whereas when piperazine is replaced with an amino
group, the activity decreases. Moreover, the aliphatic and
aliphatic aromatic variations in C-5 and C-6, especially the
large aliphatic side chain at position 5, can inhibit ABCC1
effectively with IC50 value in the nanomolar range (Figure 8;
Schmitt et al., 2016). A novel triazolonaphthalimide derivative
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named LSS-11 (9-amino-6-(2-dimethylamino)propyl]-1-(3-
(dimethylamino)-propyl)benzo [de] [1,2,3]triazolo [5,4-g]
isoquinoline-5,7(1H, 6H)-dione (27) acts as a potent inhibitor
toward ABCC1 through DR5/PARP1 pathway and STAT3/
MDR1/MRP1 STAT3 inhibition (Ji et al., 2017). Recently, a
series of 9-deazapurines are synthesized (Figure 8), among

which the 4-(4-(2-(1H-Indol-3-yl)ethyl)piperazin-1-yl)-5-(3-
phenylpropyl)-5H-pyrrolo [3,2-d]pyrimidine-7-carbonitrile
(28), has been identified to be a broad-spectrum inhibitors
which regulate P-gp-mediated efflux of Calcein AM, ABCC1-
mediated efflux of daunorubicin, and ABCG2-mediated efflux of
pheophorbide A (Stefan et al., 2017).

FIGURE 8 | The structure-activity relationship of pyrrolo [3,2-d]pyrimidines.

FIGURE 9 | The chemical structures of representative tyrosine kinase inhibitors.
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Other Inhibitors
3β-Acetyl tormentic acid (29) can reverse the resistance of
doxorubicin and vincristine by mediating intracellular levels of
GSH and inhibition of glutathione-s-transferase (GST) activity,
instead of modulating the expression of ABCC1(Rocha Gda et al.,
2014).

TYROSINE KINASE INHIBITORS

TKIs bind to the catalytic domain of tyrosine kinases and inhibit
cross-phosphoralation and thereby interfere downstream
signaling pathways, subsequently impairing cell proliferation
and survival. The mechanism underlying the inhibitory effects
of TKIs on ABC transporters may be similar to that of tyrosine
kinase, that is, they compete with ATP and bind to the ATP-
binding sites (Wang et al., 2015). Whether TKIs are substrates or
inhibitors of ABC transporters depends on their concentrations
and the cancer cells they target (Figure 9).

Imatinib and Nilotinib
Imatinib (30) is a kinase inhibitor which targets BCR-ABL (BCR,
break point cluster region; ABL, Abelson virus tyrosine kinase).
Studies revealed that imatinib could reverse the drug resistance to
doxorubicin by downregulating expression level of ABCB1 and
subsequently resulting in accumulation of doxorubicin (Sims
et al., 2013). Imatinib also exhibits inhibitory effects toward
ABCG2 even at low concentration and the expression level of
ABCG2 did not affect the efflux and accumulation of imatinib,
which indicates that imatinib may have a higher affinity for
ABCG2 than ABCB1(Ozvegy-Laczka et al., 2004). Nilotinib
(31), an aminopyrimidine ATP-competitive second-generation
TKI, was designed to overcome resistance to imatinib in many
BCR-ABL mutants (Sacha and Saglio, 2019). It exhibits reversal
effects in the doxorubicin-resistant MG63/DOX cell line (Zhou
et al., 2016). Moreover, it specifically reverses mitoxantrone efflux
caused by ABCG2 and increases the intracellular accumulation of
mitoxantrone in over-expressing ABCG2 cells (Jordanides et al.,
2006).

Gefitinib, Erlotinib and Lapatinib
Gefinitib (32), one of the most famous EGFR inhibitors, has been
used to treat NSCLC. However, enhanced ABCG2 expression has
been detected within gefinitib-resistant cancer cells (Chen et al.,
2011; Hegedüs et al., 2012). Inhibition of EGFR by erlotinib (33)
can also induce the alteration in ABCG2 gene and protein
expression level, supporting the fact that EGFR/AKT pathway
is involved in the regulation of ABCG2 expression (Porcelli et al.,
2014). What is more, a synergistic effect of lapatinib (34) and
doxorubicin was also found in tumorspheres which generates
from human breast cancer cells and exhibits drug resistance due
to the overexpression of ABCB1 and increased EGFR/HER2
signaling (Lainey et al., 2012; Lainey et al., 2013).

Sunitinib
Recently, a study has shown that in doxorubicin-resistant
endothelial cell lines, the over-expression of ABCG2 and

ABCB1 has a cross-resistant effect on sunitinib (35). The
blockage of ABCG2 can result in a restored sunitinib cytotoxic
effect (Huang et al., 2015). In another study, RCC cells with
ABCG2 overexpression due to the treatment of sunitinib, were
treated with elacridar, a dual inhibitor of ABCG2 and ABCB1,
resulting in the restored cytotoxicity of sunitinib (Sato et al.,
2015). This indicates that sunitinib is mainly transported by
ABCG2 and efficient inhibition of ABCG2 is needed in
sunitinib-resistant cancer cells.

Other TKIs
There are dozens of newly found TKIs which efficiently targeted
ABC transporters. For example, osimeritinib (36), a third-
generation EGFR inhibitor, have been found to reverse the
drug resistance within ABCB1-overexpressed bone marrow
cells collected from AML patients. Evidences show that
osimeritinib can increase the accumulation of Rhodamine 123
(Chen Z et al., 2016). Ibrutinib (37), an inhibitor of Bruton’s
tyrosine kinase, can increase the accumulation of ABCC1
substrates within ABCC1-overexpressed HEK293/MRP1 and
HL60/Adr cells (Zhang et al., 2014). Dinaciclib (38), a cyclin-
dependent tyrosine kinase inhibitor, can decrease the
daunorubicin efflux of MDCKII-ABCC1 and human cancer
T47D cells, thus exhibit a synergistic effect when co-
administrated with other anti-cancer drugs (Cihalova et al.,
2015). GSK1904529A (39), an IGF-IR inhibitor, can also
increase the intracellular concentration thus enhancing the
cytotoxicity of ABCC1 substrate vinblastine in HEK293/MRP1
cells by inhibiting its efflux (Gupta et al., 2017). In general, TKIs
have been deeply implicated in counteracting ABC-induced
multidrug resistance through ways like inhibiting efflux
activity, co-administration with drugs, which provides new
opportunities for clinical treatment of multidrug resistance.

CONCLUSION AND PERSPECTIVE

In recent years, many efforts have been made to modulate these
ABC transporters, thus increase the intracellular concentration of
drugs and reverse multidrug resistance (Kathawala et al., 2015).
Several chemo-sensitizers were tested in clinical trials, like
cyclosporine A, tariquidar, however, they did not show
satisfying therapeutic effects due to their high toxicity, drug-
drug interactions and clinical trial design problems (Robey et al.,
2018). However, there are also novel strategies that can reverse
multidrug resistance such as using DNA methyltransferase
inhibitors (DNMTi), hypomethylating agents (HMAs) and
histone deacetylase inhibitors (HDACi) (Ball et al., 2017). A
DNA methyltransferase (DNMT), 5-AC (5-azacytidine) can
reverse irinotecan resistance in metastatic CRC patients when
combined with irinotecan (Sharma et al., 2017). In a phase II
clinical trial, 17 pretreated and platinum-resistant patients with
ovarian cancer were re-sensitized to carboplatin after being
treated with HDACi (Matei et al., 2012). Expression of ABC
transporters can also be regulated by miRNAs. For example,
ABCB1/MDR1 encoding for P-gp can be downregulated by miR-
30a in advanced gastric cancer and miR-9-3p in CML to reverse
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drug resistance (Li et al., 2016; Li et al., 2017). miR-145 can
decrease the level of ABCC1/MRP1 and increase cisplatin toxicity
in gallbladder cancer (Zhan et al., 2016). miR-490-3p regulates
ABCC2/MRP2 in ovarian cancer and possibly increases response
to cisplatin (Tian et al., 2017). This provides us with an insight for
finding other ways to reduce the mortality caused by multidrug
resistance. More importantly, efflux of drugs has recently been
found not to be the only role for ABC transporters in the failure of
cancer therapy. They may also release signaling molecules,
hormones, and metabolites andregulate cellular redox status,
membrane lipid composition and tumor microenvironment.
Additionally, MAPK, WNT, VEGF, and p53 and other
signaling pathways involved in cell differentiation and
proliferation should also be concerned, because they also
regulate the expression and membrane localization of ABC
transporters. Conclusively, the clinical failure of the ABC
inhibitors makes it urgent to discover a more effective strategy.

Regarding further research on multidrug resistance, three main
aspects could be focused on in future: 1) Develop a more precise drug
delivery system, especially target cancer stem cells and other poorly
differentiated cells. From the previous studies on cancer and
multidrug resistance, we know that ABC transporters mainly over-
express in poorly differentiated cells and lead to multidrug resistance.

However, when drugs are delivered, they also nonspecifically target
the ABC transporters of normal cells, causing many side effects.
Therefore, precise delivery systems are necessary to ensure alleviation
of side effects. 2) Find more about the signaling pathways related to
ABC transporters. Researchers have found that signaling pathways
like MAPK, WNT, VEGF, and p53 are deeply involved in regulating
the expression, location of ABC transporters. Proper inhibition or
activation of these signaling pathways can also reduce multidrug
resistance. 3) Further investigate the molecular mechanism of ABC
transporters in complex with different substrates in details by using
structural biology, which provides insights in drug design and
development.
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