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Abstract

Objective: We investigated the potential relationship between T-cell phenotype, inflammation, endotoxemia, and
atherosclerosis evaluated by carotid intima-media thickness (IMT) in a cohort of HIV-positive patients undergoing long-term
virologically suppressive combination antiretroviral therapy (cART).

Design: We studied 163 patients receiving virologically suppressive cART.

Methods: We measured IMT (carotid ultrasound); CD4+/CD8+ T-cell activation (CD38, CD45R0), differentiation (CD127),
apoptosis (CD95), and senescence (CD28, CD57) (flow cytometry); plasma sCD14, IL-6, TNF- a, sVCAM-1, hs-CRP, anti-CMV
IgG (ELISA); LPS (LAL). The results were compared by Mann-Whitney, Kruskal-Wallis or Chi-square tests, and factors
associated with IMT were evaluated by multivariable logistic regression.

Results: Of 163 patients, 112 demonstrated normal IMT (nIMT), whereas 51 (31.3%) had pathological IMT (pIMT:$1 mm). Of
the patients with pIMT, 22 demonstrated an increased IMT (iIMT), and 29 were shown to have plaques. These patient groups
had comparable nadir and current CD4+, VLs and total length of time on cART. Despite similar proportions of CD38-
expressing CD8+ cells (p = .95), pIMT patients exhibited higher activated memory CD8+CD38+CD45R0+ cells (p = .038) and
apoptotic CD4+CD95+ (p = .01) and CD8+CD95+ cells (p = .003). In comparison to nIMT patients, iIMT patients tended to
have lower numbers of early differentiated CD28+CD572 memory CD4+ (p = .048) and CD28–CD572CD8+ cells (p = .006),
both of which are associated with a higher proliferative potential. Despite no differences in plasma LPS levels, pIMT patients
showed significantly higher circulating levels of sCD14 than did nIMT patients (p = .046). No differences in anti-CMV IgG was
shown. Although circulating levels of sCD14 seemed to be associated with a risk of ATS in an unadjusted analysis, this effect
was lost after adjusting for classical cardiovascular predictors.

Conclusions: Despite the provision of full viral suppression by cART, a hyperactivated, pro-apoptotic T-cell profile
characterizes HIV-infected patients with early vascular damage, for whom the potential contribution of subclinical
endotoxemia and anti-CMV immunity should be investigated further.
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Introduction

HIV-infected patients are at an increased risk for cardiovascular

events in comparison to age-matched HIV-negative controls [1,2].

The reason for this increased risk is multifactorial and involves

traditional risk factors, exposure to specific antiretroviral drugs and

HIV infection itself [1] [2,3]. The interaction between HIV

infection and cardiovascular disease has been a major concern of

the HIV field since the early cART era, when large cohort studies

demonstrated a relationship between antiretroviral exposure and

myocardial infarction [4–11]. Recent studies have introduced the

hypothesis that chronic inflammation and immune activation can

contribute to the initiation and progression of atherosclerosis

(ATS) in the setting of HIV infection [12–15]. Recently, some

authors have also suggested an association between T-cell

activation/senescence and markers of subclinical carotid artery

disease, even among patients on stable cART [16].

The role of inflammation and endothelial activation/dysfunc-

tion in the development of ATS has been studied extensively in the

general population, and several markers, such as sVCAM-1,
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sICAM-1 and von Willebrand factor antigen, have been shown to

reliably indicate the increased activation of endothelial cells in

ATS [17,18]. Tumor necrosis factor (TNF)-a has been implicated

in myocardial dysfunction resulting from acute coronary syndrome

[19], and high levels of C-reactive protein (CRP) and interleukin

(IL)-6 have been associated with subclinical ATS [19–21].

In recent years, microbial translocation (MT) has been proposed

as a main mechanism behind immune hyperactivation during

HIV infection [22–25], and recent studies have suggested the

potential involvement of MT in the pathogenesis of ATS [26,27].

The Bruneck study in 1999 provided the first epidemiological

evidence in support of a clinical association between levels of

lipopolysaccharide (LPS), MT markers, and cardiovascular risk

[28]. Very recently, data from the SMART study suggested that

high levels of circulating sCD14, a soluble form of the LPS

receptor expressed by monocytes, were associated with an

increased risk of all-cause mortality, suggesting a link between

gut damage, inflammation, immune activation and CD4+ T-cell

loss [14].

Long-term successfully treated HIV infected patients have been

shown to present remarkably high levels of CMV-specific effector

cells, similar to that observed in the elderly [29], allowing to

speculate a role of the CMV-specific inflammatory response in

immunosenescence and non-AIDS morbidity and mortality.

Indeed, Hsue et al. demonstrated an independent association

between CMV-specific T-cell responses and increased carotid

intima-media thickness (IMT) in HIV-infected subjects [30], in

keeping with the role of CMV in posttransplant ATS [31]. Most

recently, heightened CMV antibody titers were associated with

several markers of subclinical ATS in HIV-infected patients on

virologically-suppressive cART [32].

As few studies have comprehensively investigated the possible

relationship(s) between inflammatory/endothelial activation mar-

kers, MT, T-cell immune phenotype, anti-CMV IgG and ATS in

HIV-infected individuals upon full HIV-viremia suppression, we

conducted this research to assess whether inflammation, endotox-

emia and an activated/senescent immune T-cell phenotype would

be associated with increased vascular disease, as evaluated by

IMT, in HIV-infected patients.

Materials and Methods

Study Population
HIV-positive patients were consecutively enrolled at the Clinic

of Infectious Diseases at San Paolo Hospital, Milan (Italy), after

providing written, informed consent. The study was approved by

the Ethical Committee at San Paolo Hospital, Milan (Italy). To be

included in the study, patients must have received stable HAART,

which was defined as continuous treatment with $3 antiretroviral

drugs (including either a protease inhibitor or a non-nucleoside

reverse transcriptase inhibitor) for at least 6 months, and

demonstrated undetectable HIV viremia (,40 cp/mL) at two

consecutive assessments. Patients were evaluated for traditional

cardiovascular risk factors, and the 10-year risk of acute coronary

events was evaluated using the Framingham risk score (FRS)

according to the NCEP-ATP-III equation, whereby risk was

classified as low (,10%), medium (10–20%) or high (.20%). The

homeostasis model assessment of insulin resistance (HOMA-IR)

was calculated using the following formula: HOMA-IR = (fasting

glucose (mg/dL) 6 fasting insulin (mU/mL)/405.

Carotid Artery Ultrasound
IMT measurements were obtained for each patient using a B-

mode ultrasound recording with a 7- to 14-MZ array probe

(ESAOTE-technology). Patients were placed in the supine position

in a dark, quiet room, and the right and left carotid arteries were

imaged with the head in the midline position and tilted slightly

upwards. The common carotid, the bifurcation and at least the

first 2 cm of the internal carotid were examined on the long and

short axes. In addition, 3 measurements were made at the far and

near walls of each internal carotid and specifically at the carotid

bifurcation, the bulb and 1 cm after the bifurcation. The mean

value (in mm) of the 3 measurements taken at each site of the

internal carotid (left and right) was calculated for each patient and

used as the final measurement of internal carotid IMT.

According to published population studies showing that IMT

was above 1 mm are significantly associated to a significantly

increased hazard of cardiovascular events [33,34], we defined

normal IMT (nIMT) as IMT #1 mm and pathological IMT

(pIMT) as IMT .1 mm. We further distinguished pIMT as

increased IMT (iIMT; for IMT values .1 mm but ,1.5 mm) or

the presence of a carotid plaque (for IMT values $1.5 mm at each

site or 50% increased if the near-wall thickness was .1.5 mm). All

the measurements of carotid IMT were performed by a single

operator to avoid inter-operator differences.

Evaluation of the T-cell Phenotype
Lymphocyte surface phenotypes were evaluated by flow

cytometry using fresh peripheral blood (Coulter ESP; Beckman

Coulter, Hialeah, FL) samples stained with the following

fluorochrome-labeled antibodies: CD4-Pcy7, CD8-Pcy5, CD38-

FITC, CD45-ECD, CD45R0-PE, CD95-FITC and CD127-PE.

We evaluated activation (via the expression of CD45R0 and CD38

on CD8+ cells), apoptosis (via the expression of CD95 on CD4+
and CD8+ cells) and IL-7 receptor (CD127) expression on CD8+
and CD4+ T-cells. The following combinations of markers were

used: CD8/CD38, CD8/CD38/CD45R0, CD8/CD4/CD95

and CD8/CD4/CD127.

Due to laboratory workflow, T-cell immunosenescence was

measured by flow cytometry on cryopreserved PBMCs that had

been collected and frozen the same day of fresh cells processing.

The following combination of antibodies were used: CD28-PE,

CD57-FITC, CD8-PE-Cy5, and CD4-PE-Cy7 (Instrumentation

Laboratory, Watertown, Boston, MA, USA). To check cell

viability, cells were stained with 7-aminoactynomycin D (7-AAD)

for 30 min in dark at 4uC. Only only samples with viability greater

than 70% were used for the flow cytometry evaluations.

Plasma Assays
Plasma levels of sCD14, IL-6, TNF-a and sVCAM-1 were

measured by ELISA (R&D) according to the manufacturer’s

protocol. We generated a double standard curve for each ELISA

plate. We considered reliable only those plates in which the

standard curve was comparable to those reported in the

manufacturers’ instructions.

The quantification of IgG antibodies against hCMV was

performed by a chemioluminescent assay LIAISON CMV IgG

II (DiaSorin, Saluggia, Vercelli, Italy) on plasma samples

according to manufacturer’s instructions.

LPS Quantification
Plasma levels of LPS were determined using a commercial LAL

kit (Kinetic-QCL; BioWhittaker, Walkersville, MD, USA).

Statistical Analysis
Continuous variables are expressed as the median and the

interquartile range (IQR), and categorical variables are expressed

IMT and T-Cell Phenotypes in Treated-HIV+ Subjects

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e46073



as absolute numbers and percentages. Pro-inflammatory cytokines,

MT markers and peripheral T-lymphocyte immune phenotypes in

patients with nIMT or pIMT were analyzed using the Mann-

Whitney U test. Differences between patients with nIMT, iIMT

and plaques were assessed using the Kruskal-Wallis and Chi-

square tests for continuous and categorical variables, respectively.

Peripheral immune parameters that yielded a p value ,.05 with

the Kruskal-Wallis test were further analyzed using the Mann-

Whitney U test to compare the nIMT vs. iIMT patients, nIMT vs.

plaque patients and iIMT vs. plaque patients.

To explore the factors independently associated with pIMT,

considered as a categorical variable, we used two multivariate

logistic regression models. In the first model, we assessed the

association between sCD14 levels and IMT, adjusting for FRS and

HOMA-IR. In the second one, we included the following

variables: FRS, PI exposure, HOMA-IR, CD4+ cell count,

sCD14 levels, and the frequencies of CD8+CD38+,

CD8+CD45R0+, CD4+CD95+ and CD8+CD127+ cells. We

then performed two linear regression models, considering the

outcome as a continuous parameter, i.e. mean IMT, including the

same variables used for logistic regression analysis.

All analyses were performed using SPSS (version 18.01), and p

values #.05 were considered statistically significant.

Results

Patient Characteristics
Of the 163 patients enrolled in the study, 112 were found to

have nIMT, 22 demonstrated iIMT, and 29 were found to have

carotid plaques. The definition of pIMT was used when patients

with iIMT and/or plaques were grouped together. The de-

mographic, clinical, and HIV-related characteristics as well as

fasting metabolic parameters according to IMT group are shown

in Table 1.

The patient groups were similar with respect to race, sex and

body mass index (BMI), although patients with nIMT had

a significantly lower median age (p = .0001). Traditional cardio-

vascular risk factors, such as current smoking status and a history

of coronary disease, were similar between the three patients

groups, although hypertension and FRS were significantly lower

among nIMT patients (p = .001 and p = .0001, respectively).

There were also no differences between groups in terms of

cholesterol (HDL and LDL), triglyceride and plasma glucose

levels, although the HOMA-IR values were significantly higher

among iIMT patients (p = .001).

All participants had undetectable plasma HIV RNA levels. The

median (IQR) CD4+ T-cell count was 497/mmc (IQR: 358–718),

and there were no significant differences between groups.

28% of our patients’ cohort was HCV Ab positive. However, no

significant differences in HCV RNA levels and presence of liver

chirrosis were shown between groups.

Immunophenotypic Markers of T-cell Activation,
Apoptosis and Differentiation According to Carotid
Intima-media Thickness

In comparison to HIV-positive patients with nIMT, patients

with pIMT exhibited a similar number of CD38-expressing CD8+
T-cells (nIMT 25/mmc [IQR: 15–43] vs. pIMT 25/mmc [IQR:

18–41], p = .95; Fig. 1A), and there was a similar trend even when

the pIMT patients were divided into those with iIMT or plaques

(iIMT 25/mmc [IQR: 18–60] vs. plaque 24/mmc [IQR: 16–38],

p = .80 for the comparison between nIMT, iIMT and plaque).

Interestingly, pIMT patients had a significantly higher number

of activated memory CD8+CD38+CD45R0+ T-cells than nIMT

patients (221/mmc [IQR: 152–330] vs. 176/mmc [IQR: 100–

272], p = .038; Fig. 1B). A similar trend was also observed when

nIMT patients were compared to patients with iIMT or plaques

(p = .08 for the comparison between nIMT, iIMT and plaque

patients), and significant differences were only found between

patients with nIMT and plaques (plaque 225/mmc [IQR: 153–

317]; p = .029 for nIMT vs. plaque; p = .23 for nIMT vs. iIMT).

Patients with plaques or iIMT exhibited comparable number of

CD8+CD38+CD45R0+ cells (iIMT 199/mmc [IQR: 113–160],

p = .56).

Regarding CD95 expression, pIMT patients exhibited signifi-

cantly higher number of CD4+CD95+ (54/mmc [IQR: 32–143]

vs. 36/mmc [IQR: 20–72], p = .01; Fig. 1C) and CD8+CD95+ T-

cells (45/mmc [IQR: 31–76] vs. 30/mmc [IQR: 17–53], p = .003;

Fig. 1D) in comparison to nIMT patients. In particular, the

number of CD4+CD95+ T-cells was significantly higher among

both patients with iIMT and plaques than those with nIMT (iIMT

63/mmc [IQR: 30–151], p = .028; plaque 48/mmc [IQR: 31–

126], p = .07), and there were no differences between the iIMT

and plaque patients (p = .70). Conversely, only plaque patients

exhibited significantly increased frequencies of CD8+CD95+ T-

cells than nIMT patients (iIMT 37/mmc [IQR: 26–67]; plaque

48/mmc [IQR: 36–79]; p = .21 and p = .002, respectively; p = .14

for iIMT vs. plaque).

The number of CD127-expressing CD4+ T-cells was similar

between the nIMT and pIMT groups (nIMT 259/mmc [IQR:

171–450] vs. pIMT 252/mmc [IQR: 130–486], p = .77; Fig. 1E),

and this similarity persisted even when compared across the three

study groups (iIMT 251/mmc [IQR: 124–356]; plaque 272/mmc

[IQR: 141–518]; p = .83 for the comparison between nIMT, iIMT

and plaque). A non-significant trend towards higher levels of

CD127-expressing CD8+ T-cells was detected for the nIMT and

pIMT groups (nIMT 265/mmc [IQR: 171–417] vs. pIMT 320/

mmc [IQR: 188–504], p = .08; Fig. 1F), although no differences

were found after dividing the pIMT patients into the iIMT and

plaque groups (iIMT 292/mmc [IQR: 177–432]; plaque 379/

mmc [IQR: 197–570]; p = .15 for the comparison between nIMT,

iIMT and plaque).

Data on T-cell immunephenotypes frequencies are presented in

Supplementary Table 1.

Immunophenotypic Markers of T-cell Senescence
According to Carotid Intima-media Thickness

Immunophenotypic markers of T-cell senescence were mea-

sured in a randomly selected subgroup of 151 patients. A non-

significant tendency towards lower levels of early differentiated

memory CD4+CD28+CD572 T-cells among pIMT patients as

compared to nIMT patients was shown (1124/mmc [IQR: 629–

1906] vs. 1431/mmc [IQR: 856–2429], p = .09; Fig. 2A).

Similarly, lower CD4+CD28+CD572 T-cells persisted when the

pIMT patients were divided into the iIMT and plaque groups

(iIMT 1146/mmc [IQR: 577–1608]; plaque 1105/mmc [IQR:

662–2275]), and this difference reached statistical significance only

for iIMT patients (p = .048 and p = .13 for iIMT and plaque vs.

nIMT, respectively; p = .35 for iIMT vs. plaque). No differences

were observed in CD8+CD28+CD572 between the nIMT and

pIMT groups (930/mmc [IQR: 545–1571] vs. 954/mmc [IQR:

354–1463], p = .45; Fig. 2B; iIMT 1017/mmc [IQR: 283–1314];

plaque 848 [IQR: 419–1510]; p = .74 for the comparison between

nIMT, iIMT and plaque).

The number of late-differentiated memory CD4+CD28–

CD57+ T-cells was comparable between the nIMT and pIMT

groups (nIMT 32/mmc [IQR: 8–113] vs. pIMT 32/mmc [IQR:

6–89], p = .92; Fig. 2C; iIMT 41/mmc [IQR: 6–147] vs. plaque
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30/mmc [IQR: 7–70], p = .71 for the comparison between nIMT,

iIMT and plaque). Accordingly, the pIMT group exhibited similar

CD8+CD28–CD57+ T-cell number (nIMT 975/mmc [IQR:

511–1479] vs. pIMT 1040/mmc [IQR: 601–1495], p = .68;

Fig. 2D; iIMT 1000/mmc [IQR: 512–1475] vs. plaque 1042/

mmc [IQR: 676–1519], p = .88 for the comparison between

nIMT, iIMT and plaque;).

We observed no differences in CD4+CD28+CD57+ T-cells

between nIMT and pIMT patients (30/mmc [IQR: 14–62] vs.

36/mmc [IQR: 15–101], p = .44; Fig. 2E; iIMT 31/mmc [IQR:

Table 1. Patients’ characteristics.

Patients nIMT iIMT Plaque p

n = 163 n = 112 n = 22 n = 29

Age (years)* 48 (43–54) 46 (42–65) 55 (46–68) 50 (47–61) 0.0001

Sex (male) u 134 (82) 90 (80) 20 (91) 23 (79) 0.476

Caucasian u 154 (94) 104 (93) 22 (100) 27 (93) 0.668

Current IDUs u 47 (29) 33 (29) 5 (23) 9 (21) 0.776

HCV Ab u 46 (28) 28 (25) 6 (27) 12 (41) 0.216

HCV-RNA (IU/mL)* 754400 (17–2893000) 461827 (3823–21890000) 619701 (17–5305000) 1842000 (14–3258000) 0.707

Cirrhosis (yes)u 10 (6) 5 (4) 1 (4) 4 (13) 0.522

HIV-related parameters

Years since HIV diagnosis* 12 (5–19) 11.5 (5–19.7) 14 (8.7–19.2) 11 (5–19) 0.79

HAARTu 0.523

NNRTI 56 (34) 42 (37) 6 (27) 8 (27)

PI 91 (56) 61 (55) 12 (55) 18 (62)

Other 16 (10) 9 (8) 4 (18) 3 (11)

Total years of HAART* 5 (2–11) 4 (2–10) 7 (3–9) 5 (2–13) 0.725

NNRTI duration, (months)* 56.2 (16.6–96.5) 44 (17–114) 71 (39–119) 59 (22–158) 0.392

NRTI duration, (months)* 53.3 (18.9–128.7) 50 (15–95) 59 (10–85) 59 (27–109) 0.525

PI duration, (months)* 22.7 (12.9–111.6) 20 (11–108) 50 (19–56) 29 (14–132) 0.648

Nadir CD4+ T-cells 210 (99–326) 216 (119–336) 163 (50–308) 198 (28–387) 0.245

(cells/uL)*

Current CD4+ T-(cells/uL)* 496 (358–718) 500 (362–708) 465 (328–577) 512 (341–765) 0.736

Delta CD4+ T-cells 276 (139–448) 276 (128.5–435) 258 (168–521) 266 (167.2–395) 0.87

(cell/uL)*

Current HIV RNA 1.59 1.59 1.59 1.59 0.18

(Log 10 cp/mL)*

Cardiovascular risk factors

Current smokingu 78 (48) 54 (48) 11 (50) 13 (45) 0.919

Hypertension u 26 (16) 10 (9) 8 (36) 8 (27) 0.001

History of Coronary Disease u 8 (5) 4 (4) 2 (9) 2 (7) 0.473

BMI* 24.6 (22.9–26.7) 25 (23–26) 25 (22–27) 25 (23–27) 0.828

Framingham Score* 6 (2.2–11) 4 (2–9) 11 (6–16) 8 (4.5–16) 0.0001

Laboratory Values

Total Cholesterol, (mg/dL)* 190.5 (159–220) 192 (159–221) 168 (142–208) 192 (173–208) 0.44

LDL Cholesterol, (mg/dL)* 111 (83–136.2) 114 (86–138) 89 (71–137) 112 (92–131) 0.564

HDL Cholesterol, (mg/dL)* 43 (35–54) 44 (35–54) 37 (31–48) 42 (36–52) 0.274

Triglycerides, (mg/dL)* 140 (160.2–194) 137 (104–194) 143 (110–211) 158 (112–178) 0.827

Fasting glucose, (mg/dL)* 96 (88–104) 95 (87–102) 99 (89–113) 96 (88–109) 0.185

HOMA-IR* 2.6 (1.6–4.6) 2.2 (1.4–3.9) 5 (1.5–12.3) 3.5 (2.9–7.9) 0.001

Lipid-lowering therapyu 40 (24) 23 (21) 7 (32) 10 (34) 0.219

NOTE: nIMT, normal intima-media thickness (IMT) #1 mm; iIMT, increased IMT (.1 mm and ,1.5 mm); Plaque, IMT $1.5 mm at each site or a 50% increase for near-
wall thickness .1.5 mm; IDUs, intravenous drug users; HAART, highly active antiretroviral therapy; NNRTI, non-nucleoside reverse transcriptase inhibitors; NRTI,
nucleoside reverse transcriptase inhibitors; PI, protease inhibitor; Delta CD4, current CD4+ T-cell count – nadir CD4 T-cell count; LDL, low-density lipoprotein; HDL, high-
density lipoprotein; BMI, body mass index; HOMA, homeostatic model assessment index.
*Data are presented as medians (interquartile range). Kruskal-Wallis test.
uData are presented as absolute numbers (percentages). Pearson’s Chi-square test.
doi:10.1371/journal.pone.0046073.t001

IMT and T-Cell Phenotypes in Treated-HIV+ Subjects

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e46073



Figure 1. Different peripheral T-cell immune phenotypes according to the degree of carotid intima-media thickness. A–B. Activated
CD8+ T-cells were defined by the expression of CD38, whereas memory activated CD8+ T-cells were defined by the co-expression of CD45R0 and
CD38. A. nIMT and pIMT HIV+ patients exhibited similar number of CD8+CD38+ T-cells. B. pIMT patients had significantly higher memory activated
CD8+CD38+CD45R0+ T-cells in comparison to nIMT patients (p = .038). C–D. Apoptotic T-cells were defined by the expression of CD95 on CD4+ and
CD8+ cells. As compared to nIMT, pIMT patients exhibited a significantly higher number of CD4+CD95+ cells (p = .01) (C), and CD8+CD95+ T-cells
(p = .003) (D). E. CD127 expression on CD4+ T-cells was similar between the nIMT and pIMT groups. F. A non-significant trend towards greater
number of CD8+CD127+ cells was observed among pIMT patients as compared to nIMT patients (p = .08).
doi:10.1371/journal.pone.0046073.g001
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12–111] vs. plaque 37/mmc [IQR: 15–89], p = .74 for the

comparison between nIMT, iIMT and plaque). Accordingly, the

number of CD28/CD57-co-expressing CD8+ T-cells was similar

among both nIMT and pIMT patients (54/mmc [IQR: 31–115]

vs. 77/mmc [IQR: 31–166], p = .28; Fig. 2F; iIMT 82/mmc

[IQR: 36–235] vs. plaque 69/mmc [IQR: 23–145], p = .34 for the

comparison between nIMT, iIMT and plaque).

No major differences were shown in CD4+CD28–CD572 T-

cells between nIMT and pIMT patients (102/mmc [IQR: 48–209]

vs. 112/mmc [IQR: 45–233], p = .94; Fig. 2G; iIMT 112/mmc

[IQR: 45–176] vs. plaque 116/mmc [IQR: 43–302], p = .86 for

the comparison between nIMT, iIMT and plaque).

Interestingly, we found differences within the CD8+CD28–

CD572 T-cell subset. In particular, as compared to nIMT

patients, pIMT patients had a non-significant tendency towards

reduced CD8+CD28–CD572 cell numbers (nIMT 848/mmc

[IQR: 521–1367] vs. pIMT 660/mmc [IQR: 442–1132], p = .06;

Fig. 2H). Moreover, this difference retained statistical significance

after the pIMT group was divided into iIMT and plaque patients

(iIMT 524/mmc [IQR: 404–708]; plaque 771/mmc [IQR: 504–

1278]; p = .02 for the comparison between nIMT, iIMT and

plaque; nIMT vs. iIMT, p = .006). Interestingly, patients with

plaques demonstrated slightly increased IMT values as compared

to iIMT patients (p = .03).

Data on T-cell immunephenotypes frequencies are presented in

Supplementary Table 1.

Soluble Markers of Inflammation and Endothelial Cell
Activation According to Carotid Intima-media Thickness

A non-significant tendency towards higher IL-6 plasma levels

was found among pIMT patients as compared to nIMT patients

(1.67 pg/mL [IQR: 0.82–3.96] vs. 1.23 pg/mL [IQR: 0.56–2.37],

p = .08; Fig. 3A), but this increase was lost when the pIMT group

was divided into iIMT and plaque patients (iIMT 1.48 pg/mL

[IQR: 0.59–3.69]; plaque 1.78 pg/mL [IQR: 0.87–4.58]; p = .18

for the comparison between nIMT, iIMT and plaque).

No differences in the plasma levels of TNF-a were observed

when we compared either nIMT patients to pIMT patients

(1.58 pg/mL [IQR: 0.67–2.39] vs. 1.51 pg/mL [IQR: 0.65–2.07],

p = .96; Fig. 3B) or nIMT patients to iIMT and plaque patients

(iIMT 1.20 pg/mL [IQR: 0.45–1.89]; plaque 1.67 pg/mL [IQR:

0.87–2.84]; p = .49 for the comparison between nIMT, iIMT and

plaque).

Circulating s-VCAM-1 levels in pIMT patients were similar to

those in nIMT patients (nIMT 1522 ng/mL [IQR: 687–2286] vs.

pIMT 1476 ng/mL [IQR: 857–2707], p = .39; Fig. 3C). More-

over, no differences were observed when the HIV+ patients were

separated into the three analysis groups (iIMT 1540 ng/mL [IQR:

764–2438]; plaque 1432 ng/mL [IQR: 995–2810]; p = .49 for the

comparison between nIMT, iIMT and plaque).

Hs-C-reactive protein (hs-CRP) levels were similar between

normal IMT patients and patients with pathological IMTs (nIMT

1.4 mg/L [IQR: 0.5–3] vs. pIMT 1.1 mg/L [IQR: 0.5–3.25],

p = .41; Fig. 3D). Moreover, the circulating levels of hs-CRP were

comparable even following the division of patients into the nIMT,

iIMT and plaque groups (iIMT 0.7 mg/L [IQR: 0.5–1.7]; plaque

1.3 mg/L [IQR: 0.4–4.7]; p = .37 for the comparison between

nIMT, iIMT and plaque).

Markers of Microbial Translocation and CMV IgG
According to Carotid Intima-media Thickness

nIMT and pIMT patients exhibited similar plasma levels of LPS

(nIMT 94 pg/mL [75–142] vs. pIMT 80 pg/mL [IQR: 75–145],

p = .72; Fig. 3E). In addition, the levels of LPS remained

comparable after the patients were divided into the iIMT and

plaque groups (iIMT 100 pg/mL [IQR: 83–206]; plaque 75 pg/

mL [IQR: 75–111]; p = .19 for the comparison between nIMT,

iIMT and plaque).

Interestingly, despite the lack of differences in plasma LPS

levels, the pIMT group exhibited significantly higher circulating

levels of sCD14 as compared to the nIMT group (5.19 mg/mL

[IQR: 3.85–9.09] vs. 4.41 mg/mL [IQR: 3.32–5.79], p = .046;

Fig. 3F). However, when we analyzed the iIMT and plaque

patients separately, this difference was lost (iIMT 5.59 mg/mL

[IQR: 3.66–9.24]; plaque 4.86 mg/mL [IQR: 3.96–8.91]; p = .12

for the comparison between nIMT, iIMT and plaque).

87% of our patients resulted anti-CMV positive. However, no

significant differences were shown in anti-CMV IgG titer neither

comparing nIMT versus pIMT (22 [10–22] IU/ml vs 22 [10–22]

p = .0.86), nor comparing nIMT, iIMT and plaque (22 [10–22]

IU/ml vs 22 [16–22] IU/ml vs 19 [8–22] IU/ml; p = .57).

(Figure 3G). No significant association was shown between anti-

CMV IgG titer, CD8+CD38+CD45R0+ (Rho =20.052,

p = 0.592) and CD4+/CD8+CD95+ T-cells (Rho = 0.053,

p = 0.589; Rho = 0.061, p = 0.534, respectively). Interestingly

enough, when the correlation analysis was performed only in

patients with pathological IMT (pIMT), a slight positive correla-

tion was shown between anti-CMV IgG titer and pro-apoptotic

CD4+CD95+ T-cells (Rho = 0.41, p = 0.0136).

Identification of Factors Associated with Carotid Intima-
media Thickness by Univariate and Multivariate Analyses

Traditional risk factors and immunological or soluble markers

that displayed a p value ,.01 for the Mann-Whitney U test were

included in a logistic regression model to investigate the

independent factors associated with increased IMT and/or

plaques, as shown in Table 2a. Given the integrative nature of

FRS and HOMA-IR that altogether include several traditional

cardiovascular risk factors, for multivariate models we specifically

chose not to include other risk factors that were not associated in

the univariate models.

The univariate model revealed a significant association between

pathological IMT (iIMT and/or plaques) and FRS (OR = 1.137;

confidence interval = 1.070, 1.208; p = .0001) and HOMA-IR

(OR = 1.170; confidence interval = 1.075, 1.274; p = 0.0001).

Interestingly, of the immunologic variables, sCD14 levels

(OR = 1.097; confidence interval = 1.003, 1.198; p = .042) and

CD4+CD95+ T-cell percentages (OR = 1.085; confidence in-

terval = 0.998, 1.179; p = .055) were associated with pIMT.

Figure 2. T-cell immunosenescence according to the degree of intima-media thickness. A. A non-significant tendency towards reduced
early differentiated memory (CD28+CD572) CD4+ T-cell numbers was observed for pIMT patients in comparison to nIMT patients (p = .09). B. No
differences were observed in early differentiated memory CD8+ CD28+CD572 T-cells between the two study groups. C–D. The number of late-
differentiated memory (CD28–CD57+) CD4+ (C) and CD8+ (D) T-cells was comparable between nIMT and pIMT groups. E–F. We observed no
difference in CD4+CD28+CD57+ (E) and CD8+CD28+CD57+ (F) T-cells between the nIMT and pIMT groups. G. No major difference in CD4+CD28–
CD572 T-cells were observed between nIMT and pIMT patients. H. Compared to nIMT patients, pIMT patients tended to have lower number of
CD8+CD28–CD572 cells (p = .06).
doi:10.1371/journal.pone.0046073.g002
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However, when these data were analyzed by multivariable

logistic regression, only FRS (AOR = 1.134; confidence inter-

val = 1.152, 1.222; p = .001) and HOMA-IR (AOR = 1.146;

confidence interval = 1.041, 1.261; p = .005) were confirmed to

be independently associated with pathological IMT (Table 2a).

Most interestingly, comparable results were obtained when we

performed uni- and multivariate linear regressions analyzing IMT

as a continuous variable as shown in Table 2b. While in the

univariate model FRS, HOMA-IR, PI exposure, and

CD4+CD95+ T-cells were all seemingly associated to increased

IMT, only FRS and HOMA-IR were confirmed independently

associated by multivariate regression (Table 2b).

Discussion

In the current study, we evaluated T-cell phenotype, in-

flammatory biomarkers, microbial translocation, and CMV IgG

levels in a cohort of HIV-infected patients receiving cART who

demonstrated long-term control of HIV replication, and the

analyses were performed according to the degree of ATS

measured by internal carotid IMT.

Patients with early ATS were characterized as having a circu-

lating T-cell phenotype dominated by activated memory

CD38+CD45R0+ CD8+ cells and apoptosis-committed CD95+
cells and reduced CD57-negative cells, which altogether suggest

the greater replicative history of these T-cells. Although higher

levels of sCD14 displayed a non-significant association with pIMT,

no markers of T-cell activation, inflammation or microbial

translocation were able to predict early ATS independent of the

classical cardiovascular risk factors.

Our research shows that although cART provides full

suppression of HIV viremia, HIV-infected patients with athero-

sclerotic lesions exhibit a disproportionate expansion of activated

memory CD8+ T-cells. The expansion of CD38+CD45R0+ cells,

despite the equal proportions of CD8+CD38+ T-cells, may be

indicative of increased T-lymphocyte replicative history in a setting

of controlled HIV-driven immune activation by effective long-

term antiretroviral therapy [35–37].

Having shown that the presence of a memory T-cell subset

expressing terminal differentiation markers correlated with accel-

erated ATS, we sought to verify T-cell replicative history by

investigating surface CD57/CD28 expression profiles [16,38–41].

Whereas many studies have suggested that CD28 and CD57

expression are mutually exclusive in human T-cells [42,43],

Brenchley et al. [44] described both circulating CD28+CD57+ and

CD28–CD572 T-cell subpopulations in HIV-positive patients

that demonstrated different proliferative histories/potential. We

found reduced circulating T-cells lacking CD57 expression (either

co-expressing or not co-expressing CD28) in patients with pIMT.

Given that the expression of CD57 has been shown to indicate T-

cell senescence, the lack of CD57 surface expression therefore

defines subsets that have undergone fewer rounds of cell division

and have been suggested to posess greater proliferative potential

[44,45].

Therefore, our findings would suggest that patients with

subclinical ATS possess a circulating T-cell phenotype impover-

ished of T-cell subsets with greater proliferative potential.

However, these results would suggest that higher levels of

antigen-experienced (CD57+) T-cells accompanying IMT repre-

sent the counterpart to the reduced proportion of less mature

CD572negative T-cells. In contrast to recently published data

[16], we did not find differences in the CD57+ T-cells according to

the degree of IMT. Increased peripheral apoptosis within the

CD57+ terminally differentiated T-cell subset may represent one

potential explanation for this finding, given the higher suscepti-

bility of CD57+ T-cells to activation-induced cell death by

apoptosis [44].

Moreover, our patients with pathological IMT exhibited an

increased prevalence of apoptosis-committed T-cells expressing

the death receptor Fas (CD95) [46].

However, a broader investigation of the correlates of immune

activation/inflammation during early vascular damage in HIV-

infected patients receiving virologically suppressive cART failed to

detect relevant differences in pro-inflammatory biomarkers and

the endothelial adhesion marker sVCAM-1, with the exception of

a non-significant trend towards higher circulating levels of IL-6 in

patients with ATS. This finding is in contrast to previous studies

showing that elevated levels of inflammatory markers, such as hs-

CRP, are associated with cardiovascular diseases and all-cause

mortality in HIV-positive patients [12,15,20]. These findings may

be secondary to the full suppression of HIV viremia in our cohort,

as previous studies have demonstrated an association between

inflammatory biomarkers and HIV RNA levels [47].

To investigate the mechanisms governing T-cell activation/

senescence in patients with early ATS, we evaluated the levels of

LPS and sCD14 in the serum as markers of MT and LPS

bioactivity, respectively [22,23], given the relationship between

endotoxemia and cardiovascular disease [27,28,48,49]. Notably,

patients with pathological IMT exhibited heightened circulating

levels of sCD14 despite normal levels of plasma LPS. Sandler et al.

recently demonstrated an independent association between high

sCD14 levels during HIV infection and an increased risk of all-

cause mortality [14]. Although stimulation of monocytes with

microbial products stimulates the release of IL-6 and TNF-a, the

levels of these cytokines have been shown to be weakly correlated

with those of sCD14 and are rather more strongly associated with

direct viral factors; this may explain why we did not observe major

changes in the levels of IL-6/TNF-a in our virologically

suppressed cohort in the context of higher levels of sCD14 [50].

Although circulating levels of sCD14 seemed associated with

a risk of ATS in the univariable model, this effect was lost after

adjustments were made for classical cardiovascular disease

predictors. As a result, only these traditional cardiovascular risk

factors were confirmed to independently predict a risk of vascular

disease [1,51,52].

Opposite to what recently shown by Parrinello et al. in a cohort

of HIV-infected treated/aviremic women [32], we failed to find

any significant association between IMT and CMV IgG titer.

Different duration of both HIV and CMV infection, as well as

diverse time on cART could explain the discrepancies between our

findings and previous data.

Quite interestingly, in line with recent findings associating CMV

IgG levels and markers of immunosenescence [53], our data

Figure 3. Markers of Inflammation, endothelial cell activation, microbial translocation and anti-CMV IgG according to the degree of
intima-media thickness. A. IL-6 plasma levels were increased in pIMT patients in comparison to nIMT patients, albeit not-reaching significance
(p = .08). B–F. When nIMT patients were compared to pIMT patients, no differences in TNF-a (B), s-VCAM-1 (C) hs-C-reactive protein (hs-CRP) (D)
plasma levels were detected. E. nIMT and pIMT patients exhibited similar plasma levels of lipopolysaccharide (LPS). F. pIMT patients showed
significantly higher circulating levels of sCD14 in comparison to nIMT patients (p = .046). G. nIMT and pIMT patients displayed comparable levels of
anti-CMV IgG.
doi:10.1371/journal.pone.0046073.g003
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demonstrated a positive association between anti-CMV response

and the pro-apoptotic CD95+ CD4+ T-cell compartment in

patients with early signs of ATS, lending support to the role of

CMV in accelerating immunosenescence.

Table 2. Regression models to explore independent factors associated with intima-media thickness (pIMT).

Table 2a Univariate Multivariate* Multivariate**

Beta 95%CI p Beta 95%CI p Beta 95%CI p

Framingham risk score 1.137 1.070–1.208 0.0001 1.133 1.055–1.216 0.001 1.134 1.052–1.222 0.001

(each unit more)

PI exposure 1.054 0.978–1.137 0.169 0.986 0.884–1.099 0.795

(each year more)

HOMA-IR 1.170 1.075–1.274 0.0001 1.150 1.048–1.261 0.003 1.146 1.041–1.261 0.005

(each unit more)

CD4+T-cell count 1.000 0.998–1.001 0.694 1.000 0.998–1.002 0.761

(each cell/mmc more)

sCD14 ug/mL 1.097 1.003–1.198 0.042 1.089 0.981–1.208 0.110 1.085 0.969–1.215 0.156

(each unit more)

CD8+CD38+ % 0.992 0.941–1.045 0.755 1.037 0.953–1.128 0.404

(each unit more)

CD8+CD45R0+CD38+ % 0.997 0.978–1.017 0.791 0.992 0.965–1.019 0.549

(each unit more)

CD4+CD95+ % 1.085 0.998–1.179 0.055 1.060 0.952–1.181 0.285

(each unit more)

CD8+CD127+ % 1.025 0.980–1.072 0.275 1.020 0.959–1.084 0.528

(each unit more)

Table 2b Univariate Multivariate* Multivariate**

Beta 95%CI p Beta 95%CI p Beta 95%CI p

Framingham risk score 0.322 0.006–0.018 0.0001 0.336 0.006–0.012 0.0001 0.312 0.006–0.018 0.0001

(each unit more)

PI exposure 0.186 0.002–0.018 0.018 0.096 20.003–0.014 0.239

(each year more)

HOMA-IR 0.271 0.006–0.021 0.001 0.211 0.003–0.018 0.008 0.190 0.002–0.017 0.018

(each unit more)

CD4+T-cell count 20.111 0.000–0.000 0.166 20.048 0.000–0.000 0.587

(each cell/mmc more)

sCD14 ug/mL 0.108 20.003–0.016 0.197 0.056 20.006–0.012 0.478 0.042 20.007–0.012 0.608

(each unit more)

CD8+CD38+ % 0.028 20.005–0.007 0.729 0.149 20.001–0.018 0.064

(each unit more)

CD8+CD45R0+CD38+ % 20.028 20.002–0.002 0.727 20.115 20.003–0.000 0.105

(each unit more)

CD4+CD95+ % 0.224 0.004–0.022 0.005 0.130 20.002–0.016 0.105

(each unit more)

CD8+CD127+ % 20.025 20.006–0.004 0.758 20.072 20.007–0.003 0.357

(each unit more)

aLogistic regression model: pathological intima-media thickness (pIMT) defined as IMT.1 mm analysed as categorical variable.
bLinear regression model: mean IMT analysed as a continuous variable –plaque excluded from the analysis.
NOTE: HAART, highly active antiretroviral therapy; PI, protease inhibitors; HOMA-IR, homeostasis model assessment of insulin resistance.
OR, odds ratio – AOR, adjusted odds ratio.
*Adjusted for Framingham risk score and HOMA-IR;
**Mutually adjusted for all of the parameters tested in the univariate model.
doi:10.1371/journal.pone.0046073.t002
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The primary limitation of our study is its cross-sectional design,

with the lack of a matched control group of HIV-uninfected

individuals. Data presented herein would certainly gain much

more strength if the immune differences observed according to

IMT were not found in a well-matched cohort of HIV-negative

individuals, providing stronger evidence for the role of immuno-

logical/inflammatory markers in accelerating the early HIV-

associated atherosclerosis. Similarly, a control group of matched

HIV-infected but antiretroviral-naı̈ve patients would have helped

to discriminate between the effect of HIV itself and any potential

negative or positive roles played by the introduction of HAART.

Furthermore, despite well-balanced patient groups, our study

suffers from a relatively small sample size that may have affected

the strength of the associations between ATS and the biomarkers

investigated.

Whether or not markers of inflammation/immune activation

indeed condition the onset of subclinical atherosclerosis indepen-

dently of traditional cardiovascular risk factors, as well as the

possible role of host responsiveness to ongoing endotoxemia and

immunity to CMV on vascular damage in cART-suppressed HIV-

infected individuals should be further investigated in studies with

larger sample sizes.

Supporting Information

Table S1 Frequencies of T-cell immunophenotypes
according to IMT. Data are shown as median (IQR,

Interquartile Range); p* data analyzed by Kruskal-Wallis for

comparison between the 3 groups; p** Mann-Whitney test for

comparison between 2 groups; IMT: Intima-Media Thickness;

nIMT, normal intima-media thickness (IMT) #1 mm; iIMT,

increased IMT (.1 mm and ,1.5 mm); Plaque, IMT $1.5 mm

at each site or a 50% increase for near-wall thickness .1.5 mm.
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