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Abstract: Asthma is a chronic respiratory disease characterized by variable airflow obstruction,
bronchial hyperresponsiveness, and airway inflammation. Evidence suggests that air pollution has a
negative impact on asthma outcomes in both adult and pediatric populations. The aim of this review is
to summarize the current knowledge on the effect of various outdoor and indoor pollutants on asthma
outcomes, their burden on its management, as well as to highlight the measures that could result in
improved asthma outcomes. Traffic-related air pollution, nitrogen dioxide and second-hand smoking
(SHS) exposures represent significant risk factors for asthma development in children. Nevertheless,
a causal relation between air pollution and development of adult asthma is not clearly established.
Exposure to outdoor pollutants can induce asthma symptoms, exacerbations and decreases in lung
function. Active tobacco smoking is associated with poorer asthma control, while exposure to
SHS increases the risk of asthma exacerbations, respiratory symptoms and healthcare utilization.
Other indoor pollutants such as heating sources and molds can also negatively impact the course
of asthma. Global measures, that aim to reduce exposure to air pollutants, are highly needed in
order to improve the outcomes and management of adult and pediatric asthma in addition to the
existing guidelines.
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1. Introduction

Air pollution can be defined as the presence in the air of substances harmful to humans and is
associated with a high risk for premature deaths due to cardio-vascular diseases (e.g., ischaemic heart
disease and strokes), chronic obstructive pulmonary disease, asthma, lower respiratory infections
and lung cancer [1,2]. People living in developing and overpopulated countries disproportionately
experience the burden of outdoor (ambient) air pollution with 91% of the 4.2 million premature deaths
in 2016 occurring in low- and middle-income countries of the South-East Asia, Central Africa and
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Western Pacific regions where exposure is higher [1,3]. The quality of air has been improving in the
developed countries, however air pollution is steadily rising in the developing ones [4]. In order
to quantify air pollution, standards of air quality for different pollutants were developed by the
World Health Organization (WHO). The data from WHO indicate that 9 out of 10 people breathe air
containing high levels of pollutants. More than 80% of people living in urban areas, where air pollution
is monitored, are exposed to air pollutant levels that exceed WHO guideline limits. In addition,
approximately 3 billion people are exposed to high levels of indoor (household) air pollution due to
the use of biomass, kerosene fuels and coal for cooking and the heating of their homes, inducing a high
prevalence of respiratory disorders [5].

Although there are many natural sources of air pollution such as volcanos or wildfires, it was the
industrial revolution that made air pollution a real global problem [1]. Ambient air pollution affects
the quality of indoor air and vice versa. According to the particle size, pollutants can be categorized as
gaseous and particulate matter (PM) [6]. The main gaseous pollutants include inorganic components
such as nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), carbon monoxide (CO), carbon
dioxide (CO2) and heavy metals such as lead or chromium (Pb or Cr), as well as volatile organic
compounds (VOCs) including polycyclic aromatic hydrocarbons (PAHs). Some of them, for example
NO2 or SO2, are directly produced by different pollution sources while others, i.e., O3 are formed by
the interaction of nitric oxides and VOCs with the sunlight. The pollutants with the greatest impact on
humans health are PM, which are commonly used as a measure of air quality [6,7]. Traffic-related air
pollution (TRAP), a complex mixture rich in PM, exerts a particularly deleterious effect on the function
of the respiratory system [5].

Asthma is a chronic inflammatory airway disease characterized by respiratory symptoms such as
wheeze, dyspnoea, cough and chest tightness asssociated with variable expiratory airflow limitation.
The prevalence of asthma is estimated at between 1 and 18% of the population in different countries.
Evidence suggests that 13% of global incidence of asthma in children could be attributable to TRAP and
data showed that air pollution has a negative impact on asthma outcomes in both adult and pediatric
populations [8].

The aim of this review is to summarize the recent data about the effects of various outdoor
and indoor pollutants on asthma development, symptoms, exacerbations/hospitalisations, severity,
lung function and medication use, as well as to highlight the possible measures that could reduce their
impact on asthma outcomes. A better knowledge of the negative impact of air pollution on asthma
outcomes could help physicians (e.g., general practitioners, pulmonologists, allergologists, pediatrics,
gynecologists, and emergency doctors) to improve their daily practice by adding in the interrogatory
specific questions on a possible recent exposure worsening the respiratory symptoms, to educate the
patients about how they could minimise the exposure and manage their asthma by an action plan.
At the same time, the global awareness of air pollution effects on asthma should stimulate public health
authorities and governments to take more efficient measures to limit the exposure to air pollutants.

2. Search Strategy, Data Sources and Selection Criteria

This review examines the literature linking air pollution and asthma across PubMed and Medline
databases from January 1, 2010 and June 30, 2020. The search terms used were: “air pollution”,
“outdoor air pollutants”, “indoor air pollutants”, “environmental risk factors”, “ambient sources
of pollution”, “household sources of pollution”, “smoking”, and “preventive measures to reduce
air pollution” associated with “asthma”. We prioritized cross-sectional and observational studies,
followed by meta-analyses, systematic reviews, and general reviews. A preference was given to more
recent articles published the last five years in order to have the most up-to-date evidence. Results were
limited to publications in English.
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3. Air Pollution and Risk of Asthma

The effect of air pollution on the development of asthma has been studied for many years.
Increasing evidence indicates that both outdoor and indoor air pollution contributes to asthma
development. Numerous cross-sectional studies provided evidence for an association between poor
air quality and the incidence of asthma [9–13]. One of those studies, conducted in an urban population,
demonstrated that the association between asthma morbidity and air pollutions was stronger in children
than in adolescents and adults [10]. The important role of increased exposure to TRAP, particularly
to its components PM2.5, PM10, NO2 and black carbon, in asthma development was demonstrated
in a recent meta-analysis of 41 publications [14]. Those observations are supported by longitudinal
studies evaluating the relationship between early childhood exposure to ambient air pollution and
future asthma incidence. A meta-analysis of published birth cohort studies reported significant
associations between long-term exposure to black carbon and PM2.5 and the risk of asthma in childhood
up to 12 years of age [13]. The interaction between air pollution exposure in early life and asthma
development was demonstrated in a prospective study on the cohort Prevention and Incidence of
Asthma and Mite Allergy (PIAMA). Both early and recent exposures to PM2.5, PM10 or NO2, especially
TRAP, were associated with a higher incidence of asthma until age of 20 years [15]. Another large
population-based birth cohort study found a positive association between perinatal exposure to air
pollution and asthma incidence during preschool years [16]. A recently published birth cohort study
including 184,604 children born between 2004 and 2011 in Taiwan demonstrated that both prenatal
and postnatal exposures to air pollutants, in particular PM2.5, were associated with later development
of asthma [17]. The role of prenatal exposure to air pollutants in childhood asthma development
was also shown in two independent meta-analyses [18,19]. The long-term effects of air pollution on
asthma have been summarized in an American Thoracic Society Workshop Report, which indicates
that the available evidence indicates that long-term exposure to air pollution was a cause of childhood
asthma, but the evidence for a similar determinant role for adult asthma remained insufficient [20].
Some studies also provided evidence for positive associations between indoor air pollution, mainly due
to cooking with polluting fuels, and asthma development in children. In a meta-analysis of 41 studies,
a positive association between gas cooking, exposure to NO2, and childhood asthma or wheeze was
found [21].

Second-hand smoking (SHS) was also reported to play an important role in asthma development.
However, it is plausible that gene–environment interaction is also important for the effects of air
pollution on asthma development. It has been shown recently that exposure to PM10 and maternal
smoking was associated with a higher susceptibility for infants with an adverse genetic predisposition
to asthma that also depended on the infant’s ancestry [22]. Genetic traits that affect the risk of asthma
due to SHS were also demonstrated in American children participants in the Cincinnati Childhood
Allergy and Air Pollution Study. Variation in the N-Acetyltransferase 1 (NAT1) gene modified asthma
risk in children exposed to SHS [23]. Systematic reviews and meta-analyses have demonstrated that
maternal smoking during pregnancy is a risk factor of wheezing and asthma in children, especially in
the first years of life [24,25]. The mechanisms behind the adverse health effects of maternal smoking
during pregnancy are still not entirely clear, but epigenetics most likely plays a role [26]. Associations
between deoxyribonucleic acid (DNA) methylation at loci previously linked to in utero tobacco smoke
exposure and asthma-related outcomes were observed [27]. Grandmothers smoking during pregnancy
with the mother, increases the risk for asthma in the grandchild, independently of the mother’s
smoking status, suggesting a transgenerational impact of prenatal tobacco smoke exposure on asthma
development [28,29]. Prenatal paternal smoking exposure was also associated with childhood asthma
development at 6 years of age, presumably mediated by an IgE-independent mechanism. Prenatal
paternal smoking led to epigenetic modifications in certain genes as such as LIM Domain Only 2
(LMO2) and interleukin-10 (IL-10) via cytosine-phosphate-guanine (CpG) methylation, and these
modifications are correlated to childhood asthma development [30].
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Postnatal exposure to maternal and paternal smoking is also associated with wheezing in infants
and pre-school children, while the data for school-aged children and adolescents are contradictory [24].
One of the limitations related to the investigation of the effect of postnatal exposure is the fact that most
of the parents smoke during both the prenatal and postnatal periods, and studies on solely postnatal
exposure lack consistency. A recent study showed that fathers’ smoking before the age of 15 of their
children increased the risk of asthma without nasal allergies in their offspring, suggesting an effect of
paternal pre-adolescent environment on the next generation [29].

Less data is available for maternal smoking and adult onset asthma. A recent study found that
gestational tobacco smoke exposure is associated with new asthma diagnoses in adult offspring between
31 and 46 years, thus indicating the long-term effect of smoking. The association was accentuated
in offspring who reported at age 31 as having past respiratory problems (wheeze) [31]. In addition,
a reduction in forced expiratory volume in the one second (FEV1)/forced vital capacity (FVC) ratio was
observed at age 31 years in the offspring with gestational smoke exposure [29]. Several longitudinal
studies showed a positive association between active and passive smoking and the incidence of
asthma in adults [32–40]. Women seem to be more susceptible to the effect of tobacco smoking than
men [34,40]. Some of the studies suggested a stronger association between smoking and onset of
asthma for non-atopics [35,37]. Other trials did not find any relation between smoking and newly
onset asthma in the adult population [41–43]. A possible explanation of the inconsistencies between
the results could be the different definitions of asthma that were used, self-reported questionnaires and
evaluation, changes in tobacco smoking habits during the follow-up period and the ‘healthy smoker
effect’ (reduces smoking initiation or favors smoking cessation among people more susceptible to
the noxious effects of smoking) [44]. Current evidence is suggestive but not sufficient for a causal
relationship between smoking and the incidence of asthma in adults and future research is needed in
this domain.

4. Outdoor Air Pollution

The composition of outdoor air pollution is complex and dynamic. It changes from season to
season, and is influenced by human activity and meteorological events [45]. Outdoor air pollutions
include both primary pollutants emitted directly into the atmosphere and secondary pollutants formed
in the air from chemical transformation of the primary. These chemical reactions depend on temperature
and therefore can be influenced by global climate warming. Accumulated evidence suggested that air
pollution cannot only aggravate asthma symptoms but might cause new-onset asthma as well. Several
mechanisms have been identified and implicated. The respiratory mucosa formed by the airway
epithelium represents the first contact between air pollutants and the respiratory system, functioning
as a mechanical and immunologic barrier. Airway epithelial cells are connected by tight junctions and
secrete mucus, host defense peptides and antioxidants, and express innate immune receptors, which
could be activated by inhaled foreign substances and pathogens [45]. Under conditions of air pollution
exposure, the defenses of the airway epithelium are compromised by the disruption of epithelial
integrity, uptake of particles, activation of Toll-like and Nucleotid-binding Oligomerization Domain
(NOD-receptors), epithelial growth factor receptor and induction of oxidative stress. Activation of these
receptors results in (NF)-kB (nuclear factor Kappa B) activation, leading to pro-inflammatory cytokine
expression [46]. Oxidative stress is one of the biological mechanisms proposed to partly explain
the association between outdoor air pollution and asthma. Neutrophils attracted into the airways
after exposure to certain pollutions produce reactive oxygen species (ROS) that induce epithelial
cell inflammation, airway hyperreactivity (AHR) and lung injury. Pollutants can act directly by the
production of free ROS and diffusion from the airway surface, or indirectly by inducing inflammation.
Ozone (O3) exposure causes ROS production and changes in the expression of claudins, the major
components of tight junctions, thus leading to tight junction barrier permeability and AHR [47].

Importantly, pollutants (e.g., O3, SO2) can act as adjuvants and affect the production of some
cytokines (e.g., thymic stromal lymphopoetine) in airway epithelial cells, which promote T-helper
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2 (Th2) phenotypic differentiation and IgE production. There is evidence for the stimulation of
T-helper 17 (Th17) responses as well. Furthermore, repeated exposure to O3 induces group 2 innate
lymphoid cells (ILC2)-mediated airway type 2 immunity and the nonatopic asthma phenotype [20].
Numerous studies have repeatedly demonstrated epidemiological links between air pollution and
increased respiratory tract infections in patients of all ages, which are considered the cause of asthma
exacerbations. Changes in receptor expression for pathogens, antiviral mechanisms, or host defense
peptide biology could be responsible. Oxidative stress could affect intercellular adhesion molecule-1
(ICAM-1) responses to rhinoviruses in epithelial cells of the respiratory mucosa. Coexposure of airway
epithelial cells to rhinoviruses and NO2 appears to induce a synergistic upregulation of ICAM-1,
which could exaggerate the pathogen response. Available data indicated that oxidant pollutants
(NO2 or O3) could amplify the generation of proinflammatory cytokines by rhinovirus-infected cells
in epithelial cells of the respiratory mucosa. Oxidative stress has also been linked to a reduction in
corticosteroid (CS) responsiveness in asthma patients, an important observation from a practical point
of view [48].

One predisposing factor that contributes to the injury of airways by air pollutants might be atopy.
Conversely, air pollutants could increase the risk of sensitization and the responses to inhaled allergen
in asthma patients. Such a potential enhancing effect has been studied and demonstrated for O3, NO2,
SO2. The mechanisms that could explain the enhanced sensitisation to aeroallergens by air pollutants
include the higher deposition of allergen in the airways due to carriage by particles, an increased
epithelial permeability due to oxidative stress, a greater antigenicity of proteins, and a possible direct
adjuvant effect [49]. Apparently, the responses to air pollutants are diverse and individual. Genetic
variations affect the function and susceptibility of epithelial cells. Specific polymorphisms in antioxidant
enzyme genes, such as the glutathione-S-transferase family, especially Glutathione S-Transferase Pi
1 (GSTP1), are associated with differences in susceptibility to the adverse effects of pollutants and
can modify the risk of asthmatic responses. Adults and children with Glutathione S-Transferase
Mu 1 (GSTM1) null genotypes have reduced glutathione-S-transferase enzyme activity and are at
increased risk of developing asthma when exposed to O3. The association of tumor necrosis factor
(TNF) polymorphisms with asthma and differences in susceptibility to the adverse effects of pollutants
has been demonstrated. TNF polymorphisms, thought to affect the expression of pro-inflammatory
cytokines, seem to influence the response of the lungs to O3, and the risk of developing asthma [50].
Results from a recent genome-wide interaction study identified gene–NO2 interactions on asthma and
indicated that gene–environment interactions are important for asthma development [51]. Mucin gene
variants contribute to air pollutant responses in asthmatic patients. Their role in air pollution-induced
mucin production has been demonstrated [52].

The impact of air pollution on asthma could by modified by other individual factors like obesity,
as reported in most studies. A large cross-sectional study found that the effect of NO2 and SO2 on
asthma was significantly greater in overweight or obese children. Similarly, the exposure to O3 is
associated with a poorer lung function for obese adults when compared to people with a normal
weight [53].

4.1. Ozone

In the troposphere, O3 is a secondary pollutant generated through a chemical reaction between
oxides of nitrogen and Volatile Organic Compounds (VOCs) released by natural sources or following
anthropogenic activities in the presence of sunlight. Other involved elements are CO and methane [54].
The combustion of fossil fuels, emissions from industrial facilities and electric utilities, gasoline
vapors, motor vehicle exhaust and chemical solvents are among the main sources of O3 precursors.
Anthropogenic emissions were responsible for 37% of O3 impacts in 2015 globally [55]. Due to its low
water-solubility, O3 is not effectively removed by the upper respiratory tract and has the capacity to
penetrate deeply into the lungs [7].
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It is well established that inhaled O3 first interacts with antioxidants in the airway epithelial cells.
Surfactant protein D in particular has been shown to modulate the response to O3 and appears to have
important genetic variability that influences personal susceptibility [56]. When the dose of O3 in the
respiratory tract exceeds the protective capacity of antioxidants, adverse health effects are likely to
occur. The oxidative stress induced by the secondary oxidation results in airway inflammation, AHR,
and decrements in lung function in asthmatic adults. As a highly reactive gaseous pollutant, O3 exerts
inflammatory effects on the respiratory system. The oxygen radicals evoke oxidative stress and airway
inflammation, more pronounced among allergic subjects [57].

Personal short-term exposure to O3 increases the risk of current asthma with persistent evidence
that it could directly cause asthma exacerbation [58,59]. Increased rates of asthma hospital admissions
and emergency department visits following days of elevated ambient O3 concentrations have
been reported in some epidemiology studies. The consequences of short-term O3 exposure have
been evaluated in meta-analysis of 47 eligible studies published recently, which confirmed the
association between O3 exposure and asthma exacerbations measured as emergency room visits or
hospitalizations. The association was significant during the warm season and in the areas where ambient
O3 concentrations were higher [60]. As estimated recently, 9–23 million annual asthma emergency
room visits globally in 2015 could be attributable to O3, representing 8–20% of the annual number of
global visits [53]. Children appeared to be more susceptible to O3. This may be due to children’s higher
breathing rate, narrower airways, lungs and immune system still being in development, and more
frequent outdoor activities. Results from time series analysis of asthma hospital admissions and daily
8-h maximum O3 concentrations established significant relationships for all ages with the highest risk
for children [61].

Strong evidence of a relationship between long-term O3 exposure and respiratory morbidity
is provided by studies focused on asthma development in children and on increased respiratory
symptoms in asthmatics. It was demonstrated that exposure to O3 in early life was significantly and
positively associated with a detrimental effect on the lung function development in children, larger
in boys. Nevertheless, no clear and consistent findings have been reported for the long-term effects
on lung function [54]. Prenatal exposure to O3 has not been associated with subsequent childhood
asthma [18]. O3 might be an important risk factor affecting the progression of asthma to chronic
obstructive pulmonary disease (COPD), defining the asthma–COPD overlap (ACO) syndrome. It was
established that individuals with asthma exposed to higher levels of O3 had greater odds of developing
ACO [62]. Long-term O3 exposure is significantly associated with the risk of death, especially for
cardiovascular and respiratory diseases. A study compared daily O3 concentrations to the daily number
of deaths in an urban European population during 3-years. An increase in O3 concentration was
observed during the warm period of the year, and was associated with an increase in the daily number
of deaths (0.33%), notably respiratory deaths (1.13%). No effect was observed during wintertime [7].

4.2. Nitrogen Dioxide

NO2 is a traffic-related pollutant, as it is emitted from automobile motor engines. Transportation
can contribute up to 80% of ambient NO2, so it is a convenient marker of primary pollutant. NO2 is
an irritant of the respiratory system, which penetrates deep into the lung, inducing coughing,
wheezing, dyspnea, bronchospasm, and even pulmonary edema when inhaled at high levels. It seems
that concentrations of over 0.2 parts per billion (ppb) produce these adverse effects in humans,
while concentrations higher than 2.0 ppb affect T-lymphocytes, particularly the CD8+ cells and natural
killer (NK) cells involved in different immune responses [7]. It can augment the degree of allergic
airway inflammation and prolong allergen-induced AHR. Compared with its direct effects on the
airways, NO2 might play a more prominent role as a sensitizing agent to inhaled allergen. Exposure to
0.4 ppm NO2 for 4 h enhances both immediate- and late-phase responses to inhaled allergen, and can
activate NF-κB, and develop allergen sensitization. High exposure to NO2 during the first year of
life was associated with increased risk of sensitization to pollens at age 4 years [63]. Meta-analysis
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provided evidence for association between NO2 exposure during pregnancy and differential offspring
DNA methylation in mitochondria-related genes. Exposure to NO2 was also linked to differential
methylation as well as the expression of genes involved in antioxidant defense pathways [64].

NO2 is associated with significant morbidity in asthmatic individuals and might be a cause
of incident asthma. Consistent with other studies that found associations between prior pollution
exposure and future asthma risk, a recent study revealed that the odds of future asthma diagnosis
for children exposed to a high concentration of NO2 in early life were 1.25 times greater than those
for children exposed to a low concentration of NO2 [65]. A recent estimation on the basis of data
from 194 countries concluded that, each year, 4.0 million (95% CI 1.8–5.2) new cases of paediatric
asthma might be attributable to NO2 pollution, accounting for 13% (5.8–16) of global incidence.
This contribution exceeded 20% of new asthma cases. The European analysis subset reported in the
same paper estimated that 17% of the burden in Western Europe, 14% in Central Europe and 17% in
Eastern Europe was attributable to NO2. About 92% of paediatric asthma incidence attributable to NO2

exposure occurred in areas with annual average NO2 concentrations lower than the WHO guideline
of 21 ppb [66]. The longest longitudinal study of the health of school-aged children in Canada with
>17 years of follow-up found that exposure to total oxidants (O3 and NO2) at birth increased the risk of
developing asthma by 17% [67]. A recent meta-analysis, using observational data from five European
birth cohorts, found no evidence suggesting that long-term air pollution levels including NO2 were
associated with the prevalence of current pediatric asthma up to age eight years [68]. Compliance
with the NO2 WHO air quality guidelines was estimated to prevent 2434 (0.4% of total cases) incident
childhood asthma cases per year across eighteen European countries [11].

Studies in children and adults have identified associations between even low-levels of NO2

and symptoms of asthma, reduced lung function, and exacerbation of asthma. Data from several
cross-sectional studies and from a meta-analysis of published studies evaluated the association between
air pollution and lung function in children. NO2 exposure was correlated with an increase of fractional
exhaled nitric oxide (FeNO) and a delayed increase in both FEV1 and FVC [69,70]. Even during
pregnancy, NO2 exposure could impair lung function in early life [71]. A systematic review showed a
significant association between NO2 exposure and moderate/severe asthma exacerbations in children
and adults (OR: 1.024; 95% CI [1.005, 1.043]) [72].

4.3. Carbon Monoxide and Carbon Dioxide

CO and CO2 are produced by fossil fuel when combustion is incomplete. Higher temperatures
and amounts of CO2 in the atmosphere are major factors that have been linked to an increased duration
of pollen seasons, quantity of pollen produced by plants, and possibly allergenicity of pollen. It has
been demonstrated that birch pollen extracts from trees grown in warmer temperatures had stronger
IgE binding intensity. Enhanced ragweed pollen production as a function of increasing CO2 levels has
also been established. The growth of Alternaria species can become more abundant and produce more
allergens in an enhanced CO2 environment. These changes could affect allergic asthma. A potential
link with thunderstorm-related asthma epidemics could be suspected [73].

Evidence suggests an association between exposure to CO and moderate or severe asthma
exacerbations in adults (OR: 1.045; 95% CI: [1.005, 1.086]), but the link was not confirmed in children.
Significant associations were observed between decreasing death rates of asthma and lower CO
levels [72].

4.4. Sulfur Dioxide

SO2 is released primarily from the combustion of sulfur-containing coal and oil. People prone
to allergies, especially allergic asthma, can be extremely sensitive to inhaled SO2. The major health
problems associated with SO2 are bronchitis, mucus production, and bronchospasm. It is an irritant
that penetrates deep into the lung where is converted into bisulfite and interacts with sensory receptors,
causing bronchoconstriction [5]. In response to SO2, asthmatic subjects experience increased symptoms
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and a greater decrease in lung function at lower concentrations compared with non-asthmatics, who are
often unresponsive at concentrations of less than 5 ppm. Considerable individual variations in the
spirometric response to inhaled SO2 have been noticed, suggesting a potential genetic link. Children
with a particular polymorphism in the TNF-α gene had more significant reductions in lung function
after SO2 exposure [74,75].

A significant association between SO2 and both asthma prevalence and current symptoms among
children, especially in those with atopy, has already been established. Decreased lung function and
increased hospital admissions with enhanced SO2 exposure have been documented in pediatric
populations. Even the low-dose SO2 exposure is associated with a decline in lung function (FEV1

and FVC) among the general population [76]. A systematic review showed a significant relationship
between SO2 and moderate/severe asthma exacerbations in children aged 0 to 18 years (OR: 1.047; 95%
CI: [1.009, 1.086]) but not in adults [72].

4.5. Particulate Matter

PM is a complex heterogeneous mixture of dirt, soot, smoke and liquid droplets from both
natural and man-made sources. PM ambient air pollution is responsible for approximately 0.8 million
premature deaths per year and 6.4 million years of life lost [77]. It was also estimated that PM2.5 was
responsible for around 16 million incident cases of childhood asthma every year. Although particles
are detected in many organs, the respiratory system is usually the first line of entry into the body.
PM penetrates deeply into the lungs and increases the frequency and severity of asthma attacks,
exacerbating bronchitis and other lung diseases [55].

Sources of PM could be natural or anthropogenic. The former include wind-blown dust, sea salt,
volcanic ash, pollens, fungal spores, soil particles, the products of forest fires and the oxidation of
biogenic reactive gases. Anthropogenic emissions of PM derive from industrial processes, construction
work, mining, cigarette smoking, fossil fuel combustion and wood stove burning. The main sources of
PM in the urban areas are road traffic as well as the burning of fossil fuels in power stations [74,78].

Depending on the way it is released into the environment, PM could be primary or secondary.
Primary particles are introduced into the atmosphere directly from their sources (road transport,
combustion as well as the land and sea through soils carried by the wind), whereas secondary PM is a
product of chemical reactions among different primary particulates. The difference between these two
types of PM is the length of stay in the atmosphere—it takes more time for the secondary PM to be
formed and therefore its persistence is prolonged [78].

The size of PM is of vital importance since it determines, to a great extent, its impact on respiratory
health and the penetration degree in the human respiratory system. According to its diameter, PM could
be divided into three categories: coarse PM10 (from 2.5 to 10 µm), fine PM2.5 (from 0.1 to 2.5 µm),
ultrafine PM0.1 (UFPs) (less than 0.1 µm). Coarse PM deposits primarily in the nasopharynx or primary
bronchi; fine PM in the alveoli and terminal bronchioles; UFPs cross cell membranes and interact
directly with cellular structures. The greatest number of particles fall into the ultrafine size range.
UFPs have a detrimental effect on human health because their small size allows the greatest lung
penetration and passage across the air–blood barrier [6,7,78].

Inhaled PM has the capacity to elicit lung oxidative stress as well as to interact with different
components of the immune system and enhance allergic inflammatory response. What is more, not only
do the particles infiltrate the circulatory system through layers of alveolar obstruction, but they
can also absorb many airborne toxic substances on their surface, such as heavy metals, PAHs and
organic/inorganic ions. It has been suggested that PM induces oxidative stress through several different
mechanisms. Firstly, the redox cycle of some components of the particle’s surface, like iron or
quinones, leads to the formation of ROS, hydrogen peroxide and the damaging hydroxyl radical in the
lungs. Secondly, bacterial endotoxins associated with the particle surface can trigger inflammation.
The particle surface itself has also been found to cause oxidative stress in vivo but this effect is not
well defined yet [78]. PM enhances airway inflammation by interacting with the innate and adaptive
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immune system. It was suggested that PM activates neutrophils and eosinophils through increased
levels of proinflammatory cytokines. PM induces antigen-presenting cell-mediated inflammatory
responses as well as an imbalance of Th cells with an increase in Th2 and Th17 cells and downregulation
of T-helper 1 (Th1). Exposure to PM could also lead to apoptosis and autophagy in lung epithelial cells
in asthma. What is more, UFPs cross cell membranes and directly interact with cellular structures.
UFPs escape the mucociliary clearance and the ingestion by alveolar macrophage scavenging [79].
A study of Mills et al. demonstrated that UFPs were detected in the blood immediately after inhalation
and remained in the lungs for up to 6h after installation. Therefore, UFPs can induce severe eosinophilic
inflammation, alveolar macrophage chemotaxis and epithelial damage in asthma [80].

The respiratory health effects of short-term exposure to air pollution include worsening of
asthma symptoms, school absences, emergency department visits, hospitalizations and decreased
lung function. Despite the limited available data, there is growing evidence about a possible impact
of long-term outdoor air pollution exposures and asthma incidence. The American Thoracic Society
Workshop Report revealed a strong correlation between childhood asthma and long-term air pollution
exposure, especially to TRAP. PM2.5 was found to induce airway remodeling and an increase in the
incidence/severity of asthma-like phenotypes [20]. Particulate pollution might be a risk factor for the
progression of asthma to ACO. The Canadian Community Health Survey found that asthmatics exposed
to higher levels of PM2.5 had nearly three-fold greater odds of ACO [62]. It was also demonstrated
that PM increases the rate of emergency room visits due to asthma exacerbations in both adults and
children. A study of Anenberg et al. concluded that 5–10 million annual asthma emergency room
visits globally (4–9%) could be attributable to PM2.5 [55]. A significant correlation was found between
increased asthma emergency room visits in adults and high PM2.5 concentrations, especially in the
warm seasons [81]. It was also demonstrated that PM10 was a statistically significant risk factor for a
2% increase in the number of asthma-related emergency visits in children [82]. A recent meta-analysis
revealed that UFP exposure increased the number of asthma exacerbations, subsequent emergency
room visits and hospital admissions in children [83]. In contrast, the exposure to PM attributable to
landscape fire smoke (PMLFS) seems to be associated with a higher risk for emergency department visits
for the elderly compared to children. A meta-analysis showed that emergency department attendance
increases with a 10µg/m3 PM2.5LFS of 15% for elderly (95% CI [1.1–1.2]) vs 4% (95% CI [1–1.08]) for
children [84]. The risk is greatest on the day of exposure to PMLFS (an increase in emergence department
attendances for asthma by 1.96% [95% CI: 0.02, 3.94]) and for women 20 years and older (5.08% 95% CI
[1.76, 8.51]). [85,86].

There is growing evidence that PM exposure could be associated with impaired asthma control.
A study found a correlation between poor asthma control, elevated PM2.5 and pollen severity in a
pediatric population [87]. A cohort study of 32 asthmatic adult patients revealed that a 10 mg/m3

increase in PM10 personal exposure was associated with an increase in Saint George Respiratory
Questionnaire scores and a decrease in Asthma Control Test scores [88].

PM exposure might be an important risk factor for lung function deterioration in both children
and adults with asthma. An association between the fall of the FEV1/FVC ratio and air pollution was
found in a cohort study by Yu et al. Acute exposure to PM10 in non-smoking adults with refractory
asthma correlated with a 0.4% drop in the FEV1/FVC ratio in the spring [89]. A longitudinal analysis
showed that an increase in PM10 concentration was associated with increased peak expiratory flow
(PEF) variability of >20% and a decrease in the mean PEF among 64 adults with asthma [90]. It was
also found that an increase of 10 µg/m3 in 24-h mean PM was associated with a drop of 3 L/min in PEF
in children hospitalized for severe asthma exacerbations [91].

4.6. Outdoor Air Pollution and Asthma Outcomes

Many studies have demonstrated so far a clear association between short-term exposure to
outdoor air pollutants and different asthma outcomes including asthma control [87], lung function [92],
consumption of asthma medications [93,94], outpatient visits [95,96], asthma exacerbations [97,98],
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emergency room visits [99], hospitalizations [100,101], length of stay in the hospital [102] and deaths [2].
Several air pollutants have been implicated in the loss of asthma control. It seems that TRAP plays
a particular role in this process because associations of asthma outcomes with outdoor air pollution
were enhanced among subjects living in homes with high TRAP [9]. A study found that TRAP was
associated with increased risk of hospitalizations due to asthma exacerbations in a population of
0–14 years of age children in California [100].

On the other hand, some air pollutants are associated with asthma morbidity independent of
their source. In one study, exposure to outdoor PM2.5 was significantly associated with an increased
number of emergency room visits due to asthma and the effect was independent of the source of
PM2.5 [99]. An analysis of 3520 cases of acute asthma exacerbation indicated a positive association with
the concentration of PM2.5 in the outdoor air and the association remained significant after adjusting
for gaseous co-pollutants [97]. Several meta-analyses have been performed in order to single out those
components responsible for asthma exacerbations. A meta-analysis of 26 studies conducted worldwide
found a 4.8% increase in the risk of asthma-associated emergency department visits and admissions
among children exposed to short-term increases in PM2.5 of 10 µg/m3, with greater effects in Europe
and North America than in Asia [103]. In children, the association between NO2, SO2, and PM2.5

exposures and asthma exacerbations, as well between all outdoor pollutants and hospital admissions,
were confirmed by two meta-analyses [72,104].

The effect of outdoor air pollution may change with time within the same population. In a
longitudinal study, it was demonstrated that each 6.8 µg/m3 increase in PM2.5 on the same day was
associated with 0.4% (0.0%, 0.8%), 0.3% (−0.2%, 0.7%), and 2.7% (1.9%, 3.5%) increases in the rate of
asthma emergency department visits in the 2005–2007, 2008–2013, and 2014–2016 periods, suggesting
that the toxicity from PM2.5 increased with the time [105].

Although the relation between exposure to outdoor air pollution and exacerbations of childhood
asthma has been well documented, there is less evidence on exposure to indoor air pollution from
incomplete combustion of polluting fuels. However, in a recent study, coexposure to elevated
concentrations of indoor and outdoor pollutants was synergistically associated with increased
emergency room visits for asthma [106].

It has been estimated that the combined effects of outdoor and indoor air pollution are responsible
for approximately seven million premature deaths every year, mainly due to respiratory and
cardiovascular diseases. Annually, around 500,000 deaths of children under 5 years of age and
50,000 deaths of children aged 5–15 years were attributable to air pollution. The burden of disease
attributable to air pollution is not evenly distributed is greater in low- and middle-income countries
than in high-income countries [107].

Table 1 shows the legal concentrations of outdoor air pollutants according to WHO guidelines
and summarizes their negative impact on asthma outcomes.

Table 1. Effects of outdoor air pollutants on asthma outcomes if legal concentrations are exceeded.

Pollutant Concentrationµg/m3 Asthma
Symptoms Exacerbations Hospitalizations Lung Function

O3 100 (8-h mean) - ↑ ↑ ↓

NO2 200 (1-h mean) ↑ ↑ ↑ ↓

CO 30 (1-h mean) - ↑ - -

SO2 20 (24-h mean) ↑ ↑ ↑ ↓

PM2.5
10 (annual mean)

25 (24-h mean) ↑ ↑ ↑ ↓

PM10
20 (annual mean)

50 (24-h mean) ↑ ↑ ↑ ↓
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4.7. Outdoor Air Pollution and Asthma Management

Several risk reduction measures have been recommended. These include personal strategies,
community and government interventions, as well as the use of effect modifiers, which could reduce
the risk factors [108]. Patients’ education to minimise their exposure to air pollutants represents
an important step in asthma management. Several measures could be beneficial, like the use of
close-fitting N95 facemasks when air pollution levels are high, shifting from motorised to active travel
(e.g., cycling, walking), selecting low-traffic routes or those with open spaces, driving with windows
closed, maintaining car air filtration systems and internal circulation, and being informed of local air
pollution levels [108]. For that purpose, alerts on the occurrence of peaks of pollution, freely available
online for the general population, could be helpful. This exclusion of outdoor activities during the
period of poor air quality could be added to the asthma action plan. Moreover, peak pollution levels
could be concomitant with exposure to seasonal aeroallergens, with an additive negative impact on
asthma outcomes [109]. It was also suggested that patients with asthma ought to live at least 300 m from
major roadways to reduce the impact of pollutant exposure on their asthma [49]. Community-level
interventions such as urban planning of “smart” cities with more green space at distance from major
traffic arteries and industrial areas, as well as the development of walking and cycling paths separated
from motorised streets, may reduce respiratory morbidity [108]. Governments must monitor air
pollution, inform the population about the risks when air pollution levels are high and take measures
in controlling the release of PM, like considering alternative fuels such as gas, fuel-cleaning options
such as coal washing as well as alternative production processes and technologies [49]. For example,
an European pediatric study showed that compliance with the WHO air quality guidelines for
PM2.5 could prevent 11% of all incident asthma cases, while the minimum air pollution levels for
NO2 (1.5 µg·m−3) and PM2.5 (0.4 µg·m−3) were estimated to prevent 23% and 33% of incident cases,
respectively [11].

The treatment of asthma exacerbations related to air pollution is not different from the usual clinical
practice. All asthmatic patients must have a controller asthma treatment as recommended by current
guidelines [8]. Inhaled corticosteroids (ICSs), the first choice treatment as a controller of asthma, proved
to be beneficial in decreasing adverse responses to pollutant exposures [46]. Dietary supplements
such as carotenoids, vitamin D and vitamin E are suggested to protect against airway inflammation
and damage induced by pollutants that can trigger asthma initiation. Vitamin C, curcumin, choline
and omega-3 fatty acids may also play a role [46,110]. Previous data showed that dietary intake of
fruits and vegetables (e.g., Mediterranean diet) was associated with a better lung function, particularly
among children exposed to O3 [46]. However, this protective effect of dietary antioxidant intake seems
more evident in children with low levels of outdoor air pollution exposure, but may be insufficient for
the children exposed to higher amounts of air pollutants [111].

Most of enumerated measures to reduce the impact of air pollutants on asthma outcomes are easier
to apply in developed countries with adapted economical resources than in low- or middle-income
countries. Poor countries often lack the technology and resources to fight pollution because their
economies are still growing, so their citizens are more at risk of respiratory and cardiovascular diseases
related to high levels of air pollution. Energy production is one of the most polluting activites because
much of this energy comes from coal. While developed countries are more likely to invest in cleaner fuel
sources, and technologies that limit emissions, governments of developing nations just want to ensure
energy for their citizens at competitive and accessible prices. Even the monitoring of air pollution is
sometimes difficult in developing countries; it must be encouraged, and the use of mobile devices is
a less expensive solution [1,5]. In addition, evidence suggests that asthma is underdiagnosed and
undertreated in low-income countries [112]. However, access to proper diagnosis and treatment with
controller medications for asthma (e.g., ICSs) is feasible and cost-effective even in low-resource settings
by reducing symptoms, health care utilization, mortality and improving quality of life [112]. Actions
by cities and national governments are needed in developing counties to minimize the impact of air
pollution on their populations’ health. Monitoring of air quality, education for health, development
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of healthcare systems, active and public transport infrastructure, use of better methods of energy
production (e.g., renewable energy sources) and technologies to reduce emissions are efficient measures
that improve air quality and consequently life expectancy and worker productivity. It is important for
developing nations to find a balance between economic growth and air quality to protect the health
and standard of living of their citizens [50,113].

The effects of various air pollutants on asthma outcomes and their socio-economic impact are
represented in Figure 1.
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5. Indoor Air Pollution

5.1. Tobacco Smoke

Tobacco smoking is the inhalation of smoke produced during the burning of tobacco leaves.
Currently, more than 1.1 billion people are smokers and, additionally, another part of population is
exposed to SHS. Tobacco smoke is a complex and dynamic mixture containing more than 7000 chemicals,
of which at least 250 are known to be harmful and at least 69 are known to cause cancer [114]. Mainstream
smoke is the aerosol drawn and inhaled directly by a smoker from a cigarette, cigar, or pipe, while
sidestream smoke is the aerosol emitted in the surrounding air from a smoldering tobacco product [115].
Sidestream smoke is the main part of the SHS. The other main contributor to SHS is the exhaled
portion of mainstream smoke. SHS is also known as passive smoking or environmental tobacco
smoke. The aerosol of mainstream smoke is complex and consists of vapor and particulate phase.
The main component of the vapor phase is the CO, but it also contains acetaldehyde, formaldehyde,
acrolein, nitrogen oxides and CO2. Tar and nicotine form the particulate part of the mainstream smoke
aerosol [116]. Tobacco smoking increases the risk of developing cardiovascular disease, stroke, COPD,
lung cancer and other cancers [117]. It has an impact on asthma at various levels and it is a well known
modifiable risk factor for symptom control and exacerbation. The prevalence of smoking among
asthma patients is comparable to the general population (around 20%) [118].

Airway inflammation in asthmatic smokers differs from asthmatic non-smokers with higher total
sputum cell counts, predominance of activated macrophages and neutrophils in sputum, airways,
and lung parenchyma as in early COPD [119,120]. Previous data showed that smokers with asthma
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have higher sputum matrix metalloproteinase (MMP)-12 concentrations compared to non-smokers
and the levels are inversely associated with lung function and positively related to sputum neutrophil
counts [121]. This neutral endopeptidase is primarily responsible for the degradation of extracellular
matrix components during the remodelling processes essential for normal tissue growth and repair.
The excessive activity of MMPs and the impaired balance between them and their regulators, tissue
inhibitors of metalloproteinases (TIMPs), have been implicated in the tissue-destructive processes
associated with chronic lung diseases, including COPD and asthma [121]. In the same line, another
study found reduced sputum MMP-9 activity/TIMP ratios in smokers with asthma compared with
never-smokers. Low sputum ratios in asthmatic smokers were associated with persistent airflow
obstruction and a reduced CT airway lumen area, which may indicate that an imbalance of MMP-9 and
TIMPs contributes to structural changes to the airways in this group [121]. These results suggest that
the persistent exposure to cigarette smoke drives additive or synergistic inflammatory and remodelling
responses in the asthmatic airways [122]. In addition, the number of CD83+ mature DCs and B
lymphocyte cells in bronchial biopsies are significantly lower in asthmatic smokers in comparison
with never-smokers with asthma, which could explain the higher number of lower respiratory tract
infections in the group of smokers [123]. The rhinovirus respiratory infection is an etiologic factor for
severe asthma exacerbations necessitating hospitalization, and after adjustment for baseline asthma
severity, rhinovirus-positive patients were more likely to be current smokers [124].

Asthmatic smokers are less sensitive to the therapeutic effects of inhaled and oral CSs in short- to
medium term administration [125–139]. The impact of smoking in long-term CSs treatment still needs
to be investigated, but the data collected showed that impairment in response to smoking was present,
even after one year of treatment with ICSs, overruling the suggestion that the insensitivity could
be improved with prolonged treatment [130]. Two main mechanisms explain the CSs insensitivity
in smokers with asthma. The first one is the decrease in histone deacetylase-2 (HDAC-2) activity
among smokers with increased inflammatory gene expression [131–134]. This is the consequence
of oxidative stress. There are high levels of nitric oxide in tobacco smoke generating peroxynitrite,
which leads to the inactivation of HDAC-2 via nitration and ubiquitination [135,136]. The second
mechanism involves glucocorticoid receptor (GR). CSs act through the GR that has two alternative
splicing isoforms, the GRα and GRβ. GRα is the classic and the functional isoform, through which the
effects of CSs are mediated, while the overexpression of GRβ inhibits the action of the ligand-activated
GRα [137–139]. The ratio of GRα/GRβ isoforms is reduced in peripheral blood mononuclear cells from
current-smokers compared with non-smokers, including patients with asthma, which could lead to a
lower CS [140]. These mechanisms could partially explain the poorer asthma outcomes in smokers
with asthma.

Smoking patients with asthma form a separate phenotype that requires better understanding of
underlying disease mechanisms and specific management.

5.2. Wood-Burning and Unflued Gas Heaters, Cooking Behaviors (Using Wood or Coal), Molds

Biomass combustion is known to be an important contributor to indoor air pollution in developing
countries with resultant adverse health effects [141]. Residential heating devices can be a large
contributor to ambient PM, notably in rural communities; the majority of these heating sources are
old and inefficient, resulting in high levels of PM emissions [142]. The Consumer Product Safety
Commission estimates that there are nearly 9 million wood stoves currently in use in the US [143].
Estimates of the contribution of wood-burning to ambient air quality can vary widely [144], but wood
smoke accounts for 80–90% of the PM concentrations in communities with a high proportion of
wood-burning households [145]. In the European Union, it is estimated that domestic woodstoves will
be the dominant source of ambient PM2.5, accounting for 38% of all emissions by 2020 [146]. Follow-up
of cohorts or panels of asthmatic patients have demonstrated that increases in levels of PM10 and
PM2.5 in the indoor environment are associated with increases in severe asthma attacks, respiratory
symptoms, asthma medication use, and hospital emergency department visits [147,148]. PM exposures



Int. J. Environ. Res. Public Health 2020, 17, 6212 14 of 29

have been shown to result in annual lung function growth deficits that are greater than those attributed
to SHS exposure in children [149].

Unflued gas heaters (UFGHs) are a major source of NO2, nitrous acid and CO indoors, and they
can also emit formaldehyde and produce water vapour [150,151]. Exposure to gas appliances or indoor
NO2 has been associated with a worsening of asthma symptoms in children and adults. A positive
association was found between indoor NO2 exposure and asthma exacerbations [152]. The effects of
UFGHs exposure was studied in seventy-one patients with >55 years of age with mild to moderate
asthma. A significant increase in respiratory symptoms was shown (wheeze and dyspnoea) when
the people used UFGHs compared with days without exposure. In addition, there were significant
increases in the average odds of reported wheeze and dyspnoea per hour of UFGH use. Small but
significant reductions in morning to evening PEF and FEV1 were observed on the days when UFGH
was used compared with days when other/no heating was used [153].

Cooking has been also extensively studied as a source of indoor air pollution. Most people from
low- or middle-income countries use, in their homes, biomass fuel (wood, animal dung and crop
residues) or coal to cook, producing high levels of indoor pollution (e.g., CO, PM). Using coal and
wood as cooking fuels were identified as risk factors of asthma in child and adult populations [154,155].

Indoor sources of molds may also be a risk factor for asthma [156,157]. If more studies showed a
causal relationship between indoor mould exposure and the development/exacerbations of asthma in
children, a limited level of evidence was found in the adult asthma population [157]. Several species,
such as Aspergillus fumigatus and versicolor, Penicillium spp or Cladosporium sphaerospermum,
herbarum and cladosporioides, display a more pronounced indoor tropism [158]. Exposure to increased
daily levels of basidiospores and ascospores in the first 3 months of life were associated with increased
odds of wheezing among children under 24 months in a cohort study in California [159]. Fungal
components are biologically active and contribute to asthma development and the severity by IgE-
and non-IgE-mediated mechanisms [156]. Fungal sensitization is associated with earlier onset of
asthma and demonstrates a dose-dependent relationship of symptom severity and duration [160].
The senzitization to Aspergillus fumigatus and Penicillium spp was linked to an increased risk of
severe asthma [158]. Alternaria alternata sensitization is a predictor of epidemic asthma in patients
with seasonal asthma and is likely to be an important factor in thunderstorm-related asthma [161].
These data suggest that indoor mold exposure can initiate asthma and influence asthma outcomes.

5.3. Indoor Air Pollution and Asthma Outcomes

The asthmatics who are active smokers have increased morbidity and mortality, more severe
symptoms, difficulties in controlling asthma, higher rates of exacerbations, worse quality of life, and an
increased number of life-threatening asthma attacks [162]. This group of patients have more frequent
unscheduled doctor visits and hospital admission, thus leading to the utilization of more health
care resources [8,163–165]. The risk of death from asthma is increased in asthmatic patients with a
smoking history of more than 20 pack-years [166]. In a cohort of 147 cases of near-fatal asthma attacks,
smoking was associated with a higher in-hospital and post-hospitalization mortality [167]. Several
population-based surveys demonstrate that smoking is strongly associated with poorer asthma control
and this seems to be dose-dependent [168].

Exposure to SHS impacts asthma control and severity in both adults and children. A systematic
review and meta-analysis has shown a nearly two-fold increase in the risk of hospitalization for asthma
exacerbations in children with asthma and SHS exposure [169]. Adolescents with asthma exposed to
SHS were at increased risk of having a dry cough at night, wheeze and sleep disturbance due to asthma
symptoms. Dyspnea and exercise limitations were also more frequent among this population. The risk
of having Emergency department/urgent care visits was two times higher in asthmatic adolescents
exposed to SHS compared with unexposed adolescents. The group of adolescents with asthma
were also 1.5 times more likely to use a rescue medication, nebulizer treatment, or other controlling
medication and over 3.5 times more likely to have had an asthma attack that required the use of an oral
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or injected CS [170]. A recent study found that SHS in children aggravated the severity of asthma by
affecting the balance of Treg/Th17 cells with a higher percentage of Th17 cells, while the percentage
of Treg cells was reduced. SHS significantly reduced the levels of FoxP3 and tumor growth factor-β,
which were associated with Treg cells, and increased the levels of interleukin-17A and interleukin-23,
which were associated with Th17 cells [171]. Adults with asthma who are exposed to SHS have poor
symptom control, worse quality of life, lower lung function and greater healthcare utilization [172].

Asthma itself is associated with a decline in lung function over time [173] and this process is more
rapid in asthmatic smokers, compared with asthmatic non-smokers [174–177]. A smoking history of
≥10 pack-years seems to be a significant predictor factor of accelerated loss of lung function [176].
Regular/former smoking reduces lung function levels with a dose–response pattern (daily smoking
rate and cumulative smoking) by affecting both larger and smaller airways [177].

Smoking is a predictive factor for ACO development, a term introduced to describe patients who
have features of both asthma and COPD [8]. More than 25% of asthma patients with a smoking history
of at least 10 pack-years have ACO [178]. It is important to actively look for features of ACO in asthmatic
smokers because these patients have more frequent exacerbations, a poor quality of life, a more rapid
decline in lung function, and high mortality, compared with asthma or COPD alone [8,179].

Exposure to high levels of PM from wood-burning or NO2 from UFGHs is associated with
more symptoms of asthma, a high rate of exacerbations and has a negative impact on lung
function [147,148,152]. These effects seem more evident in children and older people with
asthma [147,148,153]. Children exposed to biomass smoke from cooking have more frequent symptoms
of severe asthma [180] and the risk of asthma-related symptoms is greater for males [180], while those
exposed to NO2 from cooking with natural gas have a higher risk of asthma exacerbations [21]. A large
cross-sectional study performed in China showed that adults using coal for cooking have a higher risk
for asthma symptoms than those without such exposure, and they have more asthma symptoms and
poorer lung function in winter than in summer [181].

Several data sources suggested an association between the sensitization to Aspergillus fumigatus
or Penicillium spp. and severe asthma [158,160]. A study perfomed in Mexico City including
asthmatic patients found an association between the exposure to some molds, particularly Aspergillus
fumigatus, Aureobasidium pullulans, Stachybotrys chartarum, Alternaria alternata, Cladosporium
cladosporioides, Cladosporium herbarum, and Epicoccum nigrum, and uncontrolled asthma in males,
but not in female patients, suggesting a possible gender susceptibility [182].

The effects of indoor air pollution on asthma are summarized in Table 2.

Table 2. Effects of indoor pollution on asthma according to their sources.

Source Asthma
Symptoms Exacerbations Hospitalizations Asthma

Medication Use Lung Function

Cigarette Smoke
Active Smoking ↑ ↑ ↑ ↑ ↓

SHS ↑ ↑ ↑ ↑ ↓

Heating Sources
Wood ↑ ↑ ↑ ↑ ↓

Gas ↑ ↑ - - ↓

Cooking Smoke
Wood ↑ - - - -
Coal ↑ - - - ↓

Molds ↑ ↑ - - -

SHS: second-hand smoking.

A large cross-sectional Brazilian study including adult asthmatic patients evaluated the impact of
smoking, indoor air pollution, and dual exposure on asthma outcomes. Exposure to indoor air pollution
was associated with poorer asthma control, a higher proportion of severe asthma, and worsening
of lung function in exposed vs. unexposed individuals. These effects were more important for the
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double-exposure. Exposure to indoor air pollution and double-exposure were predictive factors for
uncontrolled and severe asthma in multivariate analysis [183].

All these findings suggest that indoor pollutants play a negative role on asthma outcomes, but,
more importantly, an additive effect if they are associated.

5.4. Indoor Air Pollution and Asthma Management

The management of asthmatics exposed to indoor pollutants must include preventive measures
to reduce/avoid exposure, such as smoking cessation, efficient household ventilation, use of clean fuels
(e.g., methane, liquid petroleum gas, electricity, solar cookers), portable air cleaners, and pharmacologic
interventions to optimize asthma treatment.

Smoking cessation must be encouraged in all possible ways to reduce the exposure of people
with asthma. Smoking cessation in patients with asthma leads to better symptom control, less use of
rescue medication, improved asthma quality of life score, lung function and AHR [184,185]. However,
former-smokers have an accelerated FEV1 decline for decades after smoking cessation compared to
never-smokers, but less important than for current-smokers, suggesting a lasting and progressive
lung damage induced by tobacco smoke [186]. Counseling and first-line medications for smoking
cessation (nicotine replacement therapy, bupropion and varenicline) significantly increase quitting
rates along with increasing the chance of preventing relapses [187]. E-cigarettes could be a valid
option for asthmatic patients who cannot quit smoking by other methods. A study showed significant
improvements in lung function, asthma control and AHR for asthmatic patients who chose this method
for smoking cessation [188]; however, e-cigarettes might generate respiratory toxicants such as acrolein,
formaldehyde, and acetaldehyde [189]. A study found that current e-cigarette use is associated
with 39% higher odds of self-reported asthma compared to never e-cigarette users [190]. Therefore,
the recommendation of e-cigarettes as a smoking cessation tool must be balanced against the short-
and long-term safety of these products.

In general, it could be suggested that the treatment of asthmatic smokers should follow
the international guidelines for asthma treatment [8], but this could be challenging due to the
aforementioned. Although the data shows that asthmatic smokers have decreased sensitivity to
ICSs, there are studies demonstrating that long-term ICS treatment may reduce the decline in
lung function in smokers with asthma, with a greather benefit for people who have smoked <5
pack-years [191,192]. The combination therapy with ICS and long-acting beta-agonist (LABA) is
probably the preferable option, in asthmatic smokers, to increasing the dose of ICS, due to the relative
insensitivity and the potential adverse effects of the latter [128,193,194]. One of the most significant
changes in asthma management was the announcement of the Global Initiative for Asthma (GINA) 2019
recommendations regarding the use of as-required ICS/LABA as rescue medication in symptomatic
mild or moderate asthma. Trials investigating this rescue medication option are lacking in asthmatic
smokers; it seems reasonable that current or former-smokers should not be excluded from this new
GINA recommendation [195]. Montelukast, a leukotriene receptor antagonist, represents another
therapeutic option as a controller of asthma. A study showed a significant benefit of the montelukast
treatment (10 mg/day) on asthma control over 6 months compared to placebo in asthmatic patients
actively smoking cigarettes. This effect is comparable to the administration of 250 µg of fluticasone
propionate twice daily. However, the patients with a smoking history of more than 11 pack-years
experienced better benefits with montelukast than with fluticasone. The explanation of these findings is
that the more intensive exposure to tobacco smoke induces an increased synthesis of leukotrienes [196].
The effect of tiotropium, an inhaled long-acting muscarinic antagonist, is comparable in current-smokers
and non-smokers with asthma treated by ICSs plus a second controller, with a significant improvement
of symptoms and lung function in both groups [197]. Preliminary findings suggest that biologic
therapies, such as omalizumab, mepolizumab, and dupilumab, improve clinical outcomes in smokers
with asthma or ACO but current data is limited [198]. The group of asthmatic smokers forms a
distinct asthma phenotype with worse outcomes, altered airway inflammation and changes in the
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response to pharmacological treatment. Smoking cessation interventions must start as early as possible.
More studies investigating the effect of pharmacological treatments in this group of asthma patients
are required.

Several studies showed the positive impact of the comprehensive statewide smoke-free indoor air
laws on SHS exposure and the improvement of asthma outcomes through a reduction in prevalence,
respiratory symptoms and exacerbations/hospitalizations [199–201]. The respect of smoke-free indoor
environments and public areas is beneficial, and smoke-free indoor air laws should be enforced in
all states. Several studies of children with asthma in urban environments have targeted the indoor
environment to improve health outcomes. Improving household ventilation by opening windows
or doors, using chimneys, hoods, or exhaust fans decreased asthma symptoms in children [202,203].
The intervention strategies (e.g., education by a health coach, remediation of the exposure by air cleaners)
consistently demonstrated declines in asthma-related symptoms and significant improvements in peak
expiratory flow [108]. However, all of these studies were conducted in urban environments, and the
nature of these exposures likely differ from that of exposures in rural environments [204–206]. A study
showed that installing non-polluting, more effective heating (with lower levels of indoor exposure to
NO2) in the homes of children with asthma significantly reduced respiratory symptoms, days off school,
healthcare utilisation, and visits to a pharmacist [207]. Similarly, the replacement of UFGHs with high
NO2 emission in the schools by flue gas or electric heaters reduced asthma symptoms in children
during 12 weeks following the intervention [208]. In contrast, household-level interventions, such as
improved-technology wood-burning appliances or air-filtration devices did not affect quality-of-life
measures among children with asthma and chronic exposure to wood-smoke [209]. If the avoidance of
wood-smoke or UFGHs emission is not possible, several general cautionary measures could be made
in practice.

A study found that the removal of indoor molds significantly improved asthma symptoms and
reduced medication use at 6 and 12 months compared with the group without this intervention [210].
The advice of a Medical Indoor Environment Counselor could be also useful to improve the quality of
the indoor environment [211]. This is summarized in the following Table 3.

Table 3. Recommendations to minimise indoor air pollution from heating sources.

Recommendations to Minimise Air Pollution from Wood-Burning Heater

• Verify that your wood-burning heater conforms with standards and that the heater and chimney are
installed in line with any council-specific building requirements.

• Burn only dry and and untreated wood.
• Adjust the air damper on the wood-burning heater to allow sufficient air flow to provide oxygen for

clean combustion.
• Ensure that fresh air comes in the room to prevent carbon monoxide build up.
• Make sure the fire burns brightly to ensure enough heat for complete combustion.
• Never leave a fire smouldering overnight.
• Check your chimney—if there is visible smoke from it increase the airflow to the fire.
• Arrange for regular cleaning of the chimney.

Recommendations to Minimise Air Pollution fromUFGHs

• Ensure that an UFGH is the correct size for the area in your home you wish to heat.
• Check the electronic ignition.
• Have a qualified tradesperson install the gas supply system in the home.
• Ensure that you are aware of the instructions for the use of the appliance.
• Never use an UFGH overnight in the room where you sleep.
• Verify the proper functioning by regular inspection and maintenance of your heater.

UFGHs: Unflued gas heaters.
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These measures could reduce the exposure but, unfortunately, the complete avoidance of the
pollutants is impossible, so the asthma management plan and the controller medication use are
mandatory for all asthmatics, as recommended by current guidelines [8].

Unfortunately, if most of these measures to reduce indoor pollution are feasible and already
promoted in developed countries, their application in low- or middle-income countries is more difficult
because of limited financial resources. If the use of air cleaners, low-polluting sources for cooking and
heating, or personal devices to monitor indoor air pollution are less accessible for people who live in
developing countries, government measures promoting health, such as smoking cessation programs
and avoidance of SHS, education of people to improve household ventilation by opening windows or
doors (at least during cooking periods) and mold removal, are cost-effective methods that could reduce
the negative impact of indoor air pollution on asthma, and are feasible worldwide, independent of
socioeconomic status.

6. Conclusions

Indoor and outdoor pollution represents a major public health threat with a negative impact
on asthma outcomes. Current data showed that not only is the TRAP a risk factor for asthma
development in children, but so are the NO2 and SHS exposures. A causal relation between air
pollution and the development of adult asthma is not yet clearly established. The exposure to
ourdoor pollutants (O3, NO2, SO2, CO, PM) could induce asthma symptoms, exacerbations and
hospitalizations. The effects are dose and duration-dependent. A decrease in lung function was more
frequently reported for O3, NO2, SO2 and PM. Active tobacco smoking is associated with poorer
asthma control, more frequent exacerbations/hospitalizations, accelerated decline of lung function
and a lower response to CS. Exposure to SHS increases the risk of asthma exacerbations, respiratory
symptoms, healthcare utilization, and poor lung function. High-level exposures to indoor pollutants
(e.g., PM from wood-burning or NO2 from UFGHs) could induce more symptoms of asthma and higher
rates of exacerbation, and have a negative impact on lung function. The sensitization to Aspergillus
fumigatus and Penicillium spp seems to be associated with more severe asthma. These negative effects
are more evident in children and older people with asthma. Asthma management according to current
guidelines could reduce these effects but global measures are mandatory to minimize the exposure to
indoor/outdoor pollutants and to improve asthma outcomes. Limited data exists for the effects of dual
exposures (e.g., tobacco smoking and other air pollutants or associations between outdoor and indoor
air pollutants) on asthma outcomes. Future research is needed on double or multiple exposures, as well
as in the identification of a pattern of respiratory disease that increases susceptibility to air pollution.
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